
A note on stability shifting for the Muskat problem II:

From stable to unstable and back to stable
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Abstract

In this note, we show that there exist solutions of the Muskat problem which shift stability
regimes in the following sense: they start stable, then become unstable, and finally return back
to the stable regime. This proves existence of double stability shifting in the direction opposite
to (as well as more difficult and more surprising than) the one shown in [11].
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1 Introduction

In this paper, we study two incompressible fluids with the same viscosity but different densities, ρ+

and ρ−, evolving in a two dimensional porous medium with constant permeability κ. The velocity v
is determined by Darcy’s law

µ
v

κ
= −∇p− g

(
0
ρ

)
, (1.1)

where p is the pressure, µ > 0 viscosity, and g > 0 gravitational acceleration. In addition, v is
incompressible:

∇ · v = 0. (1.2)

By rescaling properly, we can assume κ = µ = g = 1. The fluids also satisfy the conservation of mass
equation

∂tρ+ v · ∇ρ = 0. (1.3)

This is known as the Muskat problem [20]. We denote by Ω+ the region occupied by the fluid
with density ρ+ and by Ω− the region occupied by the fluid with density ρ− 6= ρ+. The point (0,∞)
belongs to Ω+, whereas the point (0,−∞) belongs to Ω−. All quantities with superindex ± will refer
to Ω± respectively. The interface between both fluids at any time t is a planar curve z(·, t). We will
work in the setting of horizontally periodic interfaces, although our results can be extended to the flat
at infinity case.

A quantity that will play a major role in this paper is the Rayleigh-Taylor condition, which is
defined as

RT (x, t) = −
[
∇p−(z(x, t))−∇p+(z(x, t))

]
· ∂⊥x z(x, t),

where we use the convention (u, v)⊥ = (−v, u). If RT (x, t) > 0 for all x ∈ R, then we say that the
curve is in the Rayleigh-Taylor stable regime at time t, and if RT (x, t) ≤ 0 for some x ∈ R, then we
say that the curve is in the Rayleigh-Taylor unstable regime.
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One can rewrite the system (1.1)–(1.3) in terms of the curve z = (z1, z2), obtaining

∂tz(x, t) =
ρ− − ρ+

2π
P.V.

∫
R

z1(x, t)− z1(y, t)

|z(x, t)− z(y, t)|2
(∂xz(x, t)− ∂yz(y, t))dy. (1.4)

In the horizontally periodic case with z(x+ 2π, t) = z(x, t) + (2π, 0), the formula

1

2
cot

y

2
=

1

y
+

∞∑
n=1

2y

y2 − (2πn)2

can be used to show [4] that the velocity satisfies

∂tz(x, t) =
ρ− − ρ+

4π

∫
T

sin(z1(x, t)− z1(y, t))(∂xz(x, t)− ∂yz(y, t))
cosh(z2(x, t)− z2(y, t))− cos(z1(x, t)− z1(y, t))

dy. (1.5)

A simple calculation of the Rayleigh-Taylor condition in terms of z yields

RT (x, t) = (ρ− − ρ+)∂xz
1(x, t).

When the interface is a graph, parametrized as z(x, t) = (x, f(x, t)), equation (1.4) becomes

∂tf(x, t) =
ρ− − ρ+

4π

∫
T

sin(x− y)(∂xf(x, t)− ∂yf(y, t))

cosh(f(x, t)− f(y, t))− cos(x− y)
dy (1.6)

and the Rayleigh-Taylor condition simplifies to

RT (x, t) = ρ− − ρ+.

The curve is now in the RT stable regime whenever ρ+ < ρ−, that is, the denser fluid is at the bottom.
From now on, we assume that ρ− − ρ+ = 4π, which can be done after an appropriate scaling in time.

The Muskat problem has been studied in many works. A proof of local existence of classical
solutions in the Rayleigh-Taylor stable regime in H3 and ill-posedness in the unstable regime appears
in [9]. See also [8] for an improvement on the regularity (to W 2,p spaces). In the one phase case (i.e.
when one of the densities and permeabilities is zero) local existence in H2 was proved in [5].

A maximum principle for ‖∂xf(·, t)‖L∞ can be found in [10]. Moreover, the authors showed in [10]
that if ‖∂xf0‖L∞ < 1, then ‖∂xf(·, t)‖L∞ ≤ ‖∂xf0‖L∞ for all t > 0. Further work has shown existence
of finite time turning [4] (i.e., the curve ceases to be a graph in finite time and the Rayleigh-Taylor
condition changes sign to negative somewhere along the curve). The gap between these two results
(i.e., the question whether the constant 1 is sharp or not for guaranteeing global existence) is still an
open question, and there is numerical evidence of data with ‖∂xf0‖L∞ = 50 which turns over [11].

As was demonstrated in [3], the curve may lose regularity after shifting from the stable regime to
the unstable regime. However, the possibility of it recoiling and returning to the stable regime has
not been excluded. The occurrence of this phenomenon is the main result of this note, Theorem 2.1.
(In Theorem 2.3 we also extend this to a proof of existence of the quadruple stability shift scenario
unstable→ stable→ unstable→ stable→ unstable.) In [11] we showed that there exist curves which
undergo the unstable → stable → unstable transition, so this settles the question about existence of
double stability shift scenarios in both directions. We stress that existence of the stable→ unstable→
stable scenario is in fact by no means expected, as well as considerably more challenging to establish
than the unstable → stable → unstable one.

More general models, which take into account finite depth or non-constant permeability, and which
also exhibit (single) turning were studied in [1, 14]. The estimates in [14] were carried out by rigorous
computer-assisted methods, as opposed to the traditional pencil and paper ones in [1].
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Concerning global existence, the first proof for small initial data was carried out in [21] in the
case where the fluids have different viscosities and the same densities (see also [9] for the setting of
the present paper — different densities and the same viscosities — and also [5] for the general case).
Global existence for medium-sized initial data was established in [7, 6]. In the case where surface
tension is taken into account, global existence was shown in [12, 13]. Global existence for the confined
case was treated in [15]. A blow-up criterion was found in [8].

Recent advances in computing power have made possible rigorous computer-assisted proofs. Of
course, floating-point operations can result in numerical errors, and we will employ interval arithmetics
to deal with this issue. Instead of working with arbitrary real numbers, we perform computations over
intervals which have representable numbers as endpoints. On these objects, an arithmetic is defined
in such a way that we are guaranteed that for every x ∈ X, y ∈ Y

x ? y ∈ X ? Y,

for any operation ?. For example,

[x, x] + [y, y] = [x+ y, x+ y]

[x, x]× [y, y] = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}].

We can also define the interval version of a function f(X) as an interval I that satisfies that for
every x ∈ X, f(x) ∈ I. Rigorous computation of integrals has been theoretically developed since the
seminal works of Moore and many others (see [2, 17, 18, 19, 22] for just a small sample). For readability
purposes, instead of writing the intervals as, for instance, [123456, 123789], we will sometimes instead
refer to them as 123456789.

This note is organized as follows. In Section 2 we prove Theorems 2.1 and 2.3, and in Section 3
we provide technical details regarding the performance and implementation of the computations. The
appendix contains a detailed derivation and enumeration of all the necessary integrals which have to
be rigorously computed, their enclosures, and the performance of the computations.

2 The main result

The following theorem is the main result of this paper (see also Theorem 2.3 below).

Theorem 2.1 There exist T > γ > 0 and a spatially analytic solution z to (1.5) on the time interval
[−T, T ] such that z(·, t) is a graph of a smooth function of x when |t| ∈ [T − γ, T ] (i.e., z is in the
stable regime near t = ±T ) but z(·, t) is not a graph of a function of x when |t| ≤ γ (i.e., z is in the
unstable regime near t = 0).

The intuition behind this result comes from the numerical experiments which were started in [11].
These suggested existence of curves which are (barely) in the unstable regime, and such that the
evolution both forward and backwards in time transports them into the stable regime. (We note that
neither the velocity nor any other quantity was observed to become degenerate in these experiments).
We remark that this behaviour is purely nonlinear and thus nonlinear effects may dominate the linear
ones under certain conditions. The following lemma constructs a family of such curves (see Figure 1).

Lemma 2.2 Let ε ≥ 0 and consider the initial curve zε(x, 0) = (z1ε(x, 0), z2ε(x, 0)), with

z1ε(x, 0) = x− sin(x)− ε sin(x),

z2ε(x, 0) = A(ε) sin(2x).
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Figure 1: zε(x, 0) from Lemma 2.2 with A(ε) = 1.08050. Inset: closeup around x = 0. Thick curve:
ε = 10−6, thin curve: ε = 0. We remark that both curves are indistinguishable at the larger scale.

1. For any ε ∈ [0, 10−6], there exists A(ε) ∈ (1.08050, 1.08055) such that if zε solves (1.5) with
initial data zε(x, 0), then

∂t∂xz
1
ε(0, 0) = 0.

2. There are T > 0, C ≥ 1, independent of ε, such that for any ε ∈ [0, 10−6] and A(ε) from 1., there
is a unique analytic solution zε of (1.5) on the time interval (−T, T ) with initial data zε(x, 0),
and it satisfies

∂tt∂xz
1
ε(0, 0) ≥ 30 (2.1)

as well as

|∂t∂xz1ε(x, t)|+ |∂t∂3xz1ε(x, t)|+ |∂2t ∂2xz1ε(x, t)|+ |∂3t ∂xz1ε(x, t)| ≤ C (2.2)

for each (x, t) ∈ T× (−T, T ).

Proof: The proofs of 1. and (2.1) are computer-assisted, and the codes can be found in the supple-
mentary material.

Let us start with 1. Since ∂t∂xz
1
ε(0, 0) (i.e., the spatial derivative of the first coordinate of the

right-hand side of (1.5) at (x, t) = (0, 0)) is a continuous function of A(ε), it suffices to show that the
signs of ∂t∂xz

1
ε(0, 0) for A(ε) = 1.08050 and for A(ε) = 1.08055 are different for each ε ∈ [0, 10−6].

This holds because for each such ε we obtain the bounds

∂t∂xz
1
ε(0, 0) ∈ 0.0000127 for A(ε) = 1.08050, (2.3)

∂t∂xz
1
ε(0, 0) ∈ −0.0002802 for A(ε) = 1.08055.

Existence and uniqueness of the solution zε in 2. follows directly from the proof of Theorem 5.1
in [4], which proves local well-posedness for (1.5) in the class of analytic functions of x. The time
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T > 0 is then uniform in all small ε (and sup|t|<T ‖∂kxzε(·, t)‖L∞ is also uniformly bounded for each
k) because the same is true for all the estimates in that proof.

Then (2.1) follows by taking A(ε) = [1.08050, 1.08055] (the full interval, since we do not know A(ε)
explicitly) and propagating this interval in the relevant computations. Specifically, we obtain

∂tt∂xz
1
ε(0, 0) ∈ [38.706, 48.787].

The proof of Theorem 5.1 in [4] shows that the chord-arc constant

sup
x,y∈T& y 6=0

|y|
|zε(x, t)− zε(x− y, t)|

(where T = [−π, π] with ±π identified) is bounded uniformly in all ε, t under consideration (provided
T > 0 is small enough). Thus there is D <∞ such that∣∣∣∣ 1

cosh(z2ε(x, t)− z2ε(x− y, t))− cos(z1ε(x, t)− z1ε(x− y, t))

∣∣∣∣ ≤ D

y2

for all these ε, t and all x, y ∈ T. This allows us to obtain (2.2) by brute force, differentiating and
estimating all the resulting terms separately. The most singular term in ∂t∂

j
xz

1
ε(x, t) (j = 1, 3) is∫

T

sin(z1ε(x, t)− z1ε(x− y, t))(∂j+1
x z1ε(x, t)− ∂j+1

x z1ε(x− y, t))
cosh(z2ε(x, t)− z2ε(x− y, t))− cos(z1ε(x, t)− z1ε(x− y, t))

dy ≤ 2πD‖∂j+2
x z1ε(·, t)‖L∞ ≤ C

for some C which is uniform in ε due to the above-mentioned uniform bounds on ‖∂kxzε(·, t)‖L∞ .
Analogously, the most singular term in ∂2t ∂

2
xz

1
ε(x, t) is given by∫

T

sin(z1ε(x, t)− z1ε(x− y, 0))(∂t∂
3
xz

1
ε(x, t)− ∂t∂3xz1ε(x− y, t))

cosh(z2ε(x, t)− z2ε(x− y, t))− cos(z1ε(x, t)− z1ε(x− y, t))
dy ≤ 2πD‖∂t∂4xz1ε(·, t)‖L∞ ,

and the last term can be bounded by a uniform C in the same way as ∂t∂
3
xz

1
ε(x, t). Finally, the most

singular term in ∂3t ∂xz
1
ε(x, t) is∫

T

sin(z1ε(x, t)− z1ε(x− y, t))(∂2t ∂2xz1ε(x, t)− ∂2t ∂2xz1ε(x− y, t))
cosh(z2ε(x, t)− z2ε(x− y, t))− cos(z1ε(x, t)− z1ε(x− y, t))

dy ≤ 2πD‖∂2t ∂3xz1ε(·, t)‖L∞ ,

which is bounded by a uniform C in the same way as ∂2t ∂
2
xz

1
ε(x, t) (with the bound this time involving

the uniformly bounded quantity ‖∂7xz1ε(·, t)‖L∞). �

Proof of Theorem 2.1: Let T,C be from Lemma 2.2. Then (2.2) shows that for any small enough
ε > 0 and any |t| ≤

√
ε and |x| ∈ [2C1/2ε1/4, π] we have ∂xz

1
ε(x, t) > 0. Indeed, this is because

1− (1 + ε) cos(2C1/2ε1/4)− C
√
ε > 0

when ε > 0 is small (since C is fixed).
Next let |t| ≤

√
ε and |x| ≤ 2C1/2ε1/4. Then there are |x]|, |x]]| ≤ |x| and |t]| ≤

√
ε such that

∂xz
1
ε(x, t) =∂xz

1
ε(x, 0) + t∂t∂xz

1
ε(x, 0) +

1

2
t2∂2t ∂xz

1
ε(x, 0) +

1

6
t3∂3t ∂xz

1
ε(x, t])

=− ε cos(x) + [1− cos(x)] + t

[
∂t∂xz

1
ε(0, 0) + x∂t∂

2
xz

1
ε(0, 0) +

1

2
x2∂t∂

3
xz

1
ε(x], 0)

]
+

1

2
t2
[
∂2t ∂xz

1
ε(0, 0) + x∂2t ∂

2
xz

1
ε(x]], 0)

]
+

1

6
t3∂3t ∂xz

1
ε(x, t])
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≥− ε+ x2
(

1

4
− C

2
|t|
)

+ t2
(

15− C

2
|x| − C

6
|t|
)
,

where we used the estimates from Lemma 2.2 and also that ∂t∂
2
xz

1
ε(0, 0) = 0 by oddness of zε. Since

|t| ≤
√
ε and |x| ≤ 2C1/2ε1/4, taking small enough ε > 0 now yields ∂xz

1
ε(x, t) ≥ 14t2 − ε > 0 for all

|t| ∈ [ 12
√
ε,
√
ε] and |x| ≤ 2C1/2ε1/4. The theorem then follows with z = zε, T =

√
ε, and γ = ε

2C for
such ε (here we also used (2.2) and ∂xz

1
ε(0, 0) = −ε). �

We next show that our approach allows for the proof of existence of solutions which exhibit even
more complicated stability shifting. We will construct a solution with an unstable→ stable→ unstable
→ stable → unstable stability regime profile.

We start by noticing that it suffices to consider solutions to (1.4) with periodicity of the form
z(x + 8Nπ, t) = z(x, t) + (8Nπ, 0) for some integer N ≥ 1, because then z̃(x, t) = 1

4N z(4Nx, 4Nt)
also solves (1.4) and z̃(x + 2π, t) = z̃(x, t) + (2π, 0). Our initial data will be a perturbation of the
8Nπ-periodic extension of the odd function

z(x, 0) = z̄A(0)(x)χ[0,Nπ](|x|) + z̄1.08055(x)χ(Nπ,3Nπ](|x|) + z̄1.08050(x)χ(3Nπ,4Nπ](|x|), (2.4)

with z̄B(x) = (x− sinx,B sin(2x)) and A(0) ∈ (1.08050, 1.08055) from Lemma 2.2. If N is large, the
estimates from the lemma and its proof show that at time t = 0, the corresponding solution wants to
make the shifts stable → unstable → stable at x = 0, stable → unstable at |x| = 2Nπ, and unstable
→ stable at |x| = 4Nπ. An appropriate perturbation of this initial data, which makes the unstable
phase of the first shift last a positive length of time, delays the second shift, and brings the third shift
forward in time would then achieve our goal.

We will also need this perturbation to resolve some other issues. Specifically, the initial condition
must be analytic so that we can solve the PDE both forward and backward in time, and the solution
must remain stable near x = 2nπ for any integer n with |n| ∈ (0, 2N) \ {N} (note that the tangent to
z(·, 0) is vertical at these points). For any large N we therefore let

BN,A(x) = [A+(1.08055−A)φ(|x|−Nπ)]χ[0,3Nπ](|x|)+[1.08050+0.00005φ(3Nπ+1−|x|)]χ(3Nπ,4Nπ](|x|),

with A ∈ [1.08050, 1.08055] and 0 ≤ φ ≤ 1 smooth such that φ(y) = 0 for y ≤ 0 and φ(y) = 1
for y ≥ 1, and we extend BN,A to R periodically (with period 8N). See Figure 2 for a depiction of
BN,A(x). Next we let δy be the delta function at y ∈ R, and define the 8Nπ-periodic odd functions

z̄N,A(x) = (x− sinx,BN,A(x) sin(2x)),

and
zN,A,r,a,c(·, 0) = Pr ∗ z̄N,A + P1 ∗ (aβN,0 + cβN,2Nπ + cβN,−2Nπ + cβN,4Nπ, 0),

with Pr(x) = 1
π

r
x2+r2 the Poisson kernel for the half-plane (note that Pr ∗ IdR = IdR) and βN,y(x) =

βN (x− y), where βN is the (unique and 8Nπ-periodic) primitive of

1

8Nπ
−
∑
n∈Z

δ8Nπn

which has
∫ 4Nπ

−4Nπ βN (x)dx = 0. This and smoothness of φ means zN,A,r,a,c(·, 0) can be extended
analytically to the strip Sr = R× [−r, r] and this extension satisfies for each k ≥ 0,

sup
N≥1&A∈[1.08050,1.08055]& r,a,c∈[0,1/2]& |ζ|≤r

‖∂kxzN,A,r,a,c(·+ iζ, 0)‖L∞ <∞.

Before we continue, let us discuss the different components of the function zN,A,r,a,c(·, 0). First,
z̄N,A is just a smooth version of the function from (2.4), and we convolve it with Pr because we need
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Figure 2: BN,A(x) for A = 1.08052

the initial condition to be analytic. Since ∂xz̄
1
N,A ≥ 0, this yields ∂xzN,A,r,a,c(·, 0) > 0 for any r > 0.

That would mean that for a short (positive and negative) time, the solution would remain stable
everywhere — in particular, near x = 2nπ for any integer n with |n| ∈ (0, 2N) \ {N} as we want
(see above). However, we do not want this to be the case near x ∈ 2NπZ, which is where the term
P1 ∗ (. . . ) comes in. It is analytic and we will choose a, c to be close to the unique aN,r > 0 such
that (2.9) and (2.10) below hold. In fact, we will have a = aN,r − δ and c = aN,r − ε for some small
0 < δ ≈ 3ε

8N−1 � 1, chosen so that ∂xz
1
N,A,r,a,c(x, 0) > 0 for x ∈ 2NπZ \ 8NπZ and (2.12) holds. We

will then finally choose A = AN,r,δ,ε ∈ (1.08050, 1.08055) so that (2.11) also holds, and all this will
ensure that zN,A,r,a,c undergoes the stability shifts described after (2.4). We note that we will first
have to choose N large and r > 0 small so that (2.5), (2.6), and (2.8) below hold for all a, c ≈ aN,r
(which is small if r is). This will then specify aN,r, after which sufficiently small ε, δ will be chosen
and they will determine AN,r,δ,ε

The proof of Theorem 5.1 in [4] shows that for each r > 0 there is Tr (depending only on r) such
that (1.4) has a unique analytic solution zN,A,r,a,c on the time interval (−Tr, Tr) with initial condition
zN,A,r,a,c(·, 0) (moreover, ∂tzN,A,r,a,c is also analytic), and this satisfies for each k ≥ 0,

sup
N≥1&A∈[1.08050,1.08055]& r,a,c∈[0,1/2]& |t|<Tr

(
‖∂kxzN,A,r,a,c(·, t)‖L∞ + ‖∂t∂kxzN,A,r,a,c(·, t)‖L∞

)
<∞.

(Below we always consider A ∈ [1.08050, 1.08055] and r, a, c ∈ [0, 12 ].)
This means that the bound (2.2) extends to each zN,A,r,a,c and (x, t) ∈ R × (−Tr, Tr) (where

T0 = 0), with a uniform C. We also have

∂t∂xz
1
N,A,r,a,c(4Nπ, 0) ≥ 10−6 and ∂t∂xz

1
N,A,r,a,c(±2Nπ, 0) ≤ −10−6, (2.5)

as well as

∂t∂xz
1
N,1.08050,r,a,c(0, 0) ≥ 10−6 and ∂t∂xz

1
N,1.08055,r,a,c(0, 0) ≤ −10−6, (2.6)

both when N−1 + r + a+ c is small enough. This follows from the bounds (2.3) and from

‖∂kxzN,A,r,a,c(·, 0)− ∂kx z̄N,A‖L∞(IN ) → 0 as N−1 + r + a+ c→ 0 (2.7)
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for each k, where IN =
⋃
n∈Z (2Nπn−N, 2Nπn+N). Similarly, (2.2) and (2.7) also prove

∂tt∂xz
1
N,A,r,a,c(0, 0) ≥ 20 (2.8)

for small enough N−1 + r+ a+ c. Fix now N so that (2.5), (2.6), and (2.8) hold for all small enough
r + a+ c.

We next notice that for each r > 0 we have ∂xz
1
N,A,r,0,0(x) = 1−(Pr∗cos)(x), which is a 2π-periodic

function with a positive minimum at x = 0 (independent of N,A). Thus there is a unique aN,r > 0
(small if r > 0 is small) such that

∂xz
1
N,A,r,aN,r,aN,r (2Nπn, 0) = 0 (2.9)

for each n ∈ Z, and
∂xz

1
N,A,r,aN,r,aN,r (x, 0) > 0 (2.10)

for x /∈ 2NπZ. Finally, for any δ, ε ∈ [0, aN,r) let AN,r,δ,ε ∈ (1.08050, 1.08055) be such that

∂t∂xz
1
N,AN,r,δ,ε,r,aN,r−δ,aN,r−ε(0, 0) = 0, (2.11)

which exists due to (2.6) and continuity of ∂t∂xz
1
N,A,r,aN,r−δ,aN,r−ε(0, 0) in A.

For the sake of simplicity of notation, let us denote z = zN,AN,r,δ,ε,r,aN,r−δ,aN,r−ε. We now let r > 0
be small enough, and then pick δ, ε ∈ (0, aN,r) small enough (we will need ε � 10−6Tr, see below)
such that

0 < −∂xz1(0, 0)�
[

1

C
min

n∈{−1,1,2}
∂xz

1(2Nπn, 0)

]2
, (2.12)

with C the constant from (2.2) for zN,A,r,a,c. (I.e., ε > 0 is chosen small and δ slightly smaller than
the value that makes ∂xz

1(0, 0) = 0 for this ε, which means that δ = 3ε
8N−1 −O( ε

N2 ); moreover, then
all three values inside the min are ≈ ε

π .) Then we claim that this z is the desired solution. Indeed,
∂xz

1(0, t) < 0 for all small enough |t| and the argument from the proof of Theorem 2.1 shows that
∂xz

1(x, t) > 0 for all x ∈ R when

|∂xz1(0, 0)|1/2 � |t| � ε

Cπ
.

Finally, (2.5) and a uniform bound on ∂2t ∂xz
1
N,A,r,a,c (obtained similarly to (2.2)) show that

∂xz
1(4Nπ,−t) < 0 and ∂xz

1(±2Nπ, t) < 0

for all t ≈ 106ε if ε� 10−6Tr is small enough (because ∂xz
1(4Nπ, 0) ≈ ε

π ≈ ∂xz
1(±2Nπ, 0)).

We thus proved the following result.

Theorem 2.3 There exist T > T ′ > γ > 0 and a spatially analytic solution z to (1.5) on the time
interval [−T, T ] such that z(·, t) is a graph of a smooth function of x when |t| ∈ [T ′ − γ, T ′ + γ] but
z(·, t) is not a graph of a function of x when |t| ∈ [0, γ] ∪ [T − γ, T ].

3 Technical details of the numerical implementation

In this section, we give some technical details of the implementation of the computer-assisted part of
the proof of Lemma 2.2. In order to perform the rigorous computations we used the C-XSC library
[16]. We refer the reader to the appendices to see a detailed expression of the integral terms involved
in the calculations. For the sake of readability, we kept the same names for the integrals in the paper
and in the code. The code can be found in the supplementary material.
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The implementation is split into several files, and many of the headers of the functions (such as
the integration methods) contain pointers to functions (the integrands) so that they can be reused for
an arbitrary number of integrals with minimal changes and easy and safe debugging. For the sake of
clarity, and at the cost of numerical performance and duplicity in the code, we decided to treat many
simple integrals instead of a single big one.

We start discussing the details of the first part of Lemma 2.2, corresponding to the one dimensional
integrals. The 3 integrals can be found in Appendix A. We split them into two parts: a nonsingular
one over the interval [δ, π] and a singular one over the interval [0, δ]. The nonsingular part is calculated
using a Gauss-Legendre quadrature of order 2, given by

∫ b

a

f(η)dη ∈ b− a
2

(
f

(
b− a

2

√
3

3
+
b+ a

2

)
+ f

(
−b− a

2

√
3

3
+
b+ a

2

))
+

1

4320
(b−a)5f4([a, b]).

Moreover, the integration is done in an adaptive way. For each region, we accepted or rejected the
result depending on the width in an absolute and a relative way. It is important to notice that because
of the uncertainty in ε and/or overestimation, division by zero might occur, even in small integration
intervals. We used δ = 2−9 and tolerances AbsTol and RelTol equal to 10−6.

In the singular region, the singularity around y = 0 is integrable, hence the integral is finite. We
performed a Taylor expansion around y = 0 in both the numerator and denominator (resp. of order
2,2 and 4 for A1, A2 and A3), simplified the powers of y and then integrated. Potentially this could
fail because the uncertainty in the parameters or overestimation could yield a Taylor series in which 0
belongs to the coefficient of the first non-simplified power of the denominator. Whenever this happens,
we try to integrate instead using a Gauss-Legendre quadrature of order 2.

The maximum number of subdivision levels was 18 (218 intervals) for the bounded region and 12
(212 intervals) for the singular one. The splitting of the intervals is done in an arithmetic way, i.e, we
split an integration interval [a, b] into

[
a, a+b2

]
and

[
a+b
2 , b

]
.

In the second part of Lemma 2.2 we have to deal with 41 two dimensional integrals (see Appendix
B for a detailed list of them and their derivation). The first step is to exploit the symmetry of the
integrands in (y, z) variables to integrate only over the region [0, π] × [−π, π]. We will distinguish
four different regions labeled in the following way: nonsingular ([δ, π] × [δ, π]) ∪ ([δ, π] × [−π,−δ]),
singular-first-coordinate ([0, δ]× [δ, π]) ∪ ([0, δ]× [−π,−δ]), singular-second-coordinate [δ, π]× [−δ, δ]
and singular-center [0, δ]× [−δ, δ].

The nonsingular region was integrated as before, using a 2D Gauss-Legendre quadrature of order 2.
The singular-center region was integrated in the following way. Assuming sign (a) = sign (b), sign (c) =
sign (d) and that we expand up to orders num y, den y, num z, den z:∫ b

a

∫ d

c

Num(y, z)

Den(y, z)
dydz ∈

∫ b

a

∫ d

c

1
num y!num z!∂

num y
y ∂num z

z Num(A,B)ynum yznum z

1
den y!den z!∂

den y
y ∂den zz Den(A,B)yden yzden z

dydz

=
1

1 + num y − den y
1

1 + num z − den z
den y!den z!

num y!num z!

×
∂num y
y ∂num z

z Num(A,B)

∂den yy ∂den zz Den(A,B)
y1+num y−den yz1+num z−den z

∣∣∣∣∣
z=d

z=c

∣∣∣∣∣∣
y=b

y=a

where A is the convex hull of {0, a, b} and B is the convex hull of {0, c, d}. For the singular-first-
coordinate and singular-second-coordinate regions the same procedure was applied taking num z =
den z = 0, B = [c, d] and num y = den y = 0, A = [a, b] respectively. A detailed list of the orders of
each of the integrals can be found in the appendix in Table 1. Whenever the Taylor-based formulas
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failed because of 0 being enclosed in the denominator terms, we tried to integrate using 2D Gauss-
Legendre of order 2.

In this two dimensional setting, we used a geometric splitting (in both coordinates) in the nonsin-
gular region, arithmetic in the singular-center and singular-first-coordinate and hybrid in the singular-
second-coordinate (see below). The geometric splitting consists in splitting by the geometric mean as
opposed to the arithmetic one (i.e. assuming a and b have the same sign and are non-zero, we split
[a, b] into [a,

√
ab sign(a)] and [

√
ab sign(a), b]). While the arithmetic division minimizes the length

of the longest piece after the division, the geometric one minimizes the piece with the biggest ratio
between its endpoints. This can be particularly useful in many cases: for example in order to avoid
divisions by zero for integrands of the type 1

y−A sin(y) , which is a simplified version of some of the

denominators that appear in all the terms. Detailed results of the breakdown by region and by term
can be found in Table 2.

We chose δ = 2−5, and AbsTol and RelTol equal to 10−4. We changed the number of maximum
subdivision levels depending on the region and (possibly) depending on the terms. For the nonsingular
region, the maximum number was 10 (220 intervals). In the singular-first-coordinate, the maximum
number of subdivisions was 8 (216 intervals), and that number was also used in the singular-center
region. The singular-second-coordinate region was treated differently: all terms other than B47 and
B55 were further split into 3 subregions: [δ, 0.65]×[−δ, δ], [0.65, 0.95]×[−δ, δ] and [0.95, π]×[−δ, δ] and
setting the maximum number of subdivisions to 9 in each subregion. The first and second subregion
were computed using arithmetic splitting, whereas the third one was split geometrically only in the
first coordinate, and arithmetically in the second.

The singular-second-coordinate regions of the terms B47 and B55 are highly singular because of
the cubic denominators and they required special precision. They were subdivided into 6 subregions:
namely [δ, 0.325]× [−δ, δ], [0.325, 0.65]× [−δ, δ], [0.65, 0.775]× [−δ, δ], [0.775, 0.95]× [−δ, δ], [0.95, 1.5]×
[−δ, δ] and [1.5, π]× [−δ, δ]. The maximum number of subdivisions was 10 in each subregion. The last
2 subregions were split geometrically in the first coordinate, arithmetically in the second. The other
4 subregions were split arithmetically in each of the coordinates.

The simulations were run on the NewComp cluster at Princeton University. Each of the programs
was run on a core of 2 Xeon X5680 CPUs (6 cores each, 12 in total) at 3.33 GHz and 8 GB of RAM.
The total runtime was about 3.5 min for the first part of Lemma 2.2. For the second part, the different
runtimes are summarized in table 3.
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A Integrals needed for the calculation of ∂txz
1(0, 0)

We start with

∂tz
1(x, t) =

∫
T

sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))
dy

After taking a derivative in space:

∂txz
1(x, 0) =

∫
T

sin(z1(x)− z1(x− y))(z1xx(x)− z1xx(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))
dy

+

∫
T

cos(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))2

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))
dy

−
∫
T

sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

× (sinh(z2(x)− z2(x− y))(z2x(x)− z2x(x− y)) + sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y)))dy

Evaluating at x = 0 and exploiting the symmetry of the integral:

∂txz
1(0, 0) =

∫
T

sin(z1(y))(z1xx(0) + z1xx(y))

cosh(z2(y))− cos(z1(y))
dy

+

∫
T

cos(z1(y))(z1x(0)− z1x(y))2

cosh(z2(y))− cos(z1(y))
dy

−
∫
T

sin(z1(y))(z1x(0)− z1x(y))

(cosh(z2(y))− cos(z1(y)))2
(sinh(z2(y))(z2x(0)− z2x(y)) + sin(z1(y))(z1x(0)− z1x(y)))dy

= A1 +A2 +A3

A1 = 2

∫ π

0

sin(z1(y))(z1xx(y))

cosh(z2(y))− cos(z1(y))
dy

A2 = 2

∫ π

0

cos(z1(y))(z1x(0)− z1x(y))2

cosh(z2(y))− cos(z1(y))
dy

A3 = −2

∫ π

0

sin(z1(y))(z1x(0)− z1x(y))

(cosh(z2(y))− cos(z1(y)))2
(sinh(z2(y))(z2x(0)− z2x(y)) + sin(z1(y))(z1x(0)− z1x(y)))dy

B Integrals needed for the calculation of ∂ttxz
1(0, 0)

After taking a derivative in time:

∂ttz
1(x, t) =

∫
T

cos(z1(x)− z1(x− y))(z1t (x)− z1t (x− y))(z1x(x)− z1x(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))
dy

+

∫
T

sin(z1(x)− z1(x− y))(z1tx(x)− z1tx(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))
dy

−
∫
T

sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y)) sinh(z2(x)− z2(x− y))(z2t (x)− z2t (x− y)

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2
dy

−
∫
T

sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y)) sin(z1(x)− z1(x− y))(z1t (x)− z1t (x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2
dy
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= I1(x) + I2(x) + I3(x) + I4(x)

We can further develop the terms of the second derivative:

I1(x) =

∫
T

∫
T

cos(z1(x)− z1(x− y)))(z1x(x)− z1x(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

I2(x) = I21(x) + I22(x) + I23(x) + I24(x),

where

I21(x) =

∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

cos(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))(z1x(x)− z1x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

−cos(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))(z1x(x− y)− z1x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

I22(x) =

∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1xx(x)− z1xx(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1xx(x− y)− z1xx(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

I23(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)) sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)) sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

)
dydz

I24(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)) sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)) sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

)
dydz
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I3(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y)) sinh(z2(x)− z2(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(

sin(z1(x)− z1(x− z))(z2x(x)− z2x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z2x(x− y)− z2x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

I4(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y)) sin(z1(x)− z1(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

We now compute ∂x of the integrals:

∂xI1(x)|x=0 = B11(x) +B12(x) +B13(x) +B14(x) +B15(x) +B16(x)|x=0

We have:

B11(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y)))(z1x(x)− z1x(x− y))2

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B12(x) =

∫
T

∫
T

cos(z1(x)− z1(x− y)))(z1xx(x)− z1xx(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B13(x) = −
∫
T

∫
T

cos(z1(x)− z1(x− y)))(z1x(x)− z1x(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(
sinh(z2(x)− z2(x− y))(z2x(x)− z2x(x− y)) + sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

)
×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz
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B14(x) =

∫
T

∫
T

cos(z1(x)− z1(x− y)))(z1x(x)− z1x(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

cos(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))2

cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− cos(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))2

cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B15(x) =

∫
T

∫
T

cos(z1(x)− z1(x− y)))(z1x(x)− z1x(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1xx(x)− z1xx(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1xx(x− y)− z1xx(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B16(x) = −
∫
T

∫
T

cos(z1(x)− z1(x− y)))(z1x(x)− z1x(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

× (sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z)) + sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)))

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

×(sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z)) + sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)))
)
dydz

We move on to I21(x). Taking a derivative yields:

∂xI21(x) = B21(x) +B22(x) +B23(x) +B24(x) +B25(x),

where

B21(x) =

∫
T

∫
T

cos(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

cos(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))2

cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− cos(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))2

cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B22(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(
sinh(z2(x)− z2(x− y))(z2x(x)− z2x(x− y)) + sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

)
×
(

cos(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))2

cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))
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− cos(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))2

cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B23(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))3

cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))3

cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B24(x) = 2

∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

cos(z1(x)− z1(x− z))(z1xx(x)− z1xx(x− z))(z1x(x)− z1x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

−cos(z1(x− y)− z1(x− y − z))(z1xx(x− y)− z1xx(x− y − z))(z1x(x− y)− z1x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B25(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

cos(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))2

(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

× (sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z)) + sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)))

− cos(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))2

(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

×(sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z)) + sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)))
)
dydz

Next we differentiate I22(x):

∂xI22(x) = B31(x) +B32(x) +B33(x) +B34(x) +B35(x),

where

B31(x) =

∫
T

∫
T

cos(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1xx(x)− z1xx(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1xx(x− y)− z1xx(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B32(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y)))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(
sinh(z2(x)− z2(x− y))(z2x(x)− z2x(x− y)) + sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

)
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×
(

sin(z1(x)− z1(x− z))(z1xx(x)− z1xx(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1xx(x− y)− z1xx(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B33(x) =

∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

cos(z1(x)− z1(x− z))(z1xx(x)− z1xx(x− z))(z1x(x)− z1x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

−cos(z1(x− y)− z1(x− y − z))(z1xx(x− y)− z1xx(x− y − z))(z1x(x− y)− z1x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B34(x) =

∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1xxx(x)− z1xxx(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1xxx(x− y)− z1xxx(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B35(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1xx(x)− z1xx(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

× (sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z)) + sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)))

− sin(z1(x− y)− z1(x− y − z))(z1xx(x− y)− z1xx(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

×(sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z)) + sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)))
)
dydz

The differentiation of I23(x) follows:

∂xI23(x) = B41(x) +B42(x) +B43(x) +B44(x) +B45(x) +B46(x) +B47(x),

where

B41(x) = −
∫
T

∫
T

cos(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)) sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)) sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

)
dydz

B42(x) =

∫
T

∫
T

sin(z1(x)− z1(x− y)))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2
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×
(
sinh(z2(x)− z2(x− y))(z2x(x)− z2x(x− y)) + sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

)
×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)) sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)) sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

)
dydz

B43(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

cos(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))2 sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

−cos(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))2 sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

)
dydz

B44(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1xx(x)− z1xx(x− z)) sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

− sin(z1(x− y)− z1(x− y − z))(z1xx(x− y)− z1xx(x− y − z)) sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

)
dydz

B45(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)) cosh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z))2

(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)) cosh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z))2

(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

)
dydz

B46(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)) sinh(z2(x)− z2(x− z))(z2xx(x)− z2xx(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)) sinh(z2(x− y)− z2(x− y − z))(z2xx(x− y)− z2xx(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

)
dydz

B47(x) = 2

∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)) sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))3

× (sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z)) + sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)))
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− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)) sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))3

×(sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z)) + sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)))
)
dydz

We keep on differentiating, this time I24(x):

∂xI24(x) = B51(x) +B52(x) +B53(x) +B54(x) +B55(x),

which have the following expressions:

B51(x) = −
∫
T

∫
T

cos(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

(sin(z1(x)− z1(x− z)))2(z1x(x)− z1x(x− z))2

(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

− (sin(z1(x− y)− z1(x− y − z)))2(z1x(x− y)− z1x(x− y − z))2

(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

)
dydz

B52(x) =

∫
T

∫
T

sin(z1(x)− z1(x− y)))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(
sinh(z2(x)− z2(x− y))(z2x(x)− z2x(x− y)) + sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

)
×
(

(sin(z1(x)− z1(x− z)))2(z1x(x)− z1x(x− z))2

(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

− (sin(z1(x− y)− z1(x− y − z)))2(z1x(x− y)− z1x(x− y − z))2

(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

)
dydz

B53(x) = −2

∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

sin(z1(x)− z1(x− z)) cos(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))3

(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

− sin(z1(x− y)− z1(x− y − z)) cos(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))3

(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

)
dydz

B54(x) = −2

∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

(sin(z1(x)− z1(x− z)))2(z1x(x)− z1x(x− z))(z1xx(x)− z1xx(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

− (sin(z1(x− y)− z1(x− y − z)))2(z1x(x− y)− z1x(x− y − z))(z1xx(x− y)− z1xx(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

)
dydz

B55(x) = 2

∫
T

∫
T

sin(z1(x)− z1(x− y)))

cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y))

×
(

(sin(z1(x)− z1(x− z)))2(z1x(x)− z1x(x− z))2

(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))3

18



× (sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z)) + sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)))

− (sin(z1(x− y)− z1(x− y − z)))2(z1x(x− y)− z1x(x− y − z))2

(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))3

×(sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z)) + sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)))
)
dydz

After that, we differentiate I3(x), resulting in:

∂xI3(x) = B61(x) +B62(x) +B63(x) +B64(x) +B65(x) +B66(x) +B67(x)

with

B61(x) = −
∫
T

∫
T

cos(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))2 sinh(z2(x)− z2(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(

sin(z1(x)− z1(x− z))(z2x(x)− z2x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z2x(x− y)− z2x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B62(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y))(z1xx(x)− z1xx(x− y)) sinh(z2(x)− z2(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(

sin(z1(x)− z1(x− z))(z2x(x)− z2x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z2x(x− y)− z2x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B63(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y)) cosh(z2(x)− z2(x− y))(z2x(x)− z2x(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(

sin(z1(x)− z1(x− z))(z2x(x)− z2x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z2x(x− y)− z2x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B64(x) = 2

∫
T

∫
T

sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y)) sinh(z2(x)− z2(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))3

×
(
sinh(z2(x)− z2(x− y))(z2x(x)− z2x(x− y)) + sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

)
×
(

sin(z1(x)− z1(x− z))(z2x(x)− z2x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z2x(x− y)− z2x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B65(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y)) sinh(z2(x)− z2(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2
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×
(

cos(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))(z2x(x)− z2x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

−cos(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))(z2x(x− y)− z2x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B66(x) = −
∫
T

∫
T

sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y)) sinh(z2(x)− z2(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(

sin(z1(x)− z1(x− z))(z2xx(x)− z2xx(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z2xx(x− y)− z2xx(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B67(x) =

∫
T

∫
T

sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y)) sinh(z2(x)− z2(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(

sin(z1(x)− z1(x− z))(z2x(x)− z2x(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

× (sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z)) + sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)))

− sin(z1(x− y)− z1(x− y − z))(z2x(x− y)− z2x(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

×(sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z)) + sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)))
)
dydz

The last term we differentiate is I4(x), which yields

∂xI4(x) = B71(x) +B72(x) +B73(x) +B74(x) +B75(x) +B76(x)

B71(x) = −2

∫
T

∫
T

(sin(z1(x)− z1(x− y)))(cos(z1(x)− z1(x− y)))(z1x(x)− z1x(x− y))2

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B72(x) = −
∫
T

∫
T

(sin(z1(x)− z1(x− y)))2(z1xx(x)− z1xx(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B73(x) = 2

∫
T

∫
T

(sin(z1(x)− z1(x− y)))2(z1x(x)− z1x(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))3
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×
(
sinh(z2(x)− z2(x− y))(z2x(x)− z2x(x− y)) + sin(z1(x)− z1(x− y))(z1x(x)− z1x(x− y))

)
×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B74(x) = −
∫
T

∫
T

(sin(z1(x)− z1(x− y)))2(z1x(x)− z1x(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(

cos(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))2

cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− cos(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))2

cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B75(x) = −
∫
T

∫
T

(sin(z1(x)− z1(x− y)))2(z1x(x)− z1x(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(

sin(z1(x)− z1(x− z))(z1xx(x)− z1xx(x− z))
cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z))

− sin(z1(x− y)− z1(x− y − z))(z1xx(x− y)− z1xx(x− y − z))
cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z))

)
dydz

B76(x) =

∫
T

∫
T

(sin(z1(x)− z1(x− y)))2(z1x(x)− z1x(x− y))

(cosh(z2(x)− z2(x− y))− cos(z1(x)− z1(x− y)))2

×
(

sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z))
(cosh(z2(x)− z2(x− z))− cos(z1(x)− z1(x− z)))2

× (sinh(z2(x)− z2(x− z))(z2x(x)− z2x(x− z)) + sin(z1(x)− z1(x− z))(z1x(x)− z1x(x− z)))

− sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z))
(cosh(z2(x− y)− z2(x− y − z))− cos(z1(x− y)− z1(x− y − z)))2

×(sinh(z2(x− y)− z2(x− y − z))(z2x(x− y)− z2x(x− y − z)) + sin(z1(x− y)− z1(x− y − z))(z1x(x− y)− z1x(x− y − z)))
)
dydz

C Auxiliary tables

Integral Degree Num. in y Degree Num. in z Degree Den. in y Degree Den. in z
B11 6 4 2 4
B12 2 4 2 4
B13 6 4 4 4
B14 3 4 2 4
B15 3 4 2 4
B16 3 8 2 8
B21 3 4 2 4
B22 5 4 4 4
B23 2 6 2 4
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B24 2 4 2 4
B25 2 8 2 8
B31 3 4 2 4
B32 5 4 4 4
B33 2 4 2 4
B34 2 4 2 4
B35 2 8 2 8
B41 3 8 2 8
B42 5 8 4 8
B43 2 8 2 8
B44 2 8 2 8
B45 2 8 2 8
B46 2 8 2 8
B47 2 12 2 12
B51 3 8 2 8
B52 5 8 4 8
B53 2 8 2 8
B54 2 8 2 8
B55 2 12 2 12
B61 6 4 4 4
B62 4 4 4 4
B63 6 4 4 4
B64 8 4 6 4
B65 5 4 4 4
B66 5 4 4 4
B67 5 8 4 8
B71 6 4 4 4
B72 4 4 4 4
B73 8 4 6 4
B74 5 4 4 4
B75 5 4 4 4
B76 5 8 4 8

Table 1: Degree of the Taylor expansions in y and z of the different
integrands written down as fractions numerator

denominator .

Integral Bounded Region Singularity Center Singularity y Axis Singularity z Axis
B11 −21.935809 [−4.9 · 10−13, 4.9 · 10−13] [−6.3 · 10−7, 6.3 · 10−7] −0.207150
B12 19.11932 [8.9 · 10−8, 3.7 · 10−7] [−2.3 · 10−3, 2.5 · 10−3] 0.27682
B13 −2.1303 [−4.2 · 10−8, 5.6 · 10−8] [−3.2 · 10−5, 3.2 · 10−5] 0.3841
B14 4.3941 [7.8 · 10−8, 1.9 · 10−7] [−1.1 · 10−4, 1.0 · 10−4] 0.27682
B15 8.53543 [−9.0 · 10−10, 1.3 · 10−7] [−7.7 · 10−5, 6.1 · 10−5] 0.08891
B16 14.95.1 [−7.3 · 10−8, 7.4 · 10−8] [−7.0 · 10−4, 8.8 · 10−4] −0.4228
B21 4.3941 [7.8 · 10−8, 1.9 · 10−7] [−1.1 · 10−4, 1.0 · 10−4] 0.27682
B22 14.5562 [−6.0 · 10−8, 6.0 · 10−8] [−5.9 · 10−6, 5.9 · 10−6] 0.17791
B23 −13.355912 [−9.2 · 10−10, 9.2 · 10−10] [−4.1 · 10−5, 6.6 · 10−5] −0.00004633
B24 30.91.1 [−2.5 · 10−8, 1.9 · 10−7] [−1.5 · 10−4, 1.9 · 10−4] 0.042252
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B25 −29.7966 [−3.5 · 10−7, 3.5 · 10−7] [−1.7 · 10−3, 1.6 · 10−3] −0.2819
B31 8.53543 [−9.0 · 10−10, 1.3 · 10−7] [−7.7 · 10−5, 6.1 · 10−5] 0.08891
B32 10.0914 [−6.2 · 10−8, 6.3 · 10−8] [−5.8 · 10−6, 5.8 · 10−6] 0.282174
B33 15.4951 [−3.6 · 10−8, 1.2 · 10−7] [−7.2 · 10−5, 9.5 · 10−5] 0.021126
B34 −14.946318 [−5.5 · 10−8, 5.4 · 10−8] [−5.0 · 10−5, 4.9 · 10−5] −0.145236
B35 −9.9688 [−6.3 · 10−7, 6.3 · 10−7] [−1.2 · 10−3, 1.2 · 10−3] −0.08748
B41 −6.6247 [−7.3 · 10−8, 7.4 · 10−8] [−7.2 · 10−4, 8.0 · 10−4] −0.2108
B42 15.1360 [−5.5 · 10−8, 5.6 · 10−8] [−2.5 · 10−5, 2.5 · 10−5] −1.4017
B43 −0.6452 [−3.5 · 10−7, 3.5 · 10−7] [−1.7 · 10−3, 1.7 · 10−3] −0.1305
B44 9.0715 [−6.2 · 10−7, 6.3 · 10−7] [−1.3 · 10−3, 1.2 · 10−3] −0.07336
B45 −751.7306 [−3.0 · 10−7, 3.0 · 10−7] [−1.4 · 10−2, 1.2 · 10−2] [−4.2,−3.8]
B46 50.2733 [−6.9 · 10−7, 6.9 · 10−7] [−5.3 · 10−4, 6.1 · 10−4] 0.65399
B47 685.17.2 [−2.1 · 10−6, 2.1 · 10−6] [−2.9 · 10−2, 3.2 · 10−2] [3.7, 4.7]
B51 21.56384 [−6.8 · 10−8, 8.0 · 10−8] [−2.1 · 10−4, 3.1 · 10−4] −0.2219
B52 −15.1302 [−8.9 · 10−8, 8.8 · 10−8] [−1.1 · 10−5, 1.1 · 10−5] −0.07739
B53 −58.3127 [−5.1 · 10−8, 5.1 · 10−8] [−1.2 · 10−3, 9.7 · 10−4] −0.3128
B54 −38.07555 [−5.5 · 10−8, 5.5 · 10−8] [−6.8 · 10−4, 6.7 · 10−4] −0.03219
B55 103.54.1 [−5.1 · 10−8, 5.1 · 10−8] [−8.3 · 10−3, 8.5 · 10−3] 0.3452
B61 48.50782 [−4.9 · 10−8, 6.3 · 10−8] [2.5 · 10−5, 4.1 · 10−5] 0.50927
B62 33.64695 [−2.2 · 10−7, 2.2 · 10−7] [−5.0 · 10−4, 5.4 · 10−4] 0.47788
B63 −615.34.7 [−4.7 · 10−8, 4.7 · 10−8] [−5.4 · 10−6, 5.4 · 10−6] 0.41896
B64 494.95.9 [−1.1 · 10−7, 1.1 · 10−7] [−4.7 · 10−6, 4.7 · 10−6] −0.5441
B65 49.0916 [−6.1 · 10−8, 6.1 · 10−8] [−4.9 · 10−6, 4.9 · 10−6] 0.47788
B66 7.41857 [−6.2 · 10−8, 6.2 · 10−8] [−4.7 · 10−6, 4.7 · 10−6] −0.08563
B67 −24.6215 [−5.7 · 10−8, 5.7 · 10−8] [−1.1 · 10−5, 1.1 · 10−5] −0.6848
B71 −84.8178 [−8.1 · 10−10, 8.0 · 10−10] [−3.5 · 10−6, 3.6 · 10−6] −0.627912
B72 −29.36959 [−1.4 · 10−7, 7.0 · 10−8] [−4.6 · 10−6, 4.6 · 10−6] −0.223918
B73 137.88.1 [−8.8 · 10−10, 5.4 · 10−10] [−3.0 · 10−6, 2.8 · 10−6] 0.85794
B74 7.08596 [−2.1 · 10−9, 2.4 · 10−9] [−3.5 · 10−6, 3.3 · 10−6] −0.223917
B75 −2.82314 [−4.2 · 10−9, 4.5 · 10−9] [−3.9 · 10−6, 3.7 · 10−6] 0.042929
B76 −35.6352 [−5.0 · 10−8, 5.2 · 10−8] [−3.6 · 10−6, 3.6 · 10−6] 0.04268

Table 2: Detailed breakdown of the rigorous integration results.

Term and region Number of integrals Time (HH:MM)
B11-B76 (nonsingular) 82 14:48

B11-B76 (center-singular) 82 02:03
B11-B76 (singular-first) 82 01:26
B11-B16 (singular-second) 12 11:57
B21-B25 (singular-second) 10 09:57
B31-B35 (singular-second) 10 11:29
B41-B46 (singular-second) 12 32:19
B51-B54 (singular-second) 8 16:44
B61-B67 (singular-second) 14 13:59
B71-B76 (singular-second) 12 09:46

B47 (singular-second - subregions 1 and 2) 4 35:53
B47 (singular-second - subregions 3 and 4) 4 60:48
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B47 (singular-second - subregions 5 and 6) 4 82:02
B55 (singular-second - subregions 1 and 2) 4 16:02
B55 (singular-second - subregions 3 and 4) 4 56:12
B55 (singular-second - subregions 5 and 6) 4 74:50

Table 3: Performance of the code in the different integrals and
regions.
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