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Abstract. We use a new method in the study of Fisher-KPP reaction-diffusion equations
to prove existence of transition fronts for inhomogeneous KPP-type non-linearities in one
spatial dimension. We also obtain new estimates on entire solutions of some KPP reaction-
diffusion equations in several spatial dimensions. Our method is based on the construction
of sub- and super-solutions to the non-linear PDE from solutions of its linearization at zero.

1. Introduction and Main Results

We introduce a new elementary method for the study of certain solutions to reaction-
diffusion equations with Kolmogorov-Petrovskii-Piskunov (KPP) type non-linearities. We use
it to prove existence of transition front solutions for very general spatially inhomogeneous
KPP reaction-diffusion equations in one dimension as well as some special ones in several
dimensions, and to obtain very good estimates on these solutions. Our method is based on
relating the solutions of the original non-linear equation to those of its linearization at u = 0.

Let us first consider the reaction-diffusion equation

ut = uxx + f(x, u) (1.1)

with x ∈ R and f an inhomogeneous KPP reaction function. That is, we assume that f is
Lipschitz, a(x) ≡ fu(x, 0) > 0 exists,

f(x, 0) = f(x, 1) = 0 and a(x)g(u) ≤ f(x, u) ≤ a(x)u for (x, u) ∈ R× [0, 1], (1.2)

where g ∈ C1([0, 1]) is such that

g(0) = g(1) = 0, g′(0) = 1, and 0 < g(u) ≤ u for u ∈ (0, 1). (1.3)

We will also assume∫ 1

0

u− g(u)

u2
du <∞ and g′(u) ≤ 1 for u ∈ (0, 1). (1.4)

We define a− ≡ infx∈R a(x) ≥ 0 and also assume existence of a+ <∞ such that

a(x) ≤ a+ for x ∈ R. (1.5)

A (right-moving) transition front for (1.1) is an entire (global-in-time) solution 0 ≤ u ≤ 1
connecting 0 and 1 in the sense of

lim
x→−∞

u(t, x) = 1 and lim
x→+∞

u(t, x) = 0 (1.6)
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for each t ∈ R. It models an invasion of the unstable state u ≡ 0 by the asymptotically
stable state u ≡ 1. Moreover, we also require that for any ε > 0 there is Lε <∞ such that

sup
t∈R

diam {x ∈ R | ε ≤ u(t, x) ≤ 1− ε} ≤ Lε, (1.7)

that is, the width of the transition region between ε and 1− ε is uniformly bounded in time.
This definition of transition fronts has first appeared in [3, 11].

It has been well known since the seminal works of Fisher [5] and Kolmogorov-Petrovskii-
Piskunov [10] that in the homogeneous case f(x, u) = f(u), there exist transition fronts
with constant-in-time speed and profile. More specifically, (1.1) has solutions of the form
u(t, x) = U(x − ct) with U(−∞) = 1 and U(∞) = 0 precisely when the front speed c ≥ c∗f ,

with c∗f ≡ 2
√
f ′(0) the minimal front speed. These fronts have a constant-in-time profile U

with U ′ < 0, are unique for each c up to a translation, and are usually called traveling fronts.
There are also other transition fronts in this case [8], which are obtained as a combination of
two or more traveling fronts with different speeds (we will discuss this in more detail below).
Later, existence of KPP transition fronts with time-periodic profiles (called pulsating fronts)
was proved for x-periodic reactions f , again for all speeds c ≥ c∗f with some c∗f > 0 [2].

Very recently, existence of transition fronts was first time proved for some non-periodic
inhomogeneous KPP reactions [15] (see [12,13,16,19] for results on ignition reactions, and [19]
for results on some non-KPP non-negative reactions). Specifically, if a− > 0 and a(x)−a− is
compactly supported, then transition fronts exist when λ0 ≡ supσ[∂2

xx + a(x)], the supremum
of the spectrum of the operator ∂2

xx + a(x), satisfies λ0 < 2a− (note that always λ0 ≥ a−).
These fronts do not have a constant profile but for each c ∈ (2

√
a−, λ0(λ0− a−)−1/2) there is

a front which has a mean speed

lim
|t−s|→∞

X(t)−X(s)

t− s
(1.8)

equal to c, whereX(t) is the rightmost point such that u(t,X(t)) = 1
2
. Moreover, no transition

fronts exist when, in addition, a(x) ≥ a− and λ0 > 2a− [15]; this is the first non-existence-
of-fronts result.

We consider here the question of existence of transition fronts in general inhomogeneous
media without the assumption of compact support of a(x) − a− (in which case no constant
or mean speed fronts exist in general) and answer it in the affirmative again when λ0 < 2a−.
We achieve this by using a new and elementary method which exploits the close connection
between the equation (1.1) and its linearization

vt = vxx + a(x)v (1.9)

at u = 0.
Such a connection is well known, in particular, when f(x, u) = f(u) and so a(x) ≡ a = f ′(0)

is constant. Then (1.9) has traveling-front-like solutions e−γ(x−ca,γt) with γ > 0 and speed
ca,γ ≡ γ + aγ−1 ≥ 2

√
a = c∗f . It turns out [18] that if c > 2

√
a and γ <

√
a is such that

c = ca,γ, then the traveling front for (1.1) with speed c also has asymptotic decay e−γ(x−ca,γt)

as x → ∞, while for c = 2
√
a, the asymptotic decay is (x − 2

√
a t)e−

√
a(x−2

√
a t) as x → ∞

(fronts for (1.9) with γ >
√
a do not give rise to fronts for (1.1)). This means that if Uf,γ is a



KPP TRANSITION FRONTS 3

traveling front profile for (1.1) corresponding to speed ca,γ ≥ c∗f with γ ≤
√
a, and the function

h : [0,∞)→ [0, 1) is given by Uf,γ(x) = h(e−γx) (so that h(0) = 0 and limv→∞ h(v) = 1), then
h′(0) = 1 when γ <

√
a and limv→0 h(v)(−v ln v)−1 = 1 when γ =

√
a, after an appropriate

translation of Uf,γ in x.
The above shows that for f(x, u) = f(u) and for faster-than-minimal speed c > c∗f , the

“tails” of the corresponding traveling fronts for (1.1) and (1.9) are asymptotically the same.
We will show that this still holds for some transition fronts in general inhomogeneous media
when λ0 < 2a−. We will in fact show that the study of these fronts for (1.1) is essentially
equivalent to the study of the corresponding front-like solutions for the simpler equation (1.9).

Similarly to the compactly supported a(x)− a− setting in [15], examples of the latter can
be found in the form vλ(t, x) ≡ eλtφλ(x), where φλ(x) > 0 is a solution of the Schrödinger
generalized eigenfunction equation

φ′′λ + a(x)φλ = λφλ,

with limx→∞ φλ(x) = 0 and φλ(0) = 1. Notice that if a is constant, then vλ(t, x) =

eλt−
√
λ−a x = e−γ(x−ca,γt) with γ ≡

√
λ− a.

Sturm oscillation theory shows that such φλ > 0 exists and is unique precisely when
λ > λ0. Moreover, φλ grows exponentially as x → −∞ (see (2.11)). Then vλ is a super-
solution of (1.1) and we will show that for any λ ∈ (λ0, 2a−) there is h : [0,∞) → [0, 1)
such that wλ(t, x) ≡ h(vλ(t, x)) is a sub-solution (rather than an outright solution, as in the
homogeneous case). Moreover, λ < 2a− will ensure h(v) ≤ v so it will follow that there exists
a transition front u ∈ [wλ, vλ] for (1.1). We note that this construction cannot be expected
to work for λ ≥ 2a− in general because in the homogeneous case this translates to γ ≥

√
a,

which either gives rise to no front for (1.1) when γ >
√
a or violates h(v) ≤ v when γ =

√
a.

There is, in fact, a larger class of positive entire solutions of (1.9), of which the vλ are the
extremal points. Indeed, if µ is a finite non-negative non-zero Borel measure on (λ0,∞) with
a bounded support, then Harnack inequality shows that

vµ(t, x) ≡
∫

R
vλ(t, x)dµ(λ) =

∫
R
eλtφλ(x)dµ(λ) (1.10)

is well-defined, and it is obiously an entire solution of (1.9). We will show that vµ also gives
rise to an entire solution of (1.1) provided sup supp(µ) < 2a−.

Finally, our result extends to and will be stated for the more general PDEs

ut = (B(x)ux)x + q(x)ux + f(x, u) (1.11)

and
vt = (B(x)vx)x + q(x)vx + a(x)v (1.12)

with B, q Lipschitz and satisfying

0 < B− ≤ B(x) ≤ B+ <∞ and |q(x)| ≤ q+ <∞ for x ∈ R. (1.13)

Let us define

λ0 ≡ sup
ψ∈H1(R)

∫
R[−B(x)ψ′(x)2 + q(x)ψ′(x)ψ(x) + a(x)ψ(x)2]dx∫

R ψ(x)2dx
(≥ a−). (1.14)
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Note that when q ≡ 0, then the Rayleigh quotient formula for self-adjoint operators gives

λ0 = supσ [∂x(B(x)∂x) + a(x)] .

As we show below, for λ > λ0 there is again a unique φλ > 0 such that

(B(x)φ′λ)
′ + q(x)φ′λ + a(x)φλ = λφλ, (1.15)

limx→∞ φλ(x) = 0 and φλ(0) = 1.

Theorem 1.1. Assume (1.2)–(1.5) and (1.13), let λ0 be as in (1.14) and for λ > λ0 let φλ
be as in (1.15). Let (aB)− ≡ infx∈R[a(x)B(x)], and assume also that q+ ≤ 2

√
(aB)− and

λ0 < λ1 ≡ inf
x∈R

{
a(x) +

√
(aB)−

[√
(aB)− − |q(x)|

]
B(x)−1

}
. (1.16)

Let µ be a finite non-negative non-zero Borel measure on (λ0, λ1) with µ0 ≡ inf supp(µ) and
µ1 ≡ sup supp(µ), and define vµ as in (1.10).

(i) If µ1 < λ1, then there is an increasing function h : [0,∞) → [0, 1) with h(0) = 0,
h′(0) = 1, limv→∞ h(v) = 1, and an entire solution uµ of (1.11) satisfying (1.6), (uµ)t > 0,

h (vµ) ≤ uµ ≤ min {vµ, 1} . (1.17)

In fact, we can choose h = hg,α from (2.1) below, with any α ∈ (1− (λ1 − µ1)a
−1
+ , 1).

(ii) If λ0 < µ0 ≤ µ1 < λ1, then uµ from (i) is a transition front (i.e., satisfying also (1.7)),
with Lε depending only on g, a+, B±, ε and ζ, provided min{µ0 − λ0, λ1 − µ1} ≥ ζ > 0.

Remarks. 1. Condition (1.16) is sharp in this generality, as exhibited by the previously
mentioned non-existence of transition fronts in the case of B ≡ 1, q ≡ 0, and compactly
supported a(x)− a− with a(x) ≥ a− > 0 and λ0 > 2a− [15].

2. The properties of h give limx→∞ uµ(t, x)vµ(t, x)−1 = 1 for each t ∈ R.

3. Note that a− +
√

(aB)−[
√

(aB)− − q+]B−1
+ ≤ λ1 ≤ 2a−, so (1.16) is satisfied when

λ0 < a− +
√

(aB)−[
√

(aB)− − q+]B−1
+ . In the case B ≡ 1 and q ≡ 0 we have λ1 = 2a−, so

(1.16) simplifies to λ0 < 2a−, the condition mentioned above.

4. Of course, an identical result holds for solutions moving to the left, with ψλ defined as
φλ but satisfying instead limx→−∞ ψλ(x) = 0. In addition, a combination of two solutions of
(1.12) from (i), moving in opposite directions, gives an entire solution of (1.11) whose spatial
infimum converges to 1 as t→∞.

5. The borderline case µ = δλ1 , which corresponds to the traveling front with the minimal

speed c∗f and maximal decay ∼ e−
√
f ′(0)x as x → ∞ when f(x, u) = f(u), is not covered

by our result (because then α = 1 in Lemma 2.1 below). It is an open question whether a
transition front with a maximal decay as x→∞ exists in the inhomogeneous setting.

6. The nonlinearity f can in addition depend on time, as long as fu(t, x, 0) is time inde-
pendent. This is also the case for the other results in this paper.

7. Finally, we note that all our results continue to hold if in (1.2) one does not necessarily
require f(x, 1) = 0. In that case we drop the lower bound on f in (1.2) for u > 1, consider
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solutions u ≥ 0 (rather than 0 ≤ u ≤ 1) not necessarily converging to 1 as x→ −∞, and the
upper bound in (1.17) becomes just uµ(t, x) ≤ vµ(t, x).

Although the “extremal” fronts uδλ (corresponding to the extremal measures δλ) have a
constant speed in homogeneous media, one cannot expect them to have a constant or even
a mean speed in general. However, if the medium is random and stationary ergodic, they do
have (almost surely) a deterministic aymptotic speed

c ≡ lim
|t|→∞

X(t)

t
> 0. (1.18)

with X(t) as in (1.8).

Theorem 1.2. Consider a probability space (Ω,F ,P) and assume that a measurable function
p ≡ (a,B, q) : Ω → L∞loc(R)3 is Lipschitz in x and satisfies (1.5) and (1.13), uniformly in
ω ∈ Ω. In addition, assume that p is stationary ergodic. That is, there is a group {πy}y∈R of
measure preserving transformations acting ergodically on Ω such that p(πyω;x) = p(ω;x+y).
Then λ0, λ1 from Theorem 1.1 are constant in ω, except on a measure zero set. If λ0 < λ1

and a reaction f(ω; ·, ·) satisfies (1.2)–(1.4) for almost all ω ∈ Ω, then for each λ ∈ (λ0, λ1)
there is cλ > 0 such that the transition front uδλ(ω; ·, ·) from Theorem 1.1(ii) has asymptotic
speed cλ in the sense of (1.18) for almost all ω ∈ Ω. The same is true for uµ(ω; ·, ·) if µ is
supported in (λ0, λ1), but possibly with different limits c−µ ≤ c+µ as t→ ∓∞ in (1.18).

Remarks. 1. Notice that f itself need not be stationary ergodic.

2. If B ≡ 1 and q ≡ 0, the condition λ0 < λ1 again becomes λ0 < 2a−, which is guaranteed,
for instance, when a+ < 2a−, regardless of the structure of the randomness.

3. It is conceivable that if λ0 ≥ 2a−, then transition fronts exist for at least almost all ω in
the full-measure set where λ0, λ1 are constant and (1.2)–(1.4) are satisfied. We do not know
the answer to this question at this time and pose it as an open problem.

4. For B ≡ 1, q ≡ 0, and f(ω;x, u) = a(ω;x)u(1 − u), propagation speed as t → ∞ for
solutions to the Cauchy problem with exponentially decreasing as x → ∞ initial data was
studied in [6,7,14]. If the decay rate is large enough, then [6,7] show that solutions propagate
almost surely at some deterministic critical speed c∗ ≤ cλ for all λ ∈ (λ0, λ1) (cf. Remark 5
after Theorem 1.1). If the decay rate is the same as that of φλ for some λ ∈ (λ0, λ1) (we
show in the proof that φλ almost surely has a deterministic asymptotic exponential decay as
x→∞), then [14] shows that solutions of the Cauchy problem propagate with speed cλ.

We also provide applications of our method in several spatial dimensions, to the study of
solutions of the reaction-diffusion equation

ut = ∇ · (B(x)∇u) + q(x) · ∇u+ f(x, u) (1.19)

on R× Rd, where f,B, q are again as above but with B a matrix field and q a vector field.
Let us start with the special case

ut = ∆u+ f(x, u) (1.20)
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with fu(x, 0) ≡ a > 0 independent of x. The corresponding linear PDE

vt = ∆v + av (1.21)

has “extremal” solutions v0(t, x) ≡ eat and

vγη(t, x) ≡ e−γη·x+(γ2+a)t = e−γ(x·η−ca,γt),

with γ > 0, η ∈ Rd a unit vector, and as before,

ca,γ = γ + aγ−1 ≥ 2
√
a.

From the one-dimensional case mentioned above it immediately follows that each traveling
front for (1.20) of the form u(t, x) = U(x · η − ct) has the same decay (as x · η → ∞) as a
multiple of vγη for some γ ∈ (0,

√
a] (with an extra factor x · η− 2

√
a t if γ =

√
a ), and then

c = ca,γ. Both u and vγη travel with speed ca,γ in the direction η.
We will therefore only consider γ ≤

√
a and let Y ≡ B(0,

√
a) be the closed ball in Rd with

radius
√
a and centered at 0, with topology inherited from Rd. If µ is a finite non-negative

non-zero Borel measure on Y , then we let

vµ(t, x) ≡
∫
Y

vξ(t, x)dµ(ξ) =

∫
Y

e−ξ·x+(|ξ|2+a)tdµ(ξ) (1.22)

(i.e., vδξ = vξ). Notice that vµ(t, x) ≤ e
√
a|x|+a(3+sgn(t))t/2 and it is a positive entire solution

of (1.21). Also, Y becomes an analog of [−λ1,−λ0] ∪ [λ0, λ1] in Theorem 1.1 (the latter
set supports measures corresponding to solutions from Remark 4 after Theorem 1.1), after
recalling that for homogeneous reactions, λ0 = a, λ1 = 2a, and γ =

√
λ− a.

Part (i) of our next result shows that each vµ gives rise to an entire solution uµ of (1.20).
Moreover, in parts (ii) and (iii) we address the questions when this solution connects 0 and
1 and when does the transition zone between ε and 1 − ε have a bounded width (in some
sense) for each ε > 0. To this end, let us define the convex hull of a measure µ on Rd to be

ch(µ) ≡ {ζ ∈ Rd | ζ = E(ν) for some measure 0 6= ν ≤ µ},
with E(ν) ≡ ν(Rd)−1

∫
Rd ξdν(ξ) (here ν ≤ µ means ν(A) ≤ µ(A) for any measurable set A).

Then ch(µ) is convex because

E(βν + (1− β)ν ′) = [βν(Rd) + (1− β)ν ′(Rd)]−1
[
βν(Rd)E(ν) + (1− β)ν ′(Rd)E(ν ′)

]
but not necessarily closed. We note that ch(µ) is also the intersection of convex hulls of
all essential supports of µ, that is, measurable sets A ⊂ Rd such that µ(A) = µ(Rd) and
µ(A′) < µ(A) whenever A′ ⊂ A and A \A′ has a positive Lebesgue measure (see the remark
after the proof of Theorem 1.3), although ch(µ) itself need not be an essential support of µ
(e.g., if B ⊂ Rd is an open ball and µ the uniform measure on the sphere ∂B, then ch(µ) = B).

Theorem 1.3. Assume (1.2)–(1.4) for x ∈ Rd and with a(x) ≡ a > 0. Let µ be a finite
non-negative non-zero Borel measure with support in the open ball B(0,

√
a) and let vµ be as

in (1.22).
(i) There is an increasing function h : [0,∞) → [0, 1) with h(0) = 0, h′(0) = 1 and

limv→∞ h(v) = 1, and an entire solution uµ of (1.20) such that (uµ)t > 0 and (1.17) holds.
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In fact, we can choose h = hg,α from (2.1) below, provided µ is supported in B(0,
√
αa). Also,

uµ 6≡ uµ′ when µ 6= µ′.
(ii) We have

inf
x∈Rd

uµ(x, t) = 0 and sup
x∈Rd

uµ(x, t) = 1 (1.23)

for each t ∈ R (equivalently, for some t ∈ R) if and only if 0 /∈ ch(µ).
(iii) If 0 /∈ supp(µ), then for each ε, θ > 0 there is Lε,θ (depending also on dist(0, supp(µ)),

f , and α from (i)), such that the following holds. If uµ(t, x) ≥ ε, then there is a unit vector
ηt,x ∈ Rd such that uµ(t, x+ y) ≥ 1− ε whenever ηt,x · y|y|−1 ≥ θ and |y| ≥ Lε,θ.

Remark. Regarding the last statement in (i), we note that if dν(ξ) = e(|ξ|
2+a)τdµ(ξ) for

some τ ∈ R, then vν(t, x) = vµ(t + τ, x), and the proof then shows that uµ and uν are also
time-shifts of each other.

Part (i) of this result is closely related to a result of Hamel-Nadirashvili [9, Theorem 1.2].
Under the additional assumptions of f being independent of x, concave in u, and f ∈ C2([0, 1]),
they prove the existence of an infinite-dimensional manifold of entire solutions of (1.20).
These solutions are parametrized by measures supported on the 1-point compactification X
of Rd \B(0, 2

√
a), where distance from origin denotes the front speed c ≥ 2

√
a rather than

γ ≤
√
a. The mapping γ 7→ ca,γ yields a natural identification of Y and X (we consider the

former a slightly more natural parameter space for our method than the latter), so one could
ask what is the relationship of the two sets of entire solutions.

Under the above additional assumptions on f , it is also shown in [9, Theorem 1.4] that
any entire solution 0 < u < 1 which satisfies

lim
t→−∞

sup
|x|<(2

√
a+ε)|t|

u(t, x) = 0 (1.24)

for some ε > 0, is from their manifold. This gives a characterization of all entire solutions
satisfying (1.24). Our uµ satisfies (1.24) with some ε(α) > 0 as well as the properties of
the solution from [9, Theorem 1.2] corresponding to the measure obtained from µ under the
above-mentioned identification of Y and X. Since these properties uniquely define a solution
in the manifold, it follows that for f ∈ C2([0, 1]), independent of x, and concave in u, the
two solutions coincide; and the solutions from Theorem 1.3(i) are all the entire solutions of
(1.20) satisfying (1.24).

Moreover, the manifold in [9, Theorem 1.2] also contains solutions corresponding to some
measures supported in X but not in its interior (which we do not construct in Theorem 1.3),
namely, those whose restriction to ∂B(0, 2

√
a) is a finite sum of Dirac masses.

However, besides proving the existence of this manifold of solutions, [9] only obtains cer-
tain claims about the t → −∞ asymptotic behavior of each of them, with better control
only for those corresponding to measures µ which are finite sums of Dirac masses [9, Theo-
rem 1.1]. The contribution of Theorem 1.3(i) is therefore not only in proving the existence
of these entire solutions for more general (and even inhomogeneous) KPP reactions, but also
in obtaining the explicit estimate (1.17), valid for all times and yielding the new results in
(ii) and (iii). Moreover, the usage of our method (from Lemma 2.1 below) makes the proof
immediate and elementary, while the proof of [9, Theorem 1.2] is 30 pages long.
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In fact, Theorem 1.3 extends to some periodic (a,B, q) (f need not be periodic in x and
can even be time-dependent, as mentioned above). Now

vξ(t, x) ≡ e−ξ·x+κξtθξ(x),

where (θξ, κξ) is the unique solution of

∇· (B(x)∇θ) + (q(x)−2B(x)ξ) ·∇θ+ [ξ ·B(x)ξ−∇· (B(x)ξ)− q(x) · ξ+a(x)]θ = κθ (1.25)

on the unit cell of periodicity C (satisfying periodic boundary conditions) with θξ > 0 and∫
T d
θξ(x)dx = 1. Again

vµ(t, x) ≡
∫
Y

vξ(t, x)dµ(ξ) (1.26)

solves

vt = ∇ · (B(x)∇v) + q(x) · ∇v + a(x)v

when µ is as above. Finally, let Sα be the set of all ξ ∈ Rd such that∥∥∥∥(∇θξθξ − ξ
)
· B
a

(
∇θξ
θξ
− ξ
)∥∥∥∥

L∞(C)
≤ α. (1.27)

Theorem 1.4. Assume (1.2)–(1.4) for x ∈ Rd and with (a,B, q) periodic. Let µ be a finite
non-negative non-zero Borel measure supported on Sα for some α < 1, and let vµ be as in
(1.26). Then Theorem 1.3(i)–(iii) hold with h = hg,α from (2.1) below, except possibly the
last statement in (i).

Remark. We note that in general, all Sα for α < 1 may be empty. However this is not
the case when B − I is small in C1,δ(Td) and a − ā, q (with ā ≡

∫
Td a(x)dx) are small in

Cδ(Td) for some δ > 0. Indeed, in that case we obtain a uniform (in norms of B − I, a− ā, q
in the respective spaces) bound on θξ in C2,δ(Td) for all |ξ| ≤ 1. If now (a − ā, B − I, q) ∈
C1,δ × Cδ × Cδ is small enough, then κξ − |ξ|2 − ā is also small, so a(x) + |ξ|2 − κξ is small
in Cδ and (1.25) can be rewritten as

∆θξ + 2ξ · ∇θξ =−∇ · [(B(x)− I)∇θξ]− [q(x)− 2(B(x)− I)ξ] · ∇θξ
− [ξ · (B(x)− I)ξ −∇ · (B(x)ξ)− q(x) · ξ + a(x) + |ξ|2 − κξ]θξ,

with the right-hand side uniformly small in Cδ for all |ξ| ≤ 1. Thus θξ−
∫
T d−1 θξ(x)dx = θξ−1

is uniformly small in C2,δ. This means that for each β < 1, (1.27) holds for α ≡ 1
2
(1 +β) and

all |ξ| ≤ β provided (a− ā, B − I, q) is sufficiently small in C1,δ × Cδ × Cδ.

We end this introduction with an application of our method to obtaining explicit bounds
on certain solutions u of (1.20) with constant fu(x, u) = a, in terms of the solutions of the
heat equation ũt = ∆ũ with the same initial condition (in which case ũ ≤ u ≤ eatũ). Of
course, the latter is just

ũ(t, x) = (4πt)−d/2
∫

Rd
e−|x−y|

2/4tu(0, y)dy. (1.28)
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Theorem 1.5. Assume (1.2)–(1.4) for x ∈ Rd and with a(x) ≡ a > 0. Let 0 ≤ u ≤ 1 solve
(1.20) on R+ × Rd. If ũ from (1.28) satisfies

|∇ũ(t0, x)| ≤
√
αa ũ(t0, x) (1.29)

for some t0 ≥ 0, α < 1, and all x ∈ Rd, then

hg,α
(
ea(t−t0)ũ(t, x)

)
≤ u(t, x) ≤ min{eatũ(t, x), 1} (1.30)

for all (t, x) ∈ R+ × Rd, with hg,α from (2.1) below (in particular, h′g,α(0) = 1 = hg,α(∞)).

We prove Theorems 1.1–1.5 in the next section, after introducing our main tool, Lemma 2.1.
Finally, we note that existence of transition fronts for (1.1) with very general f (including

KPP) is claimed in the paper [17]. This statement is false in the full generality claimed there
(in particular, it contradicts the non-existence result in [15]), and its proof is also incorrect.
The latter is a direct adaptation of the existence-of-fronts proof for ignition reactions from [13]
which, however, does not extend to non-ignition reactions. In particular, various claims
in [17], such as the one between (2.22) and (2.23), Corollary 2.6(i), and Proposition 2.7, are
made without a proof and are, in fact, false for general non-ignition reactions.

The author would like to thank François Hamel for pointing out the argument in the remark
after Theorem 1.4. He also acknowledges partial support by NSF grants DMS-1113017 and
DMS-1056327, and by an Alfred P. Sloan Research Fellowship.

2. The Key Lemma and the Proofs of Theorems 1.1–1.5

Our main tool is the following lemma, which constructs sub-solutions w = h(v) of (1.11)
from certain solutions v of (1.12) (which are also super-solutions of (1.11)). Here the function
h = hg,α : [0,∞) → [0, 1) depends on g ∈ C1([0, 1]) satisfying (1.3), (1.4) and also on an
additional parameter α ≤ 1. Specifically, hg,α(0) = 0 and

hg,α(v) ≡ Ug,√α(−α−1/2 ln v) (2.1)

for v > 0, where Ug,√α is the traveling front profile for the homogeneous PDE

ut = uxx + g(u) (2.2)

corresponding to speed c1,√α ≡ α1/2 + α−1/2 ≥ 2. That is, Ug,√α(−∞) = 1, Ug,√α(∞) = 0,
U ′
g,
√
α
< 0, and

U ′′g,√α + c1,√αU
′
g,
√
α + g(Ug,√α) = 0 (2.3)

on R. Notice that then limv→∞ hg,α(v) = 1 and (2.3) implies

αv2h′′g,α(v)− vh′g,α(v) + g(hg,α(v)) = 0. (2.4)

It is well known that Ug,√α is unique up to translation and if α < 1, then there is a unique

translation such that limx→∞ Ug,√α(x)e
√
αx = 1 [18]. With this choice of Ug,√α we obtain

h′g,α(0) = 1 for α < 1. It then also follows that

hg,α(v) ≤ v (2.5)

for v ∈ [0,∞) because h′′g,α < 0 (see the proof of Lemma 2.1 below).
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For α = 1 we instead have limv→0 hg,α(v)(−v ln v)−1 = 1, provided the first condition in

(1.4) is replaced by
∫ 1

0
[u− g(u)]| lnu|u−2du <∞ [18].

We state the lemma in a more general form, with time-dependent coefficients.

Lemma 2.1. With f,B, q Lipschitz and time-dependent (B a matrix and q a vector field)
and a(t, x) ≡ fu(t, x, u), assume (1.2)–(1.5) and (1.13) for (t, x) ∈ (t0, t1) × Rd, where
−∞ < t0 < t1 ≤ ∞. Let v > 0 be a solution of

vt = ∇ · (B(t, x)∇v) + q(t, x) · ∇v + a(t, x)v

on (t0, t1)× Rd. If for some α < 1,

∇v(t, x) ·B(t, x)∇v(t, x) ≤ αa(t, x)v(t, x)2 (2.6)

holds for all (t, x) ∈ (t0, t1)× Rd, then v and w ≡ hg,α(v) are a super- and sub-solution of

ut = ∇ · (B(t, x)∇u) + q(t, x) · ∇u+ f(t, x, u) (2.7)

on (t0, t1) × Rd. Therefore, if 0 ≤ u ≤ 1 solves (2.7) with w(t0, x) ≤ u(t0, x) ≤ v(t0, x) for
all x ∈ Rd, then for all (t, x) ∈ (t0, t1)× Rd we have

w(t, x) ≤ u(t, x) ≤ min{v(t, x), 1}. (2.8)

Remark. Of course, the crucial hypothesis here is (2.6).

Proof. Obviously v is a super-solution of (2.7), giving the second inequality. We also have

wt −∇ · (B∇w)− q · ∇w = h′(v)[vt −∇ · (B∇v)− q · ∇v]− h′′(v)∇v ·B∇v
= h′(v)av − h′′(v)∇v ·B∇v
≤ a[h′(v)v − αh′′(v)v2].

In the last inequality we used (2.6) and h′′ < 0. The latter is due to (2.4) and Lemma 3.1
from the Appendix with γ ≡

√
α, which yield

αv2h′′(v) = vh′(v)− g(h(v)) = −α−1/2U ′g,√α(−α−1/2 ln v)− g(Ug,√α(−α−1/2 ln v)) < 0.

Thus (2.4) and (1.2) give

wt −∇ · (B(t, x)∇w)− q(t, x) · ∇w ≤ a(t, x)g(h(v)) ≤ f(t, x, w),

so w is a sub-solution of (1.11), and the first inequality in (2.8) follows as well. �

Proof of Theorem 1.5. The comparison principle, together with (1.2) yields the upper bound,
as well as ũ ≤ u. Then let v(t, x) ≡ ea(t−t0)ũ(t, x) and note that r ≡ ∇vv−1 = ∇ũũ−1 satisfies

rt = ∆r +∇(|r|2)
because

(ln ũ)t = ∆ũũ−1 = ∆(ln ũ) + |r|2.
Thus ρ ≡ |r|2 satisfies

ρt = ∆ρ+ 2r · ∇ρ− 2|∇r|2,
so (1.29) and the maximum principle give ρ(t, x) ≤ αa for (t, x) ∈ (t0,∞) × Rd. Then
Lemma 2.1 yields the lower bound in (1.30). �
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Proof of Theorem 1.1. (i) Let us start with the proof of existence of φλ from (1.15), for
λ > λ0. With L the operator on the left-hand side of (1.15) and λ0 from (1.14), we have∫

R
ψ(x)[(λ− L)ψ](x)dx ≥ (λ− λ0)

∫
R
ψ(x)2dx

for ψ ∈ H2(R), after integrating by parts. Thus (λ − L)−1 : L2(R) → H2(R) exists and if
0 6≡ ψ ∈ L2(R) is compactly supported in R−, then 0 6≡ φ ≡ (λ − L)−1ψ ∈ H2(R). Since φ

also satisfies (1.15) on R+, Harnack inequality shows that limx→∞ φ(x) = 0. Let φ̃(x) ≡ φ(x)

for x ≥ 0 and extend it onto R− so that it solves (1.15). Then φ̃ has no roots because

if φ̃(x0) = 0, then plugging the function φ̃|[x0,∞), extended by 0 on (−∞, x0), into (1.14)

would yield λ0 ≥ λ. Thus we have φλ(x) = φ̃(x)φ̃(0)−1. Uniqueness follows from existence
of ψλ with the same properties but with limx→−∞ ψλ(x) = 0 (by a reflected argument), from
limx→−∞ φλ(x) = ∞ (by (2.11) below), and the fact that the space of solutions of (1.15) is
two-dimensional.

Next, choose α < 1 such that

m ≡ inf
x∈R,β≥α

{
a(x) +

√
β(aB)−

[√
β(aB)− − |q(x)|

]
B(x)−1

}
− µ1 > 0.

Any α ∈ (1− (λ1 − µ1)a
−1
+ , 1) works because the derivative of the expression in the brackets

with respect to β is bounded above by (aB)−B(x)−1 ≤ a+ and is positive for β > 1 (the

latter due to q+ ≤ 2
√

(aB)−). Now let wµ(t, x) ≡ hg,α(vµ(t, x)) and notice that wµ ≤ vµ by
(2.5). Then Lemma 2.1 will be applicable to vµ, wµ once we establish

B(x)φ′λ(x)2 ≤ αa(x)φλ(x)2 (2.9)

for all λ ∈ (λ0, µ1] and x ∈ R. Indeed, (2.9) and φλ > 0 then yield (2.6) for vµ. To this end,
we need to show

|ψ(x)| ≤
√
αa(x)B(x) (2.10)

for x ∈ R, with ψ ≡ Bφ′λ/φλ and λ ∈ (λ0, µ1].

Let us assume that ψ(x0) ≥
√
α(aB)− for some x0. We have ψ′ = λ − a − ψ(ψ + q)B−1

on R, so ψ′(x0) ≤ λ − m − µ1 ≤ −m. But then ψ must be decreasing on (−∞, x0] with
ψ′ ≤ −m there. From this and ψ′ = λ − a − (ψ2 + qψ)B−1 it follows that ψ must blow
up at some x1 ∈ (−∞, x0), a contradiction. We obtain the same conclusion when assuming

ψ(x0) ≤ −
√
α(aB)− (because ψ′ = λ − a − |ψ|(|ψ| − q)B−1 when ψ < 0), with blowup at

some x1 ∈ (x0,∞). It follows that ‖ψ‖∞ ≤
√
α(aB)−, which gives (2.10), so Lemma 2.1

applies to vµ, wµ, α.
A standard limiting argument (see, for instance, [4]) now recovers an entire solution to

(1.11) between min{vµ, 1} and wµ. Indeed, we let uk be the solution of (1.11) on (−k,∞)×R
with initial datum uk(−k, x) ≡ wµ(−k, x). Then by Lemma 2.1 we have

wµ(t, x) ≤ uk(t, x) ≤ min{vµ(t, x), 1}

on (−k,∞) × R. By parabolic regularity, there is a locally uniform (on R2) limit uµ ∈
[wµ,min{vµ, 1}] of uk (along a subsequence if needed), which is an entire solution of (1.11).
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Since (wµ)t ≥ 0, the same is true for uk and thus uµ, by the maximum principle. The strong
maximum principle then gives (uµ)t > 0 because (uµ)t 6≡ 0.

Finally, (1.6) follows from (1.17) and vµ(−∞) =∞, the latter being due to (2.11) below.
(ii) The fact that uµ is a transition front with a bounded width in the sense of (1.7) when

λ0 < µ0 ≤ µ1 < λ1 will follow from the existence of L > 0 such that

φλ(c) ≥ 2φλ(d) (2.11)

whenever λ ∈ [µ0, µ1] and c ≤ d − L. Indeed, we will show that such L depends only on
a+, B±, ζ, provided µ0 − λ0 ≥ ζ > 0. Then (2.11) holds with the same L for vµ in place of
φλ. Therefore, if now min{µ0 − λ0, λ1 − µ1} ≥ ζ > 0, then this and (i) gives (1.7) with Lε
depending only on g, a+, B±, ε, ζ.

We are left with proving (2.11). If in (1.14) we take

ψ(x) ≡


φλ(x) x ∈ (c, d),

φλ(c)(x− c+ 1) x ∈ [c− 1, c],

φλ(d)(d+ 1− x) x ∈ [d, d+ 1],

0 x ∈ R \ [c− 1, d+ 1]

for some c < d, then we obtain using (2.9) and α < 1,∫
R
[−B(x)ψ′(x)2 + q(x)ψ′(x)ψ(x) + a(x)ψ(x)2]dx

≥
∫ d

c

[−B(x)φ′λ(x)2 + q(x)φ′λ(x)φλ(x) + a(x)φλ(x)2]dx− (B+ + q+)(φλ(c)
2 + φλ(d)2)

≥
∫ d

c

[(B(x)φ′λ(x))′ + q(x)φ′λ(x) + a(x)φλ(x)]φλ(x)dx

− (B+ + q+)(|φ′λ(c)|φλ(c) + |φ′λ(d)|φλ(d) + φλ(c)
2 + φλ(d)2)

≥λ
∫ d

c

φλ(x)2dx− (B+ + q+)(1 + a
1/2
+ B

−1/2
− )(φλ(c)

2 + φλ(d)2).

This and (1.14) give

λ0

∫ d

c

φλ(x)2dx ≥ λ

∫ d

c

φλ(x)2dx− [λ0 + (B+ + q+)(1 + a
1/2
+ B

−1/2
− )](φλ(c)

2 + φλ(d)2),

which after setting M ≡ [λ0 + (B+ + q+)(1 + a
1/2
+ B

−1/2
− )](λ− λ0)

−1 reads∫ d

c

φλ(x)2dx ≤M(φλ(c)
2 + φλ(d)2). (2.12)

By the Harnack inequality, there is N > 0 such that φλ(y) ≤ Nφλ(x) if |x− y| ≤ 2M . Set
L ≡ 6MN2 and assume (2.11) is violated for some c ≤ d − L (notice that L depends only
on a+, B±, ζ if µ0 − λ0 ≥ ζ > 0, because λ0 ≤ a+ and q+ ≤ 2

√
a+B+). Then there must be
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x ∈ [c, d] such that φλ(x) ≤ N−1φλ(d) because otherwise∫ d

c

φλ(x)2dx ≥ 6Mφλ(d)2 > M(φλ(c)
2 + φλ(d)2),

contradicting (2.12). Let y be the rightmost point such that y < d and φλ(y) = N−1φλ(d),
and z the leftmost point such that z > d and φλ(z) = N−1φλ(d). Then y ≤ d − 2M ,
z ≥ d + 2M , and φλ(x) ≥ N−1φλ(d) for any x ∈ [y, z]. But this contradicts (2.12) with y, z
in place of c, d, so (2.11) is proved and we are done. �

Remark. The argument in (i) works even for µ1 = λ1, with α = 1 and m = 0. Then
wµ ≡ hg,1(vµ) will again be a sub-solution of (1.11) but this time wµ 6≤ vµ so we cannot
recover a solution between them.

Proof of Theorem 1.2. From (1.14) we know that λ0 : L∞loc(R)3 → R is lower semi-continuous,
which together with measurability of p : Ω→ L∞loc(R)3 means that Aζ ≡ {ω ∈ Ω |λ0(ω) > ζ}
is a measurable set. Obviously πyAζ = Aζ for all y ∈ R, so P(Aζ) ∈ {0, 1} for each ζ ∈ R.
This means that λ0 is almost constant on Ω. The same follows for λ1, using its upper
semi-continuity as a function on L∞loc(R)3, which follows from its definition.

Let us replace Ω by its full-measure subset on which λ0, λ1 are constant. Next fix any
λ ∈ (λ0, λ1) and let uδλ(ω; t, x) be the corresponding random transition front. The remark
after the proof of Theorem 1.1 shows that there is L such that (2.11) holds for any ω ∈ Ω
and c ≤ d− L. Therefore also Lε in that proof is uniform in ω, which means that if Y (ω; t)
is the rightmost point such that eλtφλ(ω;Y (ω; t)) = 1

2
and X(ω; t) the rightmost point such

that uδλ(ω; t,X(ω; t)) = 1
2
, then |X(ω; t)−Y (ω; t)| is uniformly bounded on Ω×R. Thus we

only need to prove (1.18) for Y in place of X.
Notice that if rλ(ω) ≡ φ′λ(0), then rλ : Ω → R is measurable because p : Ω → p(Ω) is

measurable and rλ : p(Ω) → R is continuous when p(Ω) is equipped with L∞loc(R)3-induced
topology. The latter follows from (2.11) and the fact that any solution of (1.15) with φ(0) = 1
and φ′(0) 6= rλ(ω) grows exponentially as x → ∞ (by (2.11) applied to the solution ψλ
converging to 0 as x→ −∞ and the fact that φλ, ψλ are a basis of the set of all solutions).

Therefore φλ(·;x) is measurable for any fixed x. Since φλ(πyω; ·) = φλ(ω; y)−1φλ(ω; y + ·),
we have φλ(ω; y + x) = φλ(ω; y)φλ(πyω;x). So from ergodicity of {πy}y∈R and Oseledec
theorem it follows that for almost all ω ∈ Ω,

lim
x→±∞

1

x
lnφλ(ω;x) = −τ±

for some τ± ∈ R (and τ± > 0 by (2.11)). Moreover, τ+ = τ−. Otherwise, there exists Ω′ ⊂ Ω
and M <∞ such that P(Ω′) > 1

2
and∣∣∣∣ 1

±M
lnφλ(ω;±M)− τ±

∣∣∣∣ < |τ+ − τ−|2

for all ω ∈ Ω′. But then ∣∣∣∣ 1

M
lnφλ(π−Mω;M)− τ−

∣∣∣∣ < |τ+ − τ−|2
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for all ω ∈ Ω′, so Ω′∩π−MΩ′ = ∅, a contradiction with P(π−MΩ′) = P(Ω′) > 1
2
. Then τ+ = τ−

and (2.11) give

lim
|t|→∞

Y (ω; t)

t
=

λ

τ±
≡ cλ

and the first claim is proved.
It then immediately follows that any “non-extremal” front also has asymptotic speed c+µ

(c−µ ) as t→∞ (t→ −∞), which is equal to sup c (inf c) taken over all c such that there is a
Borel set A with µ(A) > 0 and cλ ≥ c (cλ ≤ c) for all λ ∈ A. Thus c−µ ≤ c+µ . �

Proof of Theorem 1.3. (i) The proof of all the claims, with the exception of the last one, is
identical to the proof of Theorem 1.1(i), with α < 1 from the statement of Theorem 1.3(i),
and (2.9) replaced by

|∇vξ(t, x)|2 = |ξ|2vξ(t, x)2 ≤ αavξ(t, x)2

for all |ξ| ≤
√
αa.

The last claim is an easy consequence of uµ(t, x)vµ(t, x)−1 → 1 as vµ(t, x)→ 0 and of(
|t|
π

)d/2
vµ(t, 2tζ)e(|ζ|

2−a)tdζ ⇀ dµ(ζ)

as t→ −∞. The latter statement, similar to one in [9], follows from(
|t|
π

)d/2
vµ(t, 2tζ)e(|ζ|

2−a)t =

∫
Y

(
|t|
π

)d/2
e−|ξ−ζ|

2|t|dµ(ξ)

for ζ ∈ Rd and t < 0.
(iii) If uµ(t, x) ≥ ε, then vµ(t, x) ≥ h(−1)(ε) with h from (i). Then there is a unit vector

η = ηx,t such that ∫
Yη,θ

e−ξ·x+(|ξ|2+a)tdµ(ξ) ≥ θ

2π
h(−1)(ε),

where

Yη,θ ≡
{
ξ ∈ Y

∣∣∣∣ arccos
−η · ξ
|ξ|

≤ θ

2

}
.

If now η · y|y|−1 ≥ θ, then arccos(η · y|y|−1) ≤ π
2
− θ, and so arccos(−ξ · y|y|−1|ξ|−1) ≤ π−θ

2
for any ξ ∈ Yη,θ. Therefore

vµ(t, x+ y) ≥
∫
Yη,θ

e−ξ·(x+y)+(|ξ|2+a)tdµ(ξ) ≥ θ

2π
h(−1)(ε)|y| dist(0, supp(µ)) cos

π − θ
2

and the result follows from (1.17) with

Lε,θ ≡
[
θ

2π
h(−1)(ε) dist(0, supp(µ)) cos

π − θ
2

]−1

h(−1)(1− ε).

(ii) Assume first that 0 ∈ ch(µ) and ν(Y )−1
∫
Y
ξdν(ξ) = 0 for some 0 6= ν ≤ µ. Then

vµ(t, x) ≥
∫
Y

e−ξ·x+a(3−sgn(t))t/2dν(ξ) ≥ ν(Y )e−ν(Y )−1
R
Y ξdν(ξ)·xea(3−sgn(t))t/2 = ν(Y )ea(3−sgn(t))t/2
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by Jensen’s inequality. This and (1.17) yield infx∈Rd uµ(x, t) > 0 for each t ∈ R.
Now assume that 0 /∈ ch(µ) and define µ̂d ≡ µ. The second claim in (1.23) follows from

µ > 0 and (i) so let us prove the first claim. Since ch(µ) is a convex set, it must be contained
in a closed half-space with 0 on its boundary. Assume without loss it is Rd−1 × R+

0 , and
let µd ≡ µ̂d|Rd−1×R+ and µ̂d−1 ≡ µ̂d|Rd−1×{0} = µ̂d − µd. Now ch(µ) ∩ (Rd−1 × {0}) must be

contained in a closed half-space of Rd−1 × {0} with 0 on its boundary. Assume without loss
it is Rd−2 ×R+

0 × {0}, and let µd−1 ≡ µ̂d−1|Rd−2×R+×{0} and µ̂d−2 ≡ µ̂d−1 − µd−1. Continue in

this way until obtaining µ1 = µ̂1 supported in R+ × {0}d−1 (because µ̂0 = µ|{0} = 0).
Since µ = µ1 + · · · + µd and uµ ≤ vµ, it is sufficient to show that for any ε > 0 there is

x ∈ Rd such that for k = 1, . . . , d we have∫
Y

e−ξ·xdµk(ξ) ≤
ε

d
(2.13)

(the extra factor e(|ξ|
2+a)t ≤ ea(3+sgn(t))t/2 from the definition of vµ can be absorbed in ε). For

k = 1, the set of x ∈ Rd satisfying (2.13) contains some half-space [ρ1,∞)× Rd−1. For each
k = 2, . . . , d and any rk > 0, it contains B̄rk(0)× [ρk,rk ,∞)×Rd−k for some ρk,rk > 0, where
B̄rk(0) is the closed ball in Rk−1 with radius rk and center 0. If we choose r2 ≥ ρ1 and then
recursively rk ≥ rk−1 + ρk−1,rk−1

for k = 3, . . . , d, the corresponding k sets all contain the
point x = (ρ1, ρ2,r2 , . . . , ρd,rd). So (2.13) holds for this x and we are done. �

Remark. We have ch(µ) ⊆ chess(µ), the intersection of convex hulls of all essential supports
of µ. This is because if A is an essential support of µ and ch(A) its convex hull, then
E(ν) = ν(Rd)−1

∫
A
ξdν(ξ) ∈ ch(A) when 0 6= ν ≤ µ. The opposite inclusion follows from the

construction at the end of the previous proof applied to any ζ /∈ ch(µ) instead of 0. Indeed,
for any such ζ, one can again find open half-spaces Sd, . . . , S1 of dimensions d, . . . , 1 whose
boundaries contain ζ (without loss these can be assumed to be Sk = ζ+Rk−1×R+×{0}d−k)
and measures µk on Sk (k = d, . . . , 1) such that µ = µ1 + · · · + µd. Thus S ≡

⋃d
k=1 Sk is an

essential support of µ and ζ /∈ S, which yields ch(µ) ⊇ chess(µ). Therefore ch(µ) = chess(µ).

Proof of Theorem 1.4. This is identical to the previous proof, using that (1.27) yields (2.6)
for vξ when ξ ∈ Sα, and thus also for vµ because vξ > 0. �

Appendix.

Lemma 3.1. Assume that g ∈ C1([0, 1]) satisfies (1.3) and g′(u) ≤ 1 for u ∈ (0, 1). Let
U : R → (0, 1) be a traveling front profile for (2.2) corresponding to speed γ + γ−1 ≥ 2 with
γ ∈ (0, 1], that is, U(−∞) = 1, U(∞) = 0, U ′(x) < 0 for all x ∈ R, and U satisfies

U ′′ + (γ + γ−1)U ′ + g(U) = 0

on R. Then

0 < −U ′ < γg(U).
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Proof. Let V ≡ U ′ and consider the curve {(U(x), V (x))}x∈R in R2. It connects (1, 0) to
(0, 0) and lies in the fourth quadrant U > 0 > V . We need to show that it lies in the domain

D ≡ {(u, v) |u ∈ (0, 1) and v ∈ (−γg(u), 0)}.
We have (U ′, V ′) = (V,−γV −γ−1V −g(U)) and the condition g′ ≤ 1 ensures that the vector
(v,−γv − γ−1v − g(u)) points inside D (or is parallel to ∂D) when v = −γg(u). This means
that (U(y), V (y)) ∈ D for all y ≥ x whenever (U(x), V (x)) ∈ D. Thus if (U(x), V (x)) /∈ D
for some x ∈ R, then (U(y), V (y)) /∈ D for all y ≤ x. But then V (y) ≤ −γg(U(y)) for y ≤ x,
so −γV (y)− γ−1V (y)− g(U(y)) ≥ −γV (y) > 0 for y ≤ x. Since V (−∞) = 0, it follows that
V (x) > 0, a contradiction. �
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