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Abstract. We investigate the validity and failure of Liouville theorems and Harnack in-
equalities for parabolic and elliptic operators with low regularity coefficients. We are particu-
larly interested in operators of the form ∂t−∆+ b ·∇ resp. −∆+ b ·∇ with a divergence-free
drift b. We prove the Liouville theorem and Harnack inequality when b ∈ L∞(BMO−1)
resp. b ∈ BMO−1 and provide a counterexample demonstrating sharpness of our conditions
on the drift. Our results generalize to divergence-form operators with an elliptic symmetric
part and a BMO skew-symmetric part. We also prove the existence of a modulus of continuity
for solutions to the elliptic problem in two dimensions, depending on the non-scale-invariant
norm ∥b∥L1 . In three dimensions, on the other hand, bounded solutions with L1 drifts may
be discontinuous.

1. Introduction

This paper is motivated by questions about the behavior of solutions of elliptic and para-
bolic equations with low regularity drift terms. A classical example is

∂tu+ b · ∇u−∆u = 0 (1.1)

considered in Rn×]0,∞[, where b is a time-dependent vector field in Rn. Of particular interest
to us will be the case of divergence-free b (i.e., div b = 0), which is relevant for applications
to incompressible flows.

To describe the regularity conditions on the drift term, it is useful to recall some elementary
dimensional analysis. Equation (1.1) is invariant under the following scaling transformations:

u(x, t) → u(λ)(x, t) = u(λx, λ2t) , (1.2)

b(x, t) → b(λ)(x, t) = λb(λx, λ2t) , (1.3)

where λ > 0. Following the usual convention (see, e.g., [3]), we can say that u has dimension
0 and b has dimension −1. The classical theory (see, e.g., [18]) studies the question of under
which conditions (1.1) can be considered as a perturbation of the heat equation. The required
regularity on b is usually expressed as b ∈ B, with B a suitable function space. Typically the
borderline spaces for which one can still prove most of the deeper results1 are scale-invariant
under the scaling (1.3) of b, that is, ||b(λ)||B = ||b||B (see, e.g., [18, 29]) 2. The reason for this
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2For example, the Lebesgue spaces Lq,p = Lp

tL
q
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is as follows. The arguments in the proofs of the “deeper properties”3 typically have to work
on all (small) scales and we therefore need to control b on all scales, which naturally leads to
the scale-invariant spaces.

Similar considerations can be made for elliptic equations of the form

−∆u+ b · ∇u = 0 , (1.4)

with the elliptic scaling

u(x) → u(λ)(x) = u(λx) , (1.5)

b(x) → b(λ)(x) = λb(λx) . (1.6)

Let us now consider the condition div b = 0 and its consequences. (The relevant references
include, for example, [36, 31] in the parabolic case and [22, 15] in the elliptic case.) Among
the most important consequences are the following4.
(i) The energy identity∫

Rn

|u(x, t2)|2 dx+
∫ t2

t1

∫
Rn

|∇u|2 dx dt =
∫
Rn

|u(x, t1)|2 dx (1.7)

is exactly the same as for the heat equation.
(ii) The integral

∫
Rn u(x, t) dx is conserved:∫

Rn

u(x, t2) dx =

∫
Rn

u(x, t1) dx . (1.8)

J. Nash showed in his famous paper [28] (inequality (8) on page 936) that one can obtain
from (i) and (ii) the point-wise upper bound

|G(x, t; y, s)| ≤ C

(t− s)n/2
(1.9)

on the fundamental solutions G(x, t; y, s), with C depending only on the dimension. There-
fore, this bound also holds for solutions of (1.1) when div b = 0, with practically no other
assumptions on b. The heuristic behind this estimate is that in an incompressible fluid, mix-
ing can enhance the decay of, say, a temperature field but it cannot slow it down. Nash’s
simple argument proving this heuristics is very elegant. There are many other results in this
direction, see for example [36, 31]. Bound (1.9) can also be integrated in time to obtain
(global) estimates of supx |u(x)| for the elliptic problem

−∆u+ b · ∇u = f , (1.10)

with f ∈ Ln/2+δ, a divergence-free b, and practically no other assumptions.
Since the condition div b = 0 has such strong consequences for the L∞-bounds, it is natural

to ask about its effects on other properties of the solutions. For instance, can the standard

3The definition of what is meant by a “deeper property” is of course somewhat ambiguous. We already
mentioned the Harnack inequality as an example. On the other hand, the weak maximum principle would
not be considered as such in this context.

4To derive these consequences, one needs to assume that the formal integration by parts used to obtain
them is valid. We are ignoring this technical issue for the moment.
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assumptions on the drift term b needed, say, for the Harnack inequality be relaxed when
div b = 0? Similar questions have been considered, for example, in [31, 36].

It turns out that the condition div b = 0 can be used to relax the regularity assumptions
on b under which one can prove the Harnack inequality and other results. However, the
effects are not as dramatic as in the case of Nash’s upper bound (1.9), for which not much is
needed beyond div b = 0. In particular, it seems that even with the condition div b = 0 one
cannot significantly “break the scaling”. Indeed, to be able to prove the “deeper regularity
properties” of the solutions (as discussed above), we still need to assume that b belongs,
at least locally, to a scale-invariant space B. The norm can be weaker than in the absence
of the assumption div b = 0, but it still has to be scale invariant or stronger on the small
scales. For example, the results of [31] imply that the Harnack inequality, Hölder continuity
of solutions, and the Aronson estimate for fundamental solutions5 remain true when b ∈
L∞(L−1

∞ ), where L−1
∞ denotes distributions which are first derivatives of bounded measurable

functions. This should be compared to the condition b ∈ Ln,∞, which naturally comes up
when the assumption div b = 0 is dropped6. Note that both Ln and L−1

∞ are scale-invariant.
The assumption div b = 0 can be used to reformulate equation (1.1) in the following way.

When div b = 0, we can write b = div d for an anti-symmetric tensor d = (dij)
7. Moreover,

by introducing a suitable “gauge condition”8, we can assume that the derivatives of d have
similar regularity as b. Since b has dimension −1 with respect to the natural scaling of (1.1),
the tensor d has dimension 0, that is, it scales as

d(x, t) → d(λx, λ2t) (1.11)

when u is scaled by (1.2).
Replacing b by the potential d, equation (1.1) becomes

∂tu− div(A∇u) = 0 (1.12)

where A = I + d. This is a divergence-form equation with a non-symmetric leading term.
Such equations (including the versions with lower-order terms) have been studied in [31]
under the assumptions that the coefficients aij are bounded measurable functions satisfying
the ellipticity condition

(Aξ) · ξ ≥ ν|ξ|2 . (1.13)

The results of [31] show, roughly speaking, that most of the results which are valid for
symmetric A are also true in the non-symmetric case. The transformation of (1.1) to (1.12)
has been used in many other works (see, for instance, [8]).

5c1(t− s)−n/2 exp[c2|x− y|2/(t− s)] ≤ G(x, t; y, s) ≤ c3(t− s)−n/2 exp[c4|x− y|2/(t− s)] , see [1].
6Strictly speaking, as far as we are aware, when we do not assume div b = 0, most of the regularity results

above are proved for b ∈ Lq,p with 2/p + n/q = 1 and p < ∞ (see [29]), but not in the borderline case
p = ∞, q = n.

7For n = 3, this corresponds to introducing the vector potential d̃ such that b = curl d̃.
8such as dkl,j + djk,l + dlj,k = 0, which for n = 3 and b = curl d̃ corresponds to div d̃ = 0
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In the elliptic case, Mazja and Verbitsky [22] studied (among other things) the bi-linear
form

(u, v) →
∫
Rn

(A∇u) · ∇v dx . (1.14)

The form is obviously continuous in Ḣ1 when A is bounded, but it turns out that the
boundedness of the coefficients is not a necessary condition for the boundedness of the form.
The form is still continuous on Ḣ1 if the symmetric part of A is bounded and the anti-
symmetric part of A is in the John-Nirenberg space BMO (bounded mean oscillation). This
is a consequence of the following two facts:

(i) If A is anti-symmetric, the form (1.14) can be factored through the determinants ∂(u,v)
∂(xi,xj)

.

(ii) The determinants have “better than expected” regularity: when u, v are in Ḣ1, the
determinants are not only in L1, but they are in fact in the Hardy space H1, the dual space
of BMO (see [5]).

It is natural to expect that much of the classical regularity results for elliptic and parabolic
equations with measurable coefficients in divergence form will remain valid if the leading part
A is of the form A = a + d, with a symmetric, bounded and satisfying the usual ellipticity
condition (1.13), and d anti-symmetric and belonging to BMO in the elliptic case, and to
L∞(BMO) in the parabolic case.

Indeed, let Q− = Rn × R− (with R− =]−∞, 0[) and assume that

A = a+ d, (1.15)

where a ∈ L∞(Q−;Mn×n) is a symmetric matrix satisfying

νI ≤ a ≤ ν−1I (1.16)

and d ∈ L∞(R−;BMO(Rn;Mn×n)) is a skew symmetric matrix, that is,

d = −d∗ (1.17)

for all (x, t) ∈ Q−. Here ν > 0, I is the identity in the space Mn×n of n × n-matrices and
d∗ is the transpose of d. Let also B(x, r) be the ball of radius r centered at x ∈ Rn, and
Q(z, r) = B(x, r)×]t− r2, t[ a parabolic ball in Rn+1 centered at point z = (x, t). Finally, let
B = B(0, 1) and Q = Q(0, 1). We then prove the following parabolic Harnack inequality and
Liouville theorem for suitable weak solutions (see Definition 2.1) to (1.12).

Theorem 1.1. If the matrix A satisfies conditions (1.15)–(1.17), then there exists C > 0,
depending only on n, ν, and ∥d∥L∞(−1,0;BMO(B)), such that for any nonnegative suitable weak
solution u to (1.12) on Q we have

sup
(y,s)∈Q(zR,R/2)

u(y, s) ≤ C inf
(y,s)∈Q(z,R/2)

u(y, s), (1.18)

whenever Q(z, R) ⊂ Q. Here, zR = (x, t−R2/2).

Theorem 1.2. If the matrix A satisfies conditions (1.15)–(1.17), then the only bounded
ancient suitable weak solutions to (1.12) on Q− are the constant functions.
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Remark. Of course, the corresponding elliptic results follow immediately by taking time-
independent solutions. In addition, in Section 3 we provide a second — short and elementary
— proof of the Liouville theorem for weak (sub)solutions (see Definition 3.1) to (1.4) in R2.

Recall that the norm in the space BMO(Ω;Mn×n) is

∥d∥BMO(Ω;Mn×n) = sup

 1

|B(0, r)|

∫
B(x,r)

|d− [d]x,r| dx : B(x, r) b Ω

 ,

with [d]x,r the average of d over B(x, r).
We note that the space BMO is invariant under the scaling (1.11), and hence these results

are again in line with the argument that to preserve the “deeper properties” of the solutions,
one cannot “break the scaling”. One of the goals of this paper is to present some evidence
for this based on studying the failure of Liouville theorems under appropriate conditions.

Let us first look at (1.4) in Rn. By the Liouville theorem for (1.4) we mean the usual
statement that a bounded solution in Rn has to be constant. This is of course true for b ≡ 0.
For the time being let us assume that the vector field b is locally smooth, hence the solutions
u are also locally smooth and the only obstacles to the validity of the Liouville theorem are
global.

The results of Stampacchia [34] imply the following:

(L) If b ∈ Ln(Rn), then the Liouville theorem for (1.4) holds.

This is easy for n = 1, and for n = 2, there is also a relatively simple proof based on the
energy estimate. The proof for n ≥ 3 can be accomplished by using the Hölder estimate or
the Harnack inequality (see Sections 7 and 8 of [34]). If n ≥ 2, then by Theorem 3.2 in [29],
the condition on b can be weakened to lim infR→∞ sup|x|=R ||b||Ln(B(x,Rδ)) < cn for some δ > 0,
where cn > 0 is a fixed dimension-dependent constant. This result implies in particular that
(L) remains true for n ≥ 2 when

|b(x)| ≤ C

|x|
for large |x|. (1.19)

In dimension n = 1, condition (1.19) is sufficient when C ≤ 1, as one can check by direct
integration. With C > 1, however, (1.19) is no longer sufficient. This can be illustrated by
the example

b(x) =
2x

1 + x2
and u(x) = arctan(x) , (1.20)

which was pointed out in this context to one of the authors in 1997 by Joel Spruck. The
trivial extension of this example to higher dimensions is

b(x1, . . . , xn) =

(
2x1

1 + x21
, 0, . . . , 0

)
and u(x1, . . . , xn) = arctan(x1) . (1.21)

We note that the vector field b in (1.21) belongs to the space (BMO)−1(Rn), since

2x

1 + x2
=

d

dx
log(1 + x2) (1.22)
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and log(1 + x21) ∈ BMO(Rn).
This example and Theorem 1.2, which establishes the Liouville theorem for b ∈ (BMO)−1

and div b = 0, together show that the divergence-free condition can play an important role
in Liouville theorems for equations with drift terms. On the other hand, we now provide a
counter-example to the Liouville theorem with a divergence-free b on R2 which is in some
sense not too far from (BMO)−1. Recall that the stream function of a divergence-free vector
field b on R2 is H : R2 → R such that

b(x) = ∇⊥H(x) = (Hx2(x),−Hx1(x)). (1.23)

We therefore have
−∆+ b · ∇ = −div(A∇), (1.24)

where A(x) = I+ d(x) has skew-symmetric part

d(x) =

(
0 H(x)

−H(x) 0

)
.

Theorem 1.3. There exists a divergence-free vector field b ∈ C∞(R2) with all derivatives
bounded and a stream function satisfying |H(x)| ≤ C ln |x| ln ln |x| for some C and all large
enough |x| such that (1.4) has a non-constant bounded classical solution.

This illustrates, to some degree, the important role of scale invariance of the assumptions
in the Liouville result. In particular, it seems unlikely that one can significantly “break the
scaling” even if we assume that div b = 0.

We conjecture that similar negative conclusions can be arrived at when considering ques-
tions about Hölder continuity of solutions of (1.4) (as well as the Harnack inequality). For
example, it seems unlikely that the condition div b = 0 is sufficient to get a Cα-bound on
solutions u in the unit ball B = B(0, 1) under the assumptions |u| ≤ C and ||b||Ln−δ

≤ C.
(Here we assume that all the functions involved are smooth, but only the indicated quantities
are controlled, and we are interested in an a-priori bound.)

Related to this are our last two main results, concerning distributional solutions u (see
Proposition 4.1) of (1.4) in B with divergence-free b ∈ L1(B). The first establishes a loga-
rithmic modulus of continuity of such solutions in two dimensions, depending only on ∥b∥L1(B)

and ∥u∥L∞(B). However, due to the low regularity assumed on the vector field b and u solving
(1.4) only in the distributional sense, our result is restricted to those solutions which can be
obtained as weak-star L∞-limits of solutions with drifts in L2(B).

Theorem 1.4. Let B be the unit ball in R2 and let (bm, um) ∈ L2(B)×L∞(B) be a sequence
of divergence-free drifts bm and distributional solutions um to (1.4) with b = bm. Assume that
um are uniformly bounded in B and

bm → b in L1(B),

um
⋆
⇀u in L∞(B).

Then the function u is a distributional solution to (1.4). Moreover,

u ∈ H1
loc(B) ∩ Cloc(B)
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and at the origin u has the modulus of continuity

sup
x∈B(0,r)

|u(x)− u(0)| ≤
C
(
1 + ||b||L1(B)

)1/2
√
− log r

||u||L∞(B) (1.25)

with a universal C > 0.

In three (and more) dimensions this result is false. Indeed, there exists no modulus of
continuity of classical solutions depending only on ∥b∥L1(B) and ∥u∥L∞(B), and distributional
solutions u ∈ L∞(B) ∩H1(B) with divergence-free b ∈ L1(B) may be discontinuous.

Theorem 1.5. Let B be the unit ball in R3.
(i) There is c > 0 such that for each ε > 0 there is a smooth divergence-free drift b with

||b||L1(B) ≤ c and a smooth u with ||u||L∞(B) ≤ 1, solving (1.4) in B and satisfying

u(0, 0, ε)− u(0, 0, 0) ≥ c−1.

(ii) There is a divergence-free drift b ∈ L1(B) and a distributional solution u ∈ H1(B) ∩
L∞(B) of (1.4) in B which can be approximated by a smooth sequence (bm, um) in the sense
of Theorem 1.4, but u is discontinuous at the origin.

Our paper is organized as follows. In the next section, we develop local regularity theory
for parabolic operators (1.12) under the assumption that the skew-symmetric part of A is
in BMO, and prove Theorems 1.2 and 1.1. The important step of our approach is a higher
integrability of suitable weak solutions. This allows us to adopt Moser’s method for proving
the Harnack inequality that implies Hölder continuity of suitable weak solutions and Liouville
type theorems for ancient suitable weak solutions. All these results hold true for the heat
equation with a drift b ∈ L∞(BMO−1) as a particular case. In this connection, we would like
to mention the recent paper [10], of which we learned while writing the present manuscript.
In [10], among other questions, the Cauchy problem for the heat operator with the drift term
from L∞(BMO−1) has been considered and Hölder continuity of solutions has been proved.
The authors of [10] follow the Caffarelli-Vaseur approach [4]. In Section 3, an elementary
proof of a Liouville theorem in the two-dimensional elliptic case is provided and Theorem 1.3
is proved. Theorems 1.4 and 1.5 are proved in Section 4.

Acknowledgement. GS was partially supported by the RFFI grant 08-01-00372-a. The
other authors were supported in part by NSF grants DMS-1001629 (LS), DMS-0800908 (VS),
DMS-1113017 and DMS-1056327 (AZ). LS and AZ also acknowledge partial support by Alfred
P. Sloan Research Fellowships.

2. Some results for parabolic equations

The main goal of this section is to prove Theorems 1.2 and 1.1. We consider (1.12) in
Q− = Rn × R−, with the matrix A satisfying (1.15)–(1.17). We will study the so-called
suitable weak solutions to (1.12). In what follows we will use the abbreviated notation

B(r) = B(0, r), B = B(1), Q(r) = Q(0, r), Q = Q(1),

as well as z = (x, t).
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Definition 2.1. Function u is said to be a suitable weak solution to equation (1.12) in the
parabolic ball Q(R) if it satisfies

u ∈ L2,∞(Q(R)) ∩W 1,0
2 (Q(R)), (2.1)∫

Q(R)

u ∂tφdz =

∫
Q(R)

(A∇u) · ∇φdz ∀φ ∈ C∞
0 (Q(R)), (2.2)

and for a.e. t0 ∈]−R2, 0[, the local energy inequality

1

2

∫
B(R)

φ(x, t0)|u(x, t0)|2dx+
t0∫

−R2

∫
B(R)

φ∇u · a∇udz ≤

≤ 1

2

t0∫
−R2

∫
B(R)

|u|2∂tφdz −
t0∫

−R2

∫
B(R)

(A∇u) · ∇φudz (2.3)

holds for all non-negative test-functions φ ∈ C∞
0 (B(R)×]−R2, R2[).

The function u : Q− → R is called an ancient suitable weak solution to (1.12), if it is a
suitable weak solution to (1.12) in Q(R) for any R > 0.

It is not clear whether one can show that any solution to (1.12), subject to assumptions
(2.1) and (2.2), satisfies local energy inequality (2.3). In this respect the situation is similar to
the Navier-Stokes equations: there is a certain cancelation due to the skew symmetric matrix
d which works well in global setting, i.e., when initial-boundary value problems are under
consideration. The corresponding procedure is relatively routine and leads to the existence
of global solutions which satisfy the inequalities in Definition 2.1 at least locally.

We now outline the main points of our approach. The structure of equation (1.12) admits a
modification of the technique developed by J. Moser in [25]–[27] and get Hölder continuity of
suitable weak solutions. This property, together with scaling invariance, leads to the Liouville
theorem. The main tool of proving Hölder continuity is the Harnack inequality. We prove
the Harnack inequality for smooth solution by the method of J. Moser. Extension of the
Harnack inequality to suitable weak solutions is provided by higher integrability of the the
spatial gradient. Here, our arguments use an approach due to M. Gianquinta and M. Struwe,
see [12].

2.1. Local set-up and higher integrability. Equation (1.12) is invariant with respect to
translations and the following scaling

uλ(x, t) = u(λx, λ2t), Aλ(x, t) = A(λx, λ2t) (2.4)

for any positive λ. This allows us to reduce all considerations to some canonical domain, say,
to Q = Q(1).

So, we consider equation (1.12) in the unit parabolic cylinder. Matrix A is split into
two parts as in (1.15) with matrices a ∈ L∞(Q;Mn×n) and d ∈ L∞(−1, 0;BMO(B;Mn×n))
satisfying conditions (1.16) and (1.17)
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In what follows, we shall denote by c positive constants depending only on n and ν. We
let ∥d∥L∞(BMO) = ∥d∥L∞(−1,0;BMO(B)) and denote mean values by

[f ]x,r =
1

|B(r)|

∫
B(x,r)

f(y)dy, (u)z0,r =
1

|Q(r)|

∫
Q(z0,r)

u(z)dz.

The main result of this subsection is the following theorem.

Theorem 2.2. Assume that u is a suitable weak solution to (1.12) in Q and matrices A,
a, and b satisfy conditions (1.15)-(1.17). Then there exist two positive constants p > 2
and C depending only on n, ν, and ∥d∥L∞(BMO) such that u ∈ Lp(Q(R)) for any R ∈]0, 1[.
Moreover, the following estimate is valid:( 1

|Q(R)|

∫
Q(z0,R)

|∇u|pdz
) 1

p ≤ C
( 1

|Q(6R)|

∫
Q(z0,6R)

|∇u|2dz
) 1

2
(2.5)

for all Q(z0, 6R) ⊂ Q with 6R < dist(x0, ∂B) and t0 − (6R)2 > −1.

This theorem is a consequence of the reverse Hölder inequality, see [12] for further ref-
erences. To prove the reverse Hölder inequality, we need a Caccioppoli’s type inequality.
To formulate it, let us introduce additional notation. Fix a non-negative cut-off functions
φ ∈ C∞

0 (B(2)) and χ0(t) with the following properties:

φ(x) = 1 x ∈ B, χ(t) = 0 t ≤ −4,

χ0(t) = (t+ 4)/3 − 4 < t < −1, χ0(t) = 1 t ≥ −1.

Now, for a point z0 = (x0, t0) and for R > 0 such that Q(z0, 2R) ∈ Q, we let

χt0,2R(t) = χ0((t− t0)/R
2), φx0,2R(x) = φ((x− x0)/R).

And then we can introduce a mean value of u as in [12]

ux0,2R(t) =

∫
B(x0,2R)

u(x, t)φ2
x0,2R

(x)dx
( ∫
B(x0,2R)

φ2
x0,2R

(x)dx
)−1

.

In our particular situation, we have

Lemma 2.3. (Caccioppoli’s type inequality) Under assumptions of Theorem 2.2, the follow-
ing inequality is valid:

1

2

∫
B

|û(x, t0)|2φ2
x0,2R

(x)dx+ ν

t0∫
−1

∫
B

χ2
t0,2R

φ2
x0,2R

|∇û|2dz ≤

≤ 1

2

t0∫
−1

∫
B

|û|2φ2
x0,2R

∂tχ
2
t0,2R

dz −
t0∫

−1

∫
B

χ2
t0,2R

(a∇û) · ∇φ2
x0,2R

ûdz (2.6)
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−
t0∫

−1

∫
B

χ2
t0,2R

((d− [d]x0,2R)∇û) · ∇φ2
x0,2R

ûdz,

where
û(x, t) = u(x, t)− ux0,2R(t).

Inequality (2.6) holds for a.a. t0 ∈] − 1, 0[, for all x0 ∈ B, and for all R > 0 subject to the
additional condition Q(z0, R) ⊂ Q.

Proof. There are two important points to note. The first one is that for any skew-symmetric
matrix d0, depending on t only, we have∫

Q

d0∇u · ∇φudz = 0 (2.7)

whenever φ ∈ C∞
0 (Q). The proof is straightforward integration by part.

The second point is that, see [12],

∂tux0,2R ∈ L 3
2
(−1, 0). (2.8)

To see this, we take as test function in (2.2) the function φ2
x0,2R

(x)η(t) and conclude

∂tux0,2R(t) = −
∫

B(x0,2R)

A(z)∇u(z) · ∇φ2
x0,2R

(x)dx
/ ∫

B(x0,2R)

φ2
x0,2R

(x)dx (2.9)

Next, we replace u(x, t) with û(x, t) + ux0,2R(t) in local energy inequality (2.3) and take
φ = χ2φ2

x0,2R
with χ from C1

0(−1, 1). Then terms which do not contain spatial derivatives
can be transformed as follows

1

2

∫
B(x0,2R)

|û(x, t0) + ux0,2R(t0)|2φ2
x0,2R

(x)dx =

=
1

2

∫
B(x0,2R)

|û(x, t0)|2φ2
x0,2R

(x)dx+
1

2
|ux0,2R(t0)|2

∫
B(x0,2R)

φ2
x0,2R

dx,

and

1

2

t0∫
−1

∫
B

φ2
x0,2R

(x)|û(x, t) + ux0,2R(t)|2∂tχ2(t)dx dt =

1

2

t0∫
−1

∫
B

φ2
x0,2R

(x)|û(x, t)|2∂tχ2(t)dx dt−

−
t0∫

−1

χ2(t)ux0,2R(t)∂tux0,2R(t)dt

∫
B(x0,2R)

φ2
x0,2R

dx+
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+
1

2
|ux0,2R(t0)|2χ2(t0)

∫
B(x0,2R)

φ2
x0,2R

dx.

Now, the local energy inequality, together with the last two identities, implies

1

2

∫
B(x0,2R)

χ2(t0)|û(x, t0)|2dx+ ν

t0∫
−1

∫
B

χ2(t)φ2
x0,2R

(x)|∇û(x, t)|2dx dt ≤

≤ 1

2

t0∫
−1

∫
B

φ2
x0,2R

(x)|û(x, t)|2∂tχ2(t)dx dt−
t0∫

−1

∫
B

χ2A∇û · ∇φ2
x0,2R

ûdx dt−

−
t0∫

−1

χ2(t)ux0,2R(t)∂tux0,2R(t)dt

∫
B(x0,2R)

φ2
x0,2R

dx−

−
t0∫

−1

∫
B

χ2A∇û · ∇φ2
x0,2R

ux0,2Rdx dt.

By the (2.9), the sum of the last two terms is zero and from (2.7) it follows that

1

2

∫
B(x0,2R)

|û(x, t0)|2χ2(t0)φ
2
x0,2R

(x)dx+

+ν

t0∫
−1

∫
B

χ2(t)φ2
x0,2R

(x)|∇û(x, t)|2dx dt ≤

≤ 1

2

t0∫
−1

∫
B

φ2
x0,2R

(x)|û(x, t)|2∂tχ2(t)dx dt−

−
t0∫

−1

∫
B

χ2a∇û · ∇φ2
x0,2R

ûdx dt−

−
t0∫

−1

∫
B

χ2(d− [d]x0,2R)∇û · ∇φ2
x0,2R

ûdx dt.

Here,

[d]x0,2R(t) =
1

|B(2R)|

∫
B(x0,2R)

d(x, t)dx.

So, inequality (2.6) follows if we choose the cut-off function χ in an appropriate way. �
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Proof of Theorem 2.2. Using known simple arguments, we can derive from (2.6) the following
estimate

I ≡ 1

2

∫
B

|û(x, t0)|2φ2
x0,2R

(x)dx+

t0∫
−1

∫
B

χ2
t0,2R

φ2
x0,2R

|∇û|2dz ≤

≤ c
( 1

R2

∫
Q(z0,2R)

|û|2dz + 1

R

∫
Q(z0,2R)

(|∇û|φx0,2Rχt0,2R)|û||d− [d]x0,2R|dz
)
.

We now fix an arbitrary number s ∈]1, 2[. Let us denote as usual s′ = s/(s− 1). Then the
right hand side of the latter inequality can be estimated with the help of Hölder inequality
by

c

R2

∫
Q(z0,2R)

|û|2dz + c

R

t0∫
t0−(2R)2

( ∫
B(x0,2R)

|d− [d]x0,2R|s
′
dx

) 1
s′×

×
( ∫
B(x0,2R)

(|∇û|φx0,2Rχt0,2R)
s|û|sdx

) 1
s
.

Applying Hölder’s inequality one more time, we find

I ≤ c

R2

∫
Q(z0,2R)

|û|2dz+

+
c

R
R

n
s′ ess sup

t0−(2R)2<t<t0

sup
B(x0,2R)⊂B

( 1

|B(2R)|

∫
B(x0,2R)

|d− [d]x0,2R|s
′
dx

) 1
s′×

×
t0∫

t0−(2R)2

( ∫
B(x0,2R)

|∇û|2φ2
x0,2R

χ2
t0,2R

dx
) 1

2
( ∫
B(x0,2R)

|û|
2s
2−sdx

) 2−s
2s ≤

≤ c

R2

∫
Q(z0,2R)

|û|2dz + c(s)

R
R

n
s′ ∥d∥L∞(BMO)

( ∫
Q(z0,2R)

|∇û|2φ2
x0,2R

χ2
t0,2R

dz
) 1

2×

×
( t0∫
t0−(2R)2

( ∫
B(x0,2R)

|û|
2s
2−sdx

) 2−s
s
dt
) 1

2
.

Summarizing our efforts, we have

1

2

∫
B

|û(x, t0|2φ2
x0,2R

(x)dx+

t0∫
−1

∫
B

χ2
t0,2R

φ2
x0,2R

|∇û|2dz ≤
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≤ c(s)(1 + Γ2)R( n
s′−1)2

t0∫
t0−(2R)2

( ∫
B(x0,2R)

|û|
2s
2−sdx

) 2−s
s
dt, (2.10)

where Γ = ∥d∥L∞(BMO). Now, let us discuss simple consequences of (2.10) following [12]. By
Poincare-Sobolev inequality, we have for

s ≤ n

n− 1
(2.11)

the following inequality( ∫
B(x0,2R)

|û|
2s
2−sdx

) 2−s
s ≤ c(s)Rn 2−s

s
+2−n

∫
B(x0,2R)

|∇u|2dx.

Combining (2.11) and (2.10), we find∫
B

|û(x, t0)|2φ2
x0,2R

(x)dx ≤ c(s)(1 + Γ2)

∫
Q(z0,2R)

|∇u|2dx.

Hence, assuming that Q(z0, 3R) ⊂ Q, we have the second estimate

ess sup
t0−R2<t<t0

∫
B(x0,R)

|û|2(x, t)dx ≤ c(s)(1 + Γ2)

∫
Q(z0,3R)

|∇u|2dx. (2.12)

Now, our aim is going to be the so-called reverse Hölder inequality. We first assume that
the number s satisfies the condition

1 < s <
2n

2n− 1
, n = 2, 3, ... (2.13)

Obviously, (2.13) implies (2.11) and

2n

2n− 1
≤ 4

3
≤ 4n

3n− 2
≤ 2, n = 2, 3, ... (2.14)

It is not difficult to show that under assumption (2.13) there exist numbers 0 < λ < 1,
0 < µ < 1, and 1 < r < 2 such that

2s

2− s
= 2λ+

nr

n− r
µ

λ+ µ = 1

nr

n− r
µ
2− s

s
= 1.

Using these exponents, we derive from (2.10)∫
Q(z0,R)

|∇u|2dz ≤ c(s)(1 + Γ2)R( n
s′−1)2

t0∫
t0−(2R)2

( ∫
B(x0,2R)

|û|2λ+
nr
n−r

µdx
) 2−s

s
dt ≤
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≤ c(s)(1 + Γ2)R( n
s′−1)2

t0∫
t0−(2R)2

( ∫
B(x0,2R)

|û|2dx
) 2−s

s
λ( ∫

B(x0,2R)

|û|
rn
n−r dx

) 2−s
s

µ

dt.

The last multiplier can be estimated with the help of Sobolev’s inequality∫
Q(z0,R)

|∇u|2dz ≤ c(s)(1 + Γ2)R( n
s′−1)2ess sup

t0−(2R)2<t<t0

( ∫
B(x0,2R)

|û(x, t)|2dx
) 1

2×

×R
2(r−1)

r

( ∫
Q(z0,2R)

|∇u|rdz
) 1

r
.

To estimate the first multiplier on the right hand side of the last inequality, one can apply
(2.12) in the following way∫

B(x0,2R)

|u(x, t)− ux0,2R(t)|2dx ≤ c

∫
B(x0,2R)

|u(x, t)− ux0,4R(t)|2dx

≤ c(s)(1 + Γ2)

∫
Q(z0,6R)

|∇u|2 dz

for a.a. t ∈]t0 − (2R)2, t0[. Combining the latter inequality, we arrive at the reverse Hölder
inequality

1

|Q(R)|

∫
Q(z0,R)

|∇u|2dz ≤ c(s)(1 + Γ2)2
( 1

|Q(6R)|

∫
Q(z0,6R)

|∇u|2dz
) 1

2×

×
( 1

|Q(2R)|

∫
Q(z0,2R)

|∇u|rdz
) 1

r

which holds for some r ∈]1, 2[ and for any Q(z0, 6R) ⊂ Q. This leads to a higher integrability,
see [12]. �
2.2. Moser iteration. To avoid some technical difficulties, we will assume that matrices a
and b and solution u are sufficiently smooth in Q. Later we shall show how to remove this
assumption. We also assume that our function u is strictly positive in the following sense

u(z) ≥ αR > 0 ∀z ∈ Q(R) (2.15)

for any 0 < R < 1. Sometimes assumption (2.15) is not necessary, but for simplicity we will
assume it is satisfied. We fix the following notation

ε2(m) =
∣∣∣ 1

2m
− 1

∣∣∣, p =
2(n+ 2)

n

and, assuming that condition (2.13) holds, let

q =
2s

2− s
, γ =

p

q
> 1.
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Lemma 2.4. For any m1 ≥ m0 > 1/2 and for any 0 < ϱ < r with Q(z0, r) ⊂ Q, we have

sup
z∈Q(z0,ϱ)

um1(z) ≤ c1(n, ν, s,Γ, ε0)

(r − ϱ)
n+2)

q

( ∫
Q(z0,r)

um1q(z)dz
) 1

q
, (2.16)

where ε0 = ε(m0).

Proof. Set w = um. For any m ̸= 0, we can derive from (1.12)

1

2

∫
B(x0,r)

ψ2∂t|w|2dx+
2m− 1

m

∫
B(x0,r)

ψ2a∇w · ∇wdx =

= −
( ∫
B(x0,r)

a∇w · w∇ψ2dx+

∫
B(x0,r)

d∇w · w∇ψ2dx
)
, (2.17)

with a cut-off function ψ satisfying:

ψ(x, t) = φ(x)χ(t),

φ(x) = 1 x ∈ B(x0, ϱ), φ(x) = 0 x /∈ B(x0, r),

0 ≤ φ ≤ 1, |∇φ| ≤ c

r − ϱ
,

χ(t) = 0 t < t0 − r2, χ(t) = 1 t > t0 − ϱ2,

χ(t) =
t− (t0 − r2)

r2 − ϱ2
t0 − r2 ≤ t ≤ t0 − ϱ2.

Next, we introduce the following sequence of exponents

l0 = q, li = γil0, i = 0, 1, ..., (2.18)

If we let

mi = lim1/p, i = 1, 2, ...,

then we have

miq = li−1m1, ε2(mi) =
1

2mi

− 1 > ε20, i = 1, 2, .... (2.19)

Letting m = mi in (2.17) and taking into account (2.19), we find

sup
t0−ϱ2<t<t0

∫
B(x0,ϱ)

|w(x, t)|2dx+ ε20ν

∫
Q(z0,r)

ψ2|∇w|2dz ≤

≤ c

(r − ϱ)2

∫
Q(z0,r)

ψ2|w|2dz + cν−1

∫
Q(z0,r)

ψ|∇ψ|w|∇w|dz (2.20)

+c

∫
Q(z0,r)

|d− [d]x0,r|ψ|∇ψ|w|∇w|dz.
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The same arguments as in Section 2 show that the latter inequality gives us:

|w|22,Q(z0,ϱ)
≡ sup

t0−ϱ2<t<t0

∫
B(x0,ρ)

|w(x, t)|2dx+
∫

Q(z0,ϱ)

|∇w|2dz ≤

≤ c(s, ε0)

(r − ϱ)2
(1 + Γ2)r

2(n+2)

s′
( ∫
Q(x0,r)

|w|qdz
) 2

q

with s satisfying condition (2.13). By the known embedding theorem, see [18], we have

∥w∥p,Q(z0,ϱ) ≤ c|w|2,Q(z0,ϱ) with p =
2(n+2)

n
and, hence,( 1

|Q(ϱ)|

∫
Q(z0,ϱ)

|w|pdz
) 1

p ≤ c(s, ε0)(1 + Γ)
( r

r − ϱ

)
×

×
(r
ϱ

)n
2
( 1

|Q(r)|

∫
Q(z0,r)

|w|qdz
) 1

q
. (2.21)

It is worth noting that, under assumption (2.13) we have p > q.
Our further steps are routine. We let

ϱ = Ri =
R

2
+

R

2i+1
, r = Ri−1, i = 1, 2, ...,

in (2.21) and find ( 1

|Q(Ri)|

∫
Q(z0,Ri)

|u|m1lidz
) 1

li ≤

≤ (c(s, ε0,Γ)2
i)

1

γi−1

( 1

|Q(Ri−1)|

∫
Q(z0,Ri−1)

|u|m1li−1dz
) 1

li−1

for i = 1, 2, .... After iterations, we arrive at (2.17) with ϱ = R/2 and r = R. General case
is deduced from this particular one with help of known arguments. �

To see what happens if 0 < m < 1/2, we have to introduce additional notation

Q+(z0, R) = B(x0, R)×]t0, t0 +R2[, Q+(R) = Q+(0, R),

Q̃(z0, R) = B(x0, R)×]t0 −R2, t0 +R2[, Q̃(R) = Q̃(0, R).

Lemma 2.5. For any 0 < m1 < 1/2 and for any 0 < ϱ < r provided Q̃(z0, r) ⊂ Q, we have

sup
z∈Q̃(z0,ϱ)

um1(z) ≤ c2(n, ν, s,Γ)

(r − ϱ)
n+2
q

( ∫
Q̃(z0,r)

um1q(z)dz
) 1

q
. (2.22)
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Proof. We replace the function χ with the following one

χ(t) = 0 t > t′0 + r2, χ(t) = 1 t < t′0 + ϱ2,

χ(t) =
−t+ (t′0 + r2)

r2 − ϱ2
t′0 + ϱ2 ≤ t ≤ t′0 + r2, t′0 = t0 −

(3
4

)2

r2.

Then from (2.17), we can derive (an analog of (2.20))

sup
t0<t<t0+ϱ2

∫
B(x0,ϱ)

|w(x, t)|2dx+ ε2(m)ν

∫
Q+(z′0,r)

ψ2|∇w|2dz ≤

≤ c

(r − ϱ)2

∫
Q+(z′0,r)

ψ2|w|2dz + cν−1

∫
Q+(z′0,r)

ψ|∇ψ|w|∇w|dz (2.23)

+c

∫
Q+(z′0,r)

|d− [d]x0,r|ψ|∇ψ|ω|∇ω|dz, z′0 = (x0, t
′
0).

Next, it is not so difficult to check that there exists a natural number k with the following
property

1

γ2
m1 ≤ m′

1 = γ−(k− 1
2
)1

2
≤ m1.

And then, for this number k, we have

m′
1 < m′

2 < ... < m′
k <

1

2
< m′

k+1 < ...,

where

m′
i =

lim
′
1

p
= γi−1m′

1 = γi−k− 1
2
1

2
, i = 1, 2, ....

and numbers li is defined by (2.18). It is easy to check that

ε2(m′
i) ≥ γ

1
2 − 1, i = 1, 2, ..., k,

and then repeating derivation of (2.21) for w = um
′
i with the same indices i, we find( 1

|Q(ϱ)|

∫
Q(z′0,ϱ)

|w|pdz
) 1

p ≤ c(s,Γ)
( r

r − ϱ

)
×

×
(r
ϱ

)n
2
( 1

|Q(r)|

∫
Q(z′0,r)

|w|qdz
) 1

q
. (2.24)

Now, we consider (2.24) for

r = ri, ϱ = ri−1, ri =
r

4
+

1

4

r

2i
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and find ( 1

|Q(ri)|

∫
Q+(z′0,ri)

|u|m′
1lidz

) 1
li ≤

≤ (c(s,Γ)2i)
1

γi−1

( 1

|Q(ri−1)|

∫
Q+(z′0,ri−1)

|u|m′
1li−1dz

) 1
lk

for i = 1, 2, ..., k. After exactly k iterations, we have( 1

|Q(3r/4)|

∫
Q+(z′0,3r/4)

|u|m′
k+1qdz

) 1
lk =

( 1

|Q(3r/4)|

∫
Q(z0,3r/4)

|u|m′
k+1qdz

) 1
lk ≤

≤ c(s,Γ)
( 1

|Q(r)|

∫
Q+(z′0,r)

|u|m′
1qdz

) 1
q
.

Since m′
k+1 > 1/2, we are in a position to apply Lemma 2.4 letting there m1 = m0 = m′

k+1

and conclude that

sup
z∈Q(z0,r/2)

um
′
k+1(z) ≤ c(s,Γ)

( 1

rn+2

∫
Q(z0,3r/4)

um
′
k+1qdz

) 1
q
.

Taking into account definition (2.18) of lk and combining the latter inequalities, we find

sup
z∈Q(z0,r/2)

um1(z) ≤
[
c(s,Γ)

](1+γ−k)
m1
m′

1

( 1

rn+2

∫
Q+(z′0,r)

|u|m′
1qdz

) 1
q

m1
m′

1

and, by Hölder inequality, we have

sup
z∈Q(z0,r/2)

um1(z) ≤ c(s,Γ)
( 1

rn+2

∫
Q+(z′0,r)

|u|m′
1qdz

) 1
q
. (2.25)

We may shift in time this estimate and show that

sup
z∈Q+(z0,r/2)

um1(z) ≤ c(s,Γ)
( 1

rn+2

∫
Q+(z′′0 ,r)

|u|m′
1qdz

) 1
q
, (2.26)

where z′′0 = (x0, t
′′
0) and t

′′
0 = t0 − 5r2

16
. From (2.25) and (2.26), estimate (2.22) with ϱ = r/2

follows. General case is deduced from this particular one with help of known arguments. �

Lemma 2.6. For any ε > 0 and for any 0 < ϱ < r such that Q(z0, r) ⊂ Q, we have

sup
z∈Q(z0,ϱ)

u−ε(z) ≤ c3(n, ν, s,Γ)

(r − ϱ)
n+2)

q

( ∫
Q(z0,r)

u−εq(z)dz
) 1

q
. (2.27)
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Proof. We let v = u−ε and observe that by (1.12), the function v satisfies

∂tv − divA∇v < 0.

We can repeat the proof of Lemma 2.4 with m1 = 1 for v instead of u and then show
(2.27). �

2.3. Estimates of lnu.

Lemma 2.7. Assume that u i a sufficiently smooth positive solution to equation (1.12) and
Q′(z0, R) = B(x0, 2R)×]t0 −R2, t0 +R2[⊂ Q. There exist two constants c4 = c4(n, ν) and a

R

such that

|{z ∈ Q+(z0, R) : − lnu− aR > s}| ≤ c4R
n+2

s
, (2.28)

|{z ∈ Q(z0, R) : − lnu− aR < −s}| ≤ c4R
n+2

s
. (2.29)

Proof. To simplify notation, we shift and scale our variables in the following way

uR(y, s) = u(x0 +Ry, t0 +R2s), AR(y, s) = A(x0 +Ry, t0 +R2s)

for (y, s) ∈ Q′ = B(2)×] − 1, 1[. Since equation (1.12) is invariant with respect to this
transformation, we may reduce our considerations to the cylinder Q′ and, after proving our
result for this particular case, get all the statements of the lemma with the help of inverse
translation and dilatation. Without ambiguity, in what follows, we drop upper index R in
the notation of functions uR and AR.

So, if we let v = lnu, then by (1.12)

∂tv − div(A∇v) +∇v · a∇v = 0 (2.30)

in Q′. Take and fix a smooth nonnegative cut-off function ψ = ψ(x) so that ψ = 1 in B and
ψ = 0 outside B(2). Multiplying equations (2.30) by ψ2 and integrating the product in x
over B(2) and in t over the interval ]t1, t2[, we find∫

B(2)

vψ2dx
∣∣∣t2
t1
+

t2∫
t1

∫
B(2)

∇ψ2 · A∇vdx dt+
t2∫

t1

∫
B(2)

ψ2∇v · a∇vdx dt = 0

and thus ∫
B(2)

vψ2dx
∣∣∣t2
t1
+

t2∫
t1

∫
B(2)

ψ2∇v · a∇vdx dt ≤

≤ c

t2∫
t1

∫
B(2)

ψ|∇ψ||∇v|(|a|+ |d− [d]0,2|)dx dt.
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After application of the Cauchy-Schwartz inequality, we have the following estimate∫
B(2)

vψ2dx
∣∣∣t2
t1
+
ν

2

t2∫
t1

∫
B(2)

ψ2|∇v|2dx dt ≤ c(Γ)(t2 − t1). (2.31)

From this point we essentially repeat arguments of J. Moser in [25], see Lemma 3 therein.
We do this just for completeness. As it is pointed out in [25], we can choose our cut-off
function ψ so that the following Poincarè-type inequality takes place∫

B(2)

|v(x, t)− V (t)|2ψ2(x)dx ≤ c

∫
B(2)

|∇v(x, t)|2ψ2(x)dx,

where

V (t) =

∫
B(2)

v(x, t)ψ2(x)dx
( ∫
B(2)

ψ2(x)dx
)−1

.

Making use of this inequality, we can derive from (2.31) the following relation

V (t2)− V (t1) + c−1
4

t2∫
t1

∫
B

|v(x, t)− V (t)|2dx dt ≤ c5(n, ν,Γ)(t2 − t1)

which can be reduced to the differential form
dV

dt
(t) + c−1

4

∫
B

|v(x, t)− V (t)|2dx ≤ c5.

One may make this inequality homogeneous with help of the shift

w(x, t) = v(x, t)− V (0)− c5t, W (t) = V (t)− V (0)− c5t.

This give us the inequality

dW

dt
(t) + c−1

4

∫
B

|w(x, t)−W (t)|2dx ≤ 0 (2.32)

and the initial condition
W (0) = 0. (2.33)

For 0 < t < 1 and s > 0, we introduce the family of sets

B+
s (t) = {x ∈ B : w(x, t) > s }.

As it follows from (2.32) and (2.33), for those values of parameters t and s, we have w(·, t)−
W (t) ≥ s−W (t) > 0 on B+

s (t) and, hence,

dW

dt
(t) + c−1

4 |B+
s (t)|(s−W )2 ≤ 0

or

c4(s−W )−2d(s−W )

dt
≥ |B+

s (t)|
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The latter identity can be integrated and, as a result, we find
1∫

0

|B+
s (t)|dt = {(x, t) ∈ Q+ : w(x, t) > s } ≤ c4

s

which implies the first estimate (2.28). Other estimate (2.29) can be established in the same
way. �
2.4. Harnack inequality.

Theorem 2.8. Let u be a positive sufficiently smooth solution to (1.12) in Q. Then for any
Q(z0, R) ⊂ Q we have the inequality

sup
z∈Q(z0R,R/2)

u(z) ≤ c6(n, ν, s,Γ) inf
z∈Q(z0,R/2)

u(z), (2.34)

where z0R = z0 − (0, R2/2).

Proof. Using translation and dilatation similar to those described in Section 4, one may
consider our problem in a canonical domain, say, in Q′. Now our aim is to make use of
estimates proved in Sections 3 and 4 plus some iteration technique in order to find a particular
version of the Harnack inequality. It can be extended to the general case of Theorem 2.8
with the help of covering methods. So, in this section, we follow [27] with minor changes.

By Lemma 2.7, see (2.29), we know that

|{z ∈ Q : − lnu− a < −s}| ≤ c4
s

(2.35)

for some constant a. As in [27], we introduce the following function

φ(r) = sup
z∈Q̃(z0,r)

lnw(z)

with z0 = (0, 1/2), r ∈]1/2, 1/
√
2[, and w = eau.

Now, our aim is to show that there exist a constant δ > 2 depending only on n, ν, s, and
ϑ ∈ [1/2, 1/

√
2[ such that

φ(ϑ) ≤ δ. (2.36)

To this end, we derive from (2.35) the estimate∫
Q̃(z0,r)

wpdz ≤ epφ(r)
2c4
φ(r)

+ e
p
2
φ(r) (2.37)

being true for any positive m1 = p/q and for any r ≥ ϑ. Let us choose m1 so that terms on
the right-hand side of (2.37) contribute to the sum equally. This suggests the following value
for m1

m1 =
1

qφ(r)
ln
φ(r)

2c4
. (2.38)

Obviously, there exists a constant δ1 > 2 depending only on s and c4 such that if

φ(ϑ) > δ1, (2.39)
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then m1 defined above belongs to the interval ]0, 1/2[. If not, then δ = δ1. If (2.39) holds,
estimate (2.22) of Lemma 2.5 give us the relation

m1φ(ϱ) ≤ ln
c2

(r − ϱ)
n+2
q

+
1

q
ln
( ∫
Q̃(z0,r)

wpdz
)

for any ϑ ≤ ϱ < r. Recalling the choice of m1, we find from (2.37) that∫
Q̃(z0,r)

wpdz ≤ 2e
p
2
φ(r)

and thus

φ(ϱ) ≤ 1

m1

ln
c2

(r − ϱ)
n+2
q

+
1

2
φ(r).

The latter inequality can be rewritten with the help of (2.38) in the following way

φ(ϱ) ≤ 1

2
φ(r)

[ ln(c2(r − ϱ)−
n+2
q )

m1φ(r)
+ 1

]
=

1

2
φ(r)

[ ln cq2(r − ϱ)−(n+2)

ln φ(r)
2c4

+ 1
]
.

Then one can consider two cases. In the first case,

ln cq2(r − ϱ)−(n+2)

ln φ(r)
2c4

≤ 1

2

and thus

φ(ϱ) ≤ 3

4
φ(r).

In the opposite case, we have

φ(ϱ) ≤ φ(r) ≤ µ1(n, ν, s,Γ)

(r − ϱ)2(n+2)
.

Combining both cases, we find the following basic inequality

φ(ϱ) ≤ 3

4
φ(r) +

µ1

(r − ϱ)2(n+2)

for any 1/2 ≤ ϑ ≤ ϱ < r ≤ 1/
√
2. It can be iterated in the known way, see [27], and the

result of these iterations can be expresses in the form

φ(ϑ) ≤ δ2(n, ν, s,Γ).

So, (2.36) is proved with δ = max{δ1, δ2}.
Next, let z∗ = (0, 1) and v = u−1. Then as it follows from Lemmata 2.6 and 2.7, see (2.27)

and (2.28),

sup
z∈Q(z0,ϱ)

v(z) ≤ c3

(r − ϱ)
n+2)

q

( ∫
Q(z0,r)

vq(z)dz
) 1

q
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and

|{z ∈ Q(z∗, 1) : ln(e−av) > s}| ≤ c4
s
.

The same arguments as above show that there exists a constant δ3(n, ν, s,Γ) such that

sup
z∈Q(z∗,ϑ)

ln(e−au−1(z)) ≤ δ3.

This estimate, together with (2.36), implies a particular version of the Harnack inequality

sup
z∈Q̃(z0,ϑ)

u(z) ≤ eδδ3 inf
z∈Q(z∗,ϑ)

u(z).

The general case can be obtained from the particular case with the help of covering technique,
see [27], Lemma 4, and translation and dilatation. �

2.5. Nonsmooth case.

Proof of Theorem 1.1. Without loss of generality, we may assume that

∇u ∈ Lp0(Q) (2.40)

for some p0 > 2. To provide (2.40), we can apply Theorem 2.2 and scaling. Obviously, one
can construct smooth approximations of matrices a and d with the following properties:

a(j) → a in Lp(Q)

d(j) → d in Lp(Q)

for any p > 1 and

a(j) → a a.e. in Q

d(j) → d a.e. in Q.

Moreover, matrices A(j) = a(j) + d(j), a(j) and d(j) satisfies conditions (1.15)–(1.17) with the
same constants and ∥d(j)∥L∞(BMO) ≤ ∥d∥L∞(BMO).

Then we consider the following initial boundary value problem

∂tw
(j) − div(A(j)∇w(j)) = f (j),

w(j)|∂′Q = 0,

where ∂′Q is a parabolic boundary of Q and

f (j) ≡ ∂tu− div(A(j)∇u).
Our claim is

f (j) → 0 in L2(−1, 0;H−1),

where H1 is the completion of smooth compactly supported in B functions with respect to
the norm ∥u∥2,B + ∥∇u∥2,B. Indeed, it is not difficult to show that

∥f (j)∥L2(−1,0;H−1) ≤
(∫

Q

(|a− a(j)|2 + |d− d(j)|2)|∇u|2dz
) 1

2
.
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So, by (2.40), the right hand of the latter inequality goes to zero. On the other hand, for
w(j), we have global energy estimate

|w(j)|2,Q ≤ c∥f (j)∥L2(−1,0;H−1)

which, in turn, means that

|w(j)|2,Q → 0. (2.41)

Now, we let v(j) = u − w(j). Obviously, v(j) is a unique solution to the following initial
boundary value problem

∂tv
(j) − div(A(j)∇v(j)) = 0,

(v(j) − u)|∂′Q = 0.

We know that v(j) possesses the following global properties

∂tv
(j) ∈ L2(−1, 0;H−1), ∇v(j) ∈ L2(Q)

and, moreover, it is nonnegative on the parabolic boundary of Q and smooth inside Q where
the equation for v(j) can be reduced to the form

∂tv
(j) − (a

(j)
kl v

(j)
,l ),k − d

(j)
kl,kv

(j)
,l = 0.

Here, comma in lower indices stands for the differentiation with respect to the corresponding
spatial variable and summation over repeated indices running from 1 to n is adopted. As
it was shown in [18], see Chapter 3, Theorem 7.2, therein, for functions satisfying equation
above, the maximum principle holds and thus v(j) remains to be nonnegative everywhere
inside Q. Obviously function v(j) + 1

j
satisfies all the conditions of Theorem 2.8 and, hence,

sup
z∈Q(z0R,R/2)

v(j)(z) ≤ c6 inf
Q(z0,R/2)

v(j)(z).

Passing to the limit as j → ∞ and taking into account (2.41), we arrive at (1.18). �

2.6. Liouville Theorem. In this subsection, we assume that u is an ancient suitable weak
solution to equation (1.12) which means that it is defined on Q− ≡ Rn×] − ∞, 0[ and is a
suitable weak solution in all parabolic balls Q(z0, 1) with z0 = (x0, t0) for any x0 ∈ Rn and
for any t0 ≤ 0. Since our equation is invariant with respect to translation and usual parabolic
dilatation, such a solutions will be suitable in all parabolic balls of the form Q(a) for any
positive a. Now, we shall show its Hölder continuity provided it is bounded.

Lemma 2.9. Let u be an ancient suitable weak solution to equation (1.12). Then there
are two constants c7 and α which depend only on n, ν, s, satisfying condition (2.13), and
Γ = ∥d∥L∞(BMO) such that

|u(z)− u(z0)| ≤ c7|z − z0|αpar sup
z∈Q−

|u(z)| (2.42)

for any z and z0 from Q− with the parabolic distance |z − z0|par = |x− x0|+ |t− t0|
1
2 .
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Proof. We let
MR = sup

z∈Q(z0,R)

u(z), MR/2 = sup
z∈Q(z0,R/2)

u(z),

mR = inf
z∈Q(z0,R)

u(z), mR/2 = inf
z∈Q(z0,R/2)

u(z).

If we let v(z) = MR − u(z), then will be a nonnegative suitable weak solution to equation
(1.12) in parabolic ball Q(z0, R). By translation and parabolic dilatation, we can derive from
Theorem 2.8 the following inequality for v

inf
z∈Q(z0,R/2)

v(z) =MR −MR/2 ≥
1

c6
(MR − u(z)) (2.43)

for all z ∈ Q(z0R, R/2). On the other hand, for the same reason, we may apply Theorem 2.8
to function w = u(z)−mR and find

mR/2 −mR ≥ 1

c6
(u(z)−mR) (2.44)

for all z ∈ Q(z0R, R/2). Adding (2.43) and (2.44), we arrive at the inequality

osc(z0, R)− osc(z0, R/2) ≥
1

c6
osc(z0, R), (2.45)

where osc(z0, R) =MR −mR, or

osc(z0, R/2) ≤ ϑosc(z0, R)

with ϑ = 1− 1/c6. After simple iterations, we have the series of the inequalities

osc(z0, R/2
k) ≤ ϑkosc(z0, R)

which can be reduced to the form

osc(z0, ϱ) ≤ c7ϱ
αϑosc(z0, R).

The latter is true for z0 ∈ Q− and all 0 < ϱ < R < +∞ and certainly implies (2.42). �

Proof of Theorem 1.2. We let M = supz∈Q− |u(z)|. If we scaled our solution u and matrix A
so that

uR(y, s) = u(Ry,R2s), AR(y, s) = A(Ry,R2y),

then as it is easy to see uR and AR satisfy the equation (1.12) in Q− and

ν = νR, M =MR = sup
z∈Q−

|uR(z)|, Γ = ΓR = ∥dR∥L∞(BMO).

By Lemma 2.9, we have
|uR(e)− uR(0)| ≤ c7|e|αparMR

for any e = (y, s) ∈ Q−. Making inverse scaling in the latter inequality, we find

|u(z)− u(0)| ≤ c7|z|αpar
1

Rα
M

for any z ∈ Q− and for any R > 0. By arbitrariness of R, we show that u must be a
constant. �
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3. An elementary proof of an elliptic Liouville theorem in 2D and a
counterexample

In this section we explore the Liouville theorem for (1.4) in two dimensions. Assuming
that the divergence-free vector field b is in the space (BMO)−1, we provide an elementary,
short, and self contained proof showing that bounded subsolutions (and supersolutions) are
constant. Afterwards, we construct a counterexample to such a Liouville theorem for a
divergence-free vector field whose stream function is bounded by ln |x| ln ln |x| (/∈ BMO) for
large |x|. This construction shows that the hypothesis b ∈ (BMO)−1 is quite sharp.

If b is a smooth divergence-free vector field on R2, then it has a stream function H : R2 → R
as in (1.23) and we have (1.24). This relationship between b and A allows us to introduce
the notion of a weak solution for very singular drifts.

Definition 3.1. Let b be a divergence-free drift from BMO−1(R2), that is, H ∈ BMO(R2).
We say that a function u ∈ H1

loc(R2) is a weak subsolution to (1.4) in R2, that is, a weak
solution to

−∆u+ b · ∇u ≤ 0 (3.1)

if for any nonnegative test function v ∈ C∞
0 (R2) we have∫

R2

(A∇u) · ∇v dx ≤ 0. (3.2)

Weak supersolutions are defined by reversing both inequalities.

We note that, as mentioned in the introduction, the bilinear form in (3.2) extends contin-
uously to compactly supported v ∈ Ḣ1 and hence in (3.2) one can equivalently consider any
nonnegative compactly supported v ∈ H1(R2).

Theorem 3.2. Assume that b ∈ BMO−1(R2) is divergence-free, and let u be a weak subso-
lution to (1.4) in R2. If u is bounded then u is a constant.

Remark. If the drift b is not too irregular, for example, b ∈ L2,loc(R2), then distributional
solutions to (3.1) can be defined for u ∈ L2,loc(R2). In this case, bounded solutions are in
H1

loc(R2) and satisfy (3.2) automatically, as we will show in the next section.

The proof of Theorem 3.2 is an immediate consequence of the following lemma.

Lemma 3.3. Let u be a bounded weak subsolution of

−div(A∇u) ≤ 0 in R2 (3.3)

where A(x) = a(x) + d(x) with a symmetric and d skew symmetric. Assume that there are
λ,Λ > 0 such that for any x, ξ ∈ R2 we have

(a(x)ξ) · ξ ≥ λ|ξ|2, (3.4)

||a||L∞ ≤ Λ, (3.5)

||d||BMO ≤ Λ. (3.6)

Then u is constant.
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Remark. Note that we actually prove a Liouville theorem for bounded subsolutions. This
is only possible in two dimensions. In higher dimensions one needs u to be a solution in order
to show that it is constant even in the case of the Laplace equation.

Proof. Without loss of generality we can assume that u is nonnegative (otherwise we can add
a constant). Let η be the test function

η(x) =


1 if |x| ≤ 1

1− log |x|
logR

if 1 ≤ |x| ≤ R

0 if |x| > R

We take v = uη2 in (3.2) to obtain

0 ≥
∫

(A∇u) · ∇(uη2) dx

≥
∫
η2(a∇u) · ∇u dx+ 2

∫
uη(A∇u) · ∇η dx

≥ λ

∫
|∇u|2η2 dx+ 2

∫
uη(A∇u) · ∇η dx

(3.7)

(all integrals are over R2 unless otherwise indicated). Therefore we have

λ

∫
|∇u|2η2 dx ≤ 2

∣∣∣∣∫ uη(A∇u) · ∇η dx

∣∣∣∣ (3.8)

We need to estimate the second term. For the symmetric part of A, we have∣∣∣∣∫ uη(a∇u) · ∇η dx

∣∣∣∣ ≤ Λ||u∇η||L2 ||η∇u||L2

≤ λ

8
||η∇u||2L2

+ C||∇η||2L2

≤ λ

8
||η∇u||2L2

+
C

logR
(3.9)

for a constant C depending only on ||u||L∞ , Λ, and λ.
Let k̄ be the average of k in B(R), the disk of radius R centered at the origin. It is easy

to check that ∫
uη(d̄∇u) · ∇η dx = 0

Now we estimate the contribution to the variable skew-symmetric part of the coefficients
using Hölder inequality:

∣∣∣∣∫ uη(d∇u) · ∇η dx

∣∣∣∣ ≤ C

 ∫
B(R)

|d− d̄|4


1/4 (∫

u4|∇η|4
)1/4(∫

η2|∇u|2
)1/2
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≤ 1

4

∫
η2|∇u|2 dx+ C

 ∫
B(R)

|d− d̄|4


1/2(∫

u4|∇η|4
)1/2

(3.10)

Since d is a BMO function, we have∫
B(R)

|d− d̄|4 dx ≤ CR2

and by direct computation using that u is bounded,∫
u4|∇η|4 dx ≤ C

R2(logR)4

Therefore, (3.10) gives∣∣∣∣∫ uη(d∇u) · ∇η dx

∣∣∣∣ ≤ 1

4

∫
η2|∇u|2 dx+ C

(logR)2
(3.11)

Adding (3.9) and (3.11), we estimate the right hand side of (3.8) to obtain∫
B(1)

|∇u|2 dx ≤
∫
R2

|∇u|2η2 dx ≤ C

logR
+

C

(logR)2

for a constant C independent of R. We conclude the proof by taking R → ∞. �

Proof of Theorem 1.3. Let h : R+
0 → R+

0 be such that h(s) = e1−es for s ∈ [0, ee] and
h(s) = ln s ln ln s for s ≥ ee. For x = (x1, x2) define x̂ ≡ min{|x1|, |x2|} and

H̃(x) ≡ C sgn(x1x2)h(x̂) (3.12)

with C large. If now H ≡ η ∗ H̃ for some radially symmetric smooth mollifier η supported
on the unit disc and b ≡ ∇⊥H, then the hypotheses of the theorem are satisfied. Moreover,
if K± ≡ {x

∣∣ ± x2 ≥ |x1|+ 2}, then for some c > 0 independent of C we have

b1(x) = 0 and − sgn(x2)b2(x) ≥ cCh′(x̂) if x ∈ K+ ∪K−. (3.13)

Let Bt = Bt(ω) with ω ∈ Ω be the 2-dimensional Brownian motion with B0 = 0, defined
on some probability space (Ω,F ,P), and for x ∈ R2 let Xx

t = Xx
t (ω) be the stochastic process

with Xx
0 = x and satisfying the SDE

dXx
t = −b(Xx

t )dt+
√
2dBt. (3.14)

It is then well known (see, e.g., [30, Lemma 7.8]) that if v solves

∂tv + b · ∇v −∆v = 0

on R2 with v(0, x) = v0(x), then its value equals the expectation

v(t, x) = E(v0(Xx
t )). (3.15)
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We let v0(x) = sgn(x2). Clearly |v(t, x)| ≤ 1 by (3.15), and the symmetry of the drift
(b1(x1,−x2), b2(x1,−x2)) = (b1(x1, x2),−b2(x1, x2)) gives

v(t, x1, 0) = 0 for all (t, x1). (3.16)

So ∂tv(t, x1, 0) = 0 and obviously sgn(x2)∂tv(0, x1, x2) ≤ 0 for x2 ̸= 0 because of |v(t, x)| ≤ 1
and the choice of v0. This and the maximum principle for ∂tv give sgn(x2)∂tv(t, x) ≤ 0 for
all (t, x) and so there exists u(x) ≡ limt→∞ v(t, x). Parabolic regularity shows that u is a
(bounded) solution of (1.4).

Let At,x ≡ {ω : (Xx
s (ω))2 ̸= 0 for all s ∈ [0, t]} and Ax =

∪
t>0At,x (with (Y )2 being the

second coordinate of Y ). Then (3.15), (3.16), and the strong Markov property for Xx
t imply

v(t, x) = sgn(x2)P(At,x),

u(x) = sgn(x2)P(Ax).

We will now show that P(A(0,4)) = P(A(0,−4)) > 0 (the equality holds by symmetry), which
implies u(0, 4) > 0 > u(0,−4).

The law of iterated logarithm (see, e.g., [30, Theorem 5.1.2]) implies that P(A) > 0 for

A ≡ {ω : |Bs| < 1 for all s ∈ [0, ee] and |Bs| < (3s ln ln s)1/2 for all s ≥ ee}.

For any ω ∈ A, let t > 0 be the first time such that X
(0,4)
t (ω) ∈ ∂K+ (we assume such a time

exists and will derive a contradiction). Then (3.14) and the definition of A give t ≥ ee, using

dist((0, 4), ∂K+) > 1 as well as that b1 = 0 and −b2 ≥ 0 in K+. So X
(0,4)
s ∈ K+ for s ∈ [0, t],

and thus b1(X
(0,4)
s ) = 0 and X̂

(0,4)
s = |(X(0,4)

s )1| for these s. This gives

|(X(0,4)
s )1| = |

√
2(Bs)1| < (6s ln ln s)1/2 ≤ (6t ln ln t)1/2 (3.17)

and so (using (3.13))

−b2(X(0,4)
s ) ≥ cC

ln ln(6t ln ln t)1/2 + 1

(6t ln ln t)1/2
≥ cC

(
ln ln t

6t

)1/2

for s ∈ [0, t]. This means

(X
(0,4)
t )2 ≥ cC

(
ln ln t

6t

)1/2

t+
√
2(Bt)2 + 4 ≥

(
cC√
6
−

√
6

)
(t ln ln t)1/2.

If we choose C ≥ 18c−1, then this and (3.17) give

(X
(0,4)
t )2 ≥ 2(6t ln ln t)1/2 ≥ (6t ln ln t)1/2 + (6ee)1/2 ≥ |(X(0,4)

t )1|+ 9,

contradicting X
(0,4)
t ∈ ∂K+. Therefore X

(0,4)
t (ω) ∈ K+ for all t ≥ 0 and ω ∈ A. This means

that A ⊆ A(0,4) and so 0 < P(A(0,4)) = P(A(0,−4)). Hence u(0, 4) > 0 > u(0,−4) and the
result follows. �
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4. On a modulus of continuity in 2D and a counterexample in 3D

In this section we prove that distributional solutions of (1.4) with a divergence-free b in a
two dimensional domain Ω ⊂ R2 are continuous with a logarithmic modulus of continuity that
we estimate explicitly. The modulus of continuity depends on a local bound for the H1 norm
of u and it does not essentially depend on any quantity associated with the vector field b. If
b ∈ L1,loc, then for suitable u (see Theorem 1.4) we can estimate the modulus of continuity
in terms of the L∞ norm of u instead of H1 thanks to a local energy inequality. Because of
the low regularity assumed for the vector field b, the a priori estimates are hard to extend to
distributional solutions and this presents some technical difficulties that are explained below.
The estimate is a version of the classical result that functions in the border-line Sobolev
spaces which satisfy the maximum principle9 are continuous, with logarithmic modulus of
continuity.

We also show in this section that the same type of regularity result does not hold in three
dimensions. Indeed, we construct an example of a function u ∈ L∞(B) ∩H1(B) (recall that
B = B(0, 1) is the unit ball) and a vector field b ∈ L1(B), such that u solves (1.4) in the
distributional sense and is discontinuous at the origin.

Proposition 4.1. Assume that the drift b ∈ L2,loc(Ω) is divergence-free and u ∈ L∞(Ω)
solves (1.4) in the distributional sense (that is,∫

Ω

b · ∇vdx = 0 =

∫
Ω

(u∆v + bu · ∇v)dx (4.1)

for all v ∈ C∞
0 (Ω)). Then u ∈ H1

loc(Ω) and if B(x0, r) b Ω, there is a constant C depending
only on r such that

||∇u||L2(B(x0,r/2)) ≤ C
(
1 + ||b||L1(B(x0,r))

)1/2 ||u||L∞(B(x0,r))

Proof. The claim u ∈ H1
loc(Ω) is obvious from bu ∈ L2,loc(Ω).

This means that ∫
Ω

b · ∇vdx = 0 =

∫
Ω

(∇u− bu) · ∇vdx (4.2)

for v ∈ H1(Ω) compactly supported in Ω. Let η be a smooth bump function such that

η = 1 in B(x0, r/2)

η = 0 in Ω \B(x0, r).

We take v = uη2 in (4.2) to obtain

0 =

∫
B(x0,r)

|∇u|2η2 + 2uη∇u · ∇η − b · ∇uuη2 − 2b · ∇ηu2η dx

9Sometimes the terminology “monotone in the sense of Lebesgue” is used in this context, see e. g. [24].
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=

∫
B(x0,r)

|∇u|2η2 + 2uη∇u · ∇η − b · ∇ηu2η dx,

where we have used

0 =

∫
B(x0,r)

b · ∇(u2η2)dx = 2

∫
B(x0,r)

b · ∇ηu2η + b · ∇uuη2dx

with u2η2 ∈ H1(Ω). Therefore∫
B(x0,r)

|∇u|2η2 dx =

∫
B(x0,r)

−2uη∇u · ∇η + b · ∇η u2η dx

≤ 1

2

∫
B(x0,r)

|∇u|2η2 dx+
∫

B(x0,r)

2u2|∇η|2 + b · ∇η u2η dx

and thus

1

2

∫
B(x0,r/2)

|∇u|2 dx ≤
∫

B(x0,r)

2u2|∇η|2 + b · ∇η u2η dx

≤ C(1 + ||b||L1(B(x0,r)))||u||2L∞ .

�

It is worth noting that all statements of Proposition 4.1 hold true in higher dimensions.
We now find the modulus of continuity for functions satisfying the maximum principle and

a bound in H1. Note that in two dimensions, the space H1 is borderline with respect to
the Sobolev embeddings to spaces of continuous functions. The monotonicity of osc∂B(r)u is
the extra assumption used in the theorem below to actually obtain an explicit modulus of
continuity.

Theorem 4.2. Let u ∈ H1(B) and assume that for any r ∈ (0, 1) the maximum principle
holds in B(r):

max
B(r)

u = max
∂B(r)

u,

min
B(r)

u = min
∂B(r)

u.

Then u satisfies the following modulus of continuity estimate at the origin

sup
x∈B(r)

|u(x)− u(0)| ≤ C√
− log r

||∇u||L2(B)

for some constant C independent of u.
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Proof. Let r ∈ (0, 1). We want to estimate oscB(r)u = maxB(r) u−minB(r) u.∫
B\B(r)

|∇u|2 dx =

1∫
r

∫
∂B(s)

|∇u|2 dσ ds

since |∇u|2 = u2σ + u2ν where uσ is the tangential derivative and uν is the normal one,

≥
1∫

r

∫
∂B(s)

|uσ|2 dσ ds

Rewriting the integral using polar coordinates (sθ = σ),

=

1∫
r

1

s

∫
∂B

|uθ(sθ)|2 dθ ds.

Since H1(∂B) ⊂ Cα(∂B) from the one dimensional Sobolev imbedding,

≥
1∫

r

C

s
(osc∂B(s)u)

2 ds.

From the maximum principle, osc∂B(s)u is monotone in s, therefore,

≥
1∫

r

C

s
(osc∂B(r)u)

2 ds = (−C log r)(osc∂B(r)u)
2

Taking square roots of both sides we obtain

oscB(r)u = osc∂B(r)u ≤ C√
− log r

||∇u||L2(B)

�
Consider now a drift b ∈ L1(B) and let u ∈ L∞(B) be a distributional solution to (1.4).

We are interested in whether u is still a continuous function and, if so, how to estimate its
modulus of continuity. We do not know the answer to this question. However, it is in the
affirmative if u is an appropriate limit of solutions with L2 drifts, as in Theorem 1.4.

Proof of Theorem 1.4. The first claim is immediate from the definition of distributional so-
lutions. Moreover, Proposition 4.1 and Theorem 4.2 show that um are locally uniformly
bounded in H1 as well as locally uniformly continuous with the modulus of continuity from
(1.25), and the second claim follows. �

Finally, we show that that Theorem 1.4 does not hold in higher dimensions in general.
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Proof of Theorem 1.5. As in the previous section, we will again consider vector fields with
b(Rx) = Rb(x), where R(x1, x2, x3) ≡ (x1, x2,−x3). In addition, b will be axisymmetric with
respect to the x3-axis and with no angular component. Such divergence-free vector fields can
again be obtained from a “stream function” H : R+

0 × R → R with H(0, z) = 0 as

bH(x) ≡ ∇×
[
H(ρ, z)

2ρ2
(−x2, x1, 0)

]
=

1

2ρ2
(x1Hz(ρ, z), x2Hz(ρ, z),−ρHρ(ρ, z)) , (4.3)

where ρ ≡
√
x21 + x22 and z ≡ x3. Notice that again we have bH · ∇H = 0 = bH · (x2,−x1, 0),

so H is constant on the streamlines of bH , and bH has no angular component.
We now pick α ∈ (2

3
, 1) and for ρ2 + z2 < 1 and ρ ≥ 0 we let

H̃(ρ, z) ≡ sgn(z)


ρ2z−2 ρα ≤ |z|,
z2ρ−2 |z|α ≤ ρ,

(ρ|z|)2(1−α)/(1+α) |z| < ρα and ρ < |z|α.
(4.4)

Finally, for some large C we define H0 ≡ CH̃ and b0 ≡ bH0 .
Notice that H0 is continuous and vanishes on the axes, and b0(Rx) = Rb0(x). We also have

−b0(x) = C
x

|x3|3
for (x21 + x22)

α/2 ≤ |x3| (4.5)

as well as b0 ∈ L1(B) (because |b0(x)| ≤ c|x|−2 for some c > 0 due to α ∈ (2
3
, 1)). Moreover,

H̃ is smooth except on

P ≡
{
ρ2 + z2 < 1 : ρ ≥ 0 and |z| ∈ {ρα, ρ1/α, 0}

}
,

so b0 is smooth except on

S ≡
{
x ∈ B :

(√
x21 + x22 , x3

)
∈ P

}
.

We therefore let Hε be smooth such that Hε(ρ,−z) = −Hε(ρ, z) and Hε = H0 outside the
ε-neighborhood of P , the vector field bε ≡ bHε is also smooth and |bε(x)| ≤ c|x|−2 on B, as
well as

lim
ε→0

∥bε − b0∥L1(B) = 0. (4.6)

Clearly ∇ · bε = 0 for ε > 0, so (4.6) gives ∇ · b0 = 0 in the distributional sense.
For each ε > 0 we now construct (smooth) uε using bε in a way similar to our construction

of u using b in the proof of Theorem 1.3. We are here on B so we set boundary conditions
uε(x) = sgn(x3) on ∂B and thus consider the stochastic process

dXx,ε
t = −bε(Xx,ε

t )dt+
√
2dBt.

with Xx,ε
0 = x and stopping time

τε ≡ inf
{
t ≥ 0

∣∣Xx,ε
t ∈ ∂B

}
.

We therefore obtain

−∆uε + bε · ∇uε = 0 (4.7)
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where

uε(x) = E
(
sgn

((
Xx,ε

τε

)
3

))
= sgn(x3)P ((Xx,ε

t )3 ̸= 0 for all t ∈ [0, τε]) , (4.8)

Each uε is a smooth solution of (4.7) and they are uniformly Hölder continuous away from
the origin due to |bε(x)| ≤ c|x|−2. Therefore there is a sequence εk → 0 and u0 such that
uεk → u0 locally uniformly on B \ {0}. (In fact,

lim
ε→0

uε(x) = u0(x) = sgn(x3)P
((
Xx,0

t

)
3
̸= 0 for all t ∈ [0, τ0]

)
for any x ∈ B, provided we set u0(0) ≡ 0.) But this, ∥uε∥L∞ ≤ 1, and (4.6) show that∫

B

(u0∆v + b0u0 · ∇v)dx = lim
k→∞

∫
B

(uεk∆v + bεkuεk · ∇v)dx = 0

for any v ∈ C∞
0 (B). Thus

−∆u0 + b0 · ∇u0 = 0 (4.9)

in the distributional sense. The proof of Proposition 4.1 applies to each uεk , implying that
their weak limit u0 ∈ H1

loc(B). Since for ε ≥ 0 we have uε(Rx) = −uε(x) and ||bε||L1(B) is
uniformly bounded, we only need to show

lim
z↓0

lim
ε→0

uε(0, 0, z) > 0 (4.10)

to conclude the proof of both (i) and (ii).

In fact, let us consider instead of (0, 0, z) with z > 0 any y ∈ B with y3 > 0 and
√
y21 + y22 ≤

1
2
y
1/α
3 . Let Ky be the cut-off cone

Ky ≡
{
x ∈ R3 :

√
x21 + x22 ≤

(2y3)
1/α

4y3
x3

}
⊆ R2 × R+,

with upper and lower base consisting of discs Dy, Ey centered at (0, 0, 2y3), (0, 0,
1
2
y3) and

with radii 1
2
(2y3)

1/α, 1
8
(2y3)

1/α. Notice that its tip would be at the origin, were it not cut off.

Then
√
x21 + x22 ≤ x

1/α
3 on Ky because α > 2

3
, so (4.5) holds on Ky ∩ B. Let σ be the exit

time of Xy,ε
t from Ky ∩ B, which is the same for all ε . y

1/α
3 because bε ≡ b0 on Ky ∩ B in

that case. We will show that

P(Xy,ε
σ ∈ Dy ∪ ∂B) ≥ 1− e−y

−3+2/α
3 , (4.11)

provided C from the definition of H0 is large. This is sufficient since Xy,ε
σ ∈ Dy ∪ ∂B means

either

(Xy,ε
t )3 ̸= 0 for all t ∈ [0, τε] (4.12)

or (Xy,ε
σ )3 = 2y3. In the latter case we have ((Xy,ε

σ )21 + (Xy,ε
σ )22)

1/2 ≤ 1
2
(Xy,ε

σ )
1/α
3 , so we can

bootstrap (4.11) and obtain (4.12) with probability at least

⌊− log2 y3⌋∏
k=1

(1− e−(2ky3)−3+2/α

) ≥
0∏

j=−∞

(1− e−(2j)−3+2/α

) ≡ m > 0.
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Thus (4.8) gives uε(y) ≥ m for any y ∈ B such that y3 > 0 and
√
y21 + y22 ≤ 1

2
y
1/α
3 and any

ε . y
1/α
3 . The claim of (4.10) now follows immediately.

It remains to prove (4.11) for some large C independent of y. The point here is that Xy,ε
t

starts well inside Ky (specifically, dist(y, ∂Ky) ≥ dy
1/α
3 for some d ∈ (0, 1)) and the (strong)

drift −b quickly pushes it towards Dy while the Brownian term will not affect this picture
much during the short time needed to reach Dy, at least with probability close to 1. We have

Xy,ε
σ = y −

∫ σ

0

b0(X
y,ε
t )dt+Bσ, (4.13)

as well as

P(|Bt| < dy
1/α
3 for all t ∈ [0, 8C−1y33]) ≥ 1− e−y

−3+2/α
3 , (4.14)

provided C is large enough. Since the vector −b0(Xy,ε
t ) points ‘inside’ the mantle of Ky for

t ∈ [0, σ) (because of (4.5) and the fact that the cut-off tip of Ky is the origin) and has

a positive third component, and dist(y, ∂Ky) ≥ dy
1/α
3 , this means that with probability at

least 1 − e−y
−3+2/α
3 , the process Xy,ε

t cannot exit Ky through the mantle or the bottom Ey

before time 8C−1y33. But we have (−b0(Xy,ε
t ))3 ≥ C(2y3)

−2 for t ∈ [0, σ], so (4.13), (4.14),

and y3 + C(2y3)
−28C−1y33 − cy

1/α
3 ≥ 2y3 yield

P(Xy,ε
σ ∈ Dy ∪ ∂B and σ ≤ 8C−1y33) ≥ 1− e−y

−3+2/α
3 .

This proves (4.11) and the result follows. �
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