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Abstract

In this paper, we prove that the celebrated Arnold-Beltrami-Childress
(ABC) flow with parameters A = B = C = 1

ẋ = sin z + cos y

ẏ = sinx+ cos z

ż = sin y + cosx,

has periodic orbits on (2πT)3 with rotation vectors parallel to (1, 0, 0),
(0, 1, 0), and (0, 0, 1). Despite ABC flows being studied since the 1960s,
this seems to be the first time existence of non-perturbative periodic
orbits has been established for them. The main difficulty here is the
lack of a variational structure for these flows and our proof instead
relies on their symmetry properties. As an application of our result, we
show that the well-known G-equation model of turbulent combustion
with this ABC flow on R3 has a linear (i.e., maximal possible) flame
speed enhancement rate as the flow amplitude grows to infinity. To
the best of our knowledge, this is the first time an asymptotic flame
speed growth law has been established for a natural three-dimensional
incompressible flow with such a complex structure.

1 Introduction

Arnold-Beltrami-Childress (ABC) flows are important examples of three di-
mensional periodic incompressible flows [1, 7, 8]. The general form is

uA,B,C(x, y, z) = (A sin z + C cos y,B sinx+A cos z, C sin y +B cosx)
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with A,B,C ∈ R some given parameters. These flows are steady solutions
of the Euler equation, and the corresponding system of ODE

Ẋ(t) = uA,B,C(X(t))

becomes integrable when one of the parameters is zero. We refer the reader
to [7] and to Section 2.6 in [5] for more background information.

The most interesting case is when A = B = C = 1 (the 1-1-1 ABC flow),
introduced by Childress [3, 4] in connection with dynamo studies. The 1-
1-1 ABC flow system is known to be chaotic in the sense that a web of
chaos occupies a (fairly complex) region of the phase space, as seen from the
Poincaré section plots of Figure 10 in [7]. Though chaotic orbits for other
ABC parameters have been identified analytically (see, e.g., [1, 16]), it is not
known how to construct them rigorously for the 1-1-1 ABC flow. In fact,
despite the study of ABC flows going back to the 1960s, we are not aware
of any previous non-perturbative results involving even non-chaotic orbits
(e.g., periodic ones). This is likely due to the lack of a variational structure
of ABC flows, which means that classical variational approaches, such as the
critical point theory [12], do not apply to them.

In this paper we address the question of existence of periodic orbits for
the 1-1-1 ABC flow system. We prove here that for each standard basis
vector e, this flow does in fact have unbounded orbits that are periodic up
to shifts by 2πZ-multiples of e.

Besides this question being of independent interest, our work is also
motivated by recent progress and open questions in the study of flame speed
enhancement by turbulent fluid motion in combustion models (see, e.g.,
[15, 17]), especially in three spatial dimensions. Indeed, linear (and hence
maximal possible) growth of flame front speeds as the amplitude of the flow
grows has been proved to be related to the existence of unbounded (roughly)
“periodic” orbits of the turbulent flow (see below), rather than to existence
of chaotic orbits (which one might expect). The study of the former orbits
thus becomes natural, and is a distinct departure from the long history of
the study of chaos in ABC flows.

Note that since the 1-1-1 ABC flow is not a small perturbation of an
integrable case, classical dynamical systems tools, (such as KAM, Melnikov
analysis, or Smale horseshoe) are difficult if not entirely impossible to ap-
ply. Nevertheless, using a careful analysis of the orbits of the flow inside a
triangular prism region (see Figure 1) and certain symmetries of the flow,
we are able to establish the following main result of this paper.
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Theorem 1.1 There exists t0 > 0 and a solution X(t) = (x(t), y(t), z(t))
to the 1-1-1 ABC flow system such that for each t ∈ R we have

X(t+ t0) = X(t) + (2π, 0, 0).

Then Y (t) = (z(t), x(t), y(t)) and Z(t) = (y(t), z(t), x(t)) are clearly also
solutions and satisfy

Y (t+ t0) = Y (t) + (0, 2π, 0) and Z(t+ t0) = Z(t) + (0, 0, 2π).

Remarks. 1. Then X̃(t) = X(−t) − (π, π, π), Ỹ (t) = Y (−t) − (π, π, π),
and Z̃(t) = Z(−t)− (π, π, π) are also solutions and they satisfy X̃(t+ t0) =
X̃(t)−(2π, 0, 0), Ỹ (t+t0) = Ỹ (t)−(0, 2π, 0), and Z̃(t+t0) = Z̃(t)−(0, 0, 2π).

2. Our method can be adjusted to obtain unbounded “periodic” orbits
along the x, y and z directions for some other values of A,B,C. For instance,
if A, B and C are all close to 1, then this follows from the proof of our result
via a simple perturbation argument. Another example is the case 0 < A� 1
and B = C = 1, which is a perturbation of the integrable case A = 0 and
B = C = 1. We note that the corresponding system now possesses a large
KAM region as well as a chaotic thin layer near the separatrix walls of the
integrable flow (i.e., near {sin y + cosx = 0}), and we refer to [10] for both
theoretical and numerical analysis of this case.

Applications to combustion models. Finding the turbulent flame speed
(or effective burning velocity) is one of the most important unsolved prob-
lems in turbulent combustion. Roughly speaking, turbulent flame speed is
the flame propagation speed in the presence of (and enhanced by) a strong
flow of the ambient fluid medium. Two typical examples are the spread of
wildfires fanned by winds and combustion of rotating air-gasoline mixtures
inside internal combustion engines.

For simplicity, let us assume that the flow velocity profile V : Rn → Rn
is smooth, periodic, and incompressible (i.e., ∇ · V = 0). A well-known
approach to the study of flame propagation and turbulent flame speed is the
G-equation model (see, e.g., [11, 13]), the level set Hamilton-Jacobi equation

Gt +KV (x) · ∇G+ sl|∇G| = 0,

with K ≥ 0 the amplitude of the turbulent flow and sl > 0 the laminar
flame speed. A basic question is to understand how the turbulent flame
speed depends on the flow amplitude as K →∞ (i.e., for strong flows). Let
sT (p,K) be the turbulent flame speed given by the G-equation model along
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a fixed unit direction p ∈ Rn (see [15] for the precise definition and further
references). Then it is proved in [15] that

lim
K→∞

sT (p,K)

K
= max
{ξ| ξ̇=V (ξ)}

lim sup
t→∞

p · ξ(t)
t

.

In particular, sT (p,K) grows linearly (which is the maximal possible growth
rate) as K → ∞ precisely when there exists an orbit of ξ̇ = V (ξ) which
travels roughly linearly in the direction p.

This yields the following corollary of Theorem 1.1 (and of Remark 1),
which is to the best of our knowledge the first time an asymptotic turbulent
flame speed growth law has been established for a natural three-dimensional
incompressible flow with such a complex structure.

Corollary 1.1 If V is the 1-1-1 ABC flow, then for any p ∈ R3 we have

lim
K→∞

sT (p,K)

K
> 0,

We note that another well-known model used in the study of turbu-
lent flame speeds involves traveling front solutions of the reaction-advection-
diffusion equation

Tt +KV (x) · ∇T = d∆T + f(T ).

Here T represents the temperature of the reactant, d > 0 is the molecular
diffusivity, and f is a nonlinear reaction function (see, e.g., [2, 14]). Consider
the case of a KPP reaction f (e.g., f(T ) = T (1 − T )) and let c∗(p,K) be
the turbulent flame speed in the direction p given by this model (i.e., the
minimal speed of a traveling front in direction p; see [2, 14] for details). It
is established in [17] that

lim
K→∞

c∗(p,K)

K
= sup

w∈Γ

∫
Tn

(V · p)w2dx,

where

Γ =
{
w ∈ H1(Tn)

∣∣∣V · ∇w = 0 & ||w||L2(Tn) = 1 & ‖∇w||2L2(Tn) ≤ f
′(0)
}
.

Hence, in contrast to the G-equation model, one now needs a positive mea-
sure of orbits of ξ̇ = V (ξ) which travel roughly linearly in the direction p
to obtain linear-in-K turbulent flame speed enhancement. Such percolating
flows were first shown to linearly enhance turbulent flame speeds in [6, 9].
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When n = 2, stability of periodic orbits was used in [15] to establish that

limK→∞
c∗(p,K)
K = 0 if and only limK→∞

sT (p,K)
K = 0. However, this is not

true in general in three dimensions. An example from [15] is the so-called

Robert cell flow, for which limK→∞
sT (p,K)

K > 0 and limK→∞
c∗(p,K)
K = 0

when p = (0, 0, 1).
The analysis becomes much more difficult for the much more interesting

1-1-1 ABC flow due to the presence of chaotic structures. Nevertheless,
numerical simulations suggest that there are “vortex tubes” composed of
orbits which travel roughly linearly in the ±x, ±y, and ±z directions [7],
suggesting that c∗(p,K) should also grow linearly in K for each p. One
could expect to find such vortex tubes, if they indeed exist, in the vicinity of
the “periodic” orbits constructed in this paper, but a rigorous proof of their
existence is currently not known, and is expected an order of magnitude
harder than KAM.

2 Proof of Theorem 1.1

Let R be the open triangle in the xy-plane with vertices (0,−π
2 ), (0, 3π

2 ),
(−π, π2 ), and let D = R×(0, π2 ). Our proof is based on showing that there ex-
ists a solution Xā to the 1-1-1 ABC flow system which starts from (−π

2 , 0, ā)
for some ā ∈ [0, π2 ) and passes through the segment {(0, y, π2 )| y ∈ [−π

2 ,
3π
2 ]}

(see Figure 1). We do this in Step 1 below, and then use the symmetries of
the flow to construct the desired solution X in Step 2.

(−π
2 , 0, ā)

Xā(t)

z = 0

z = π
2

Figure 1: The region D, rotated counter-clockwise by 90 degrees, and Xā.

Step 1: For any a ∈ [0, π2 ), let Xa(t) = (x(t), y(t), z(t)) satisfy Xa(0) =
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(−π
2 , 0, a) and

ẋ = sin z + cos y

ẏ = sinx+ cos z

ż = sin y + cosx.

Obviously, (x(t), y(t)) ∈ R for all small t > 0 (and any a ∈ [0, π2 )). Since
cosx+ sin y > 0 for (x, y) ∈ R, we have that Xa(t) ∈ D for all small t > 0.

The question now is whether and where Xa will (first) exit D. Clearly
ż(t) > 0 when Xa(t) ∈ D, and we also have

Ẋa(t) · (1, 1, 0) = sin z(t) + cos z(t) > 0

when Xa(t) ∈ {x+ y = −π
2 } ∩ ∂D. Hence Xa cannot exit D through either

the plane {z = 0} or the plane {x+ y = −π
2 }.

Let us now consider any T > 0 such that Xa(t) ∈ D̄ = R̄ × [0, π2 ] for
all t ∈ [0, T ]. The following result shows, in particular, that the first exit
cannot happen through the plane {y − x = 3π

2 } either.

Lemma 2.1 We have y(t) < π
4 for t ∈ [0, T ].

Proof. We argue by contradiction. If not, then by y(0) = 0, there are
0 ≤ t1 < t2 ≤ T such that y(t) ∈ [0, π4 ] for t ∈ [t1, t2], y(t1) = 0, and
y(t2) = π

4 . Let us choose the smallest such t1, t2. Then y(t) ∈ [−π
2 ,

π
4 ] for all

t ∈ [0, t2] and therefore ẋ(t) ≥ 0 for t ∈ [0, t2]. Therefore

w(t) = x(t) +
π

2

satisfies w(0) = 0 and w(t) ∈ [0, π2 ] for t ∈ [0, t2].
In the following consider only t ∈ [t1, t2]. We have

ż − ẏ = sin y + cosx− sinx− cos z ≥ sin y + 1− cos z ≥ sin y ≥ 0,

hence z(t) ≥ y(t) for t ∈ [t1, t2] due to z(t1) ≥ 0 = y(t1). Then

ẇ = sin z + cos y ≥ sin y + cos y ≥ 1

ẏ = cos z − cosw ≤ 1− cosw ≤ min

{
w2

2
, 1

}
since w ∈ [0, π2 ]. In particular, ẏ ≤ 1 shows that t2 − t1 ≥ π

4 . Let us now
consider three cases.
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Case 1: w(t1) ≥ π
3 . Then ẇ ≥ 1 shows w(t2) ≥ 7π

12 >
π
2 , a contradiction.

Case 2: w(t1) < π
3 and w(t2) ≤ π

3 . We have ẏ ≤ ẇw2

2 , which after

integration over [t1, t2] yields y(t2) ≤ 1
6w

3(t2) ≤ π3

162 <
π
4 , a contradiction.

Case 3: w(t1) < π
3 and w(t2) > π

3 . Then there exists t∗ ∈ [t1, t2] such

that w(t∗) = π
3 , and the computation in Case 2 shows y(t∗) ≤ π3

162 . Then

y(t2)− y(t∗) ≥ π

4
− π3

162
>
π

6
=
π

2
− π

3
≥ w(t2)− w(t∗),

a contradiction with ẇ ≥ 1 ≥ ẏ on [t1, t2]. The proof is finished. �

Lemma 2.2 If a = 0, then x(t) + π
2 > z(t) for all t ∈ (0, T ].

Proof. Again let w(t) = x(t) + π
2 . From w(0) = y(0) = z(0) = 0 and

ẇ = sin z + cos y

ż = sinw + sin y

we have ẇ(0) > ż(0), hence w(t) > z(t) for all small t > 0. Assume that
there is t∗ ∈ (0, T ] such that w(t∗) = z(t∗) and w > z on (0, t∗). Lemma 2.1
shows that cos y > sin y on [0, T ], so

0 ≥ ẇ(t∗)− ż(t∗) > sin z(t∗)− sinw(t∗) = 0,

a contradiction. �

Lemma 2.1 implies cos y ≥ 0 on [0, T ]. Since z(t) ∈ (0, π2 ] and ż(t) > 0
for t ∈ (0, T ], it follows that ẋ is bounded below by a positive constant on
[δ, T ] for each δ > 0. Hence Xa will reach ∂D in finite time, and we denote
by ta > 0 the first such positive time. The discussion before Lemma 2.1
shows that

Xa(ta) /∈ {z = 0} ∪ {x+ y =
π

2
} ∪ {y − x =

3π

2
},

and hence
Xa(ta) ∈ {x = 0} ∪ {z =

π

2
}.

Let S0, S1 be the sets of all a ∈ [0, π2 ) such that Xa(ta) ∈ {x = 0} \ {z =
π
2 } and Xa(ta) ∈ {z = π

2 } \ {x = 0}, respectively. We have S0 6= ∅ 6= S1

since obviously a ∈ S1 when a is close to π
2 , while Lemma 2.2 implies 0 ∈ S0.
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Moreover, Ẋa(ta) is transversal to ∂D for any a ∈ S0 ∪ S1 (for a ∈ S0 we
have ẋ(ta) > 0 by the argument in the last paragraph, while for a ∈ S1

obviously ż(ta) > 0). It follows that S0, S1 are both relatively open in [0, π2 )
and ta and Xa(ta) are continuous on them. Hence [0, π2 ) \ (S0∪S1) 6= ∅, and
then for any ā from this set we must have

Xā(tā) ∈ ∂D ∩ {x = 0} ∩ {z =
π

2
} =

{
(0, y,

π

2
)

∣∣∣∣ y ∈ [−π
2
,
π

4
]

}
.

Step 2: We now use the symmetry of the ABC flow to show that for any ā
as above, Xā(t) = (x(t), y(t), z(t)) is the desired solution. For t ∈ R let

X̃(t) = (−π − x(−t), −y(−t), z(−t))

(this is the reflection across the line (−π
2 , 0)× R) and

X̂(t) = (−x(2tā − t), y(2tā − t), π − z(2tā − t))

(this is the reflection across the line {x = 0} ∩ {z = π
2 }). Clearly, both X̃

and X̂ are solutions to the 1-1-1 ABC flow system. Since X̃(0) = Xā(0) and
X̂(tā) = Xā(tā), we have Xā = X̃ = X̂. Thus

(x(−tā), y(−tā), z(−tā)) = Xā(−tā) = X̃(−tā) =
(
−π,−y(tā),

π

2

)
,

and then

X̂(3tā) = (−x(−tā), y(−tā), π − z(−tā)) =
(
π,−y(tā),

π

2

)
.

So
Xā(3tā) = X̂(3tā) = Xā(−tā) + (2π, 0, 0),

and it follows from 2π periodicity of the ABC flow that

Xā(t+ 4tā) = Xā(t) + (2π, 0, 0).

for each t ∈ R. �
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