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Abstract. We show that two distinct level sets of the vorticity of a solution to the 2D Euler
equations on a disc can approach each other along a curve at an arbitrarily large exponential
rate.

1. Introduction

In this note we study the question of how fast two distinct level sets of the vorticity of
a solution to the Euler equations in two dimensions can approach each other. We are here
interested in the approach along a curve rather than just at a single point.

The two-dimensional Euler equations model the motion of an incompressible inviscid fluid
on a domain D ⊆ R2, and we will use here their vorticity formulation

ωt + u · ∇ω = 0 (1.1)

on D × (0,∞), with initial data
ω(·, 0) = ω0. (1.2)

We will consider the case when the vorticity ω = −∇× u (which will be more convenient for
us than the more standard ω = ∇ × u) is bounded, that is, ω0 ∈ L∞(D). The customary
no-flow boundary condition u · n = 0 on ∂D × (0,∞), with n the unit outer normal vector,
then yields the Biot-Savart law

u(x, t) = −
∫
D

∇⊥GD(x, y)ω(y, t)dy

for computing u from ω. Here ∇⊥ = (−∂x2 , ∂x1) and GD is the Dirichlet Green’s function for
D (i.e., u = ∇⊥(−∆D)−1ω, with ∆D the Dirichlet Laplacian on D).

It has been known since the works of Hölder [4] and Wolibner [11] that solutions to the Euler
equations on smooth two-dimensional domains remain globally regular, and that ‖∇ω(·, t)‖L∞
cannot grow faster than double-exponentially as t→∞ (although this bound seems to have
first explicitly appeared in [12]). That is, for each ω0 ∈ W 1,∞(D) there is C <∞ such that

‖∇ω(·, t)‖L∞ ≤ Cee
Ct

for each t ≥ 0.

Whether the double-exponential rate of growth is attainable had been a long-standing open
problem. The first examples of smooth solutions for which the vorticity gradient grows
without bound as t→∞ were constructed by Yudovich [13,14]. Later Nadirashvili [10] and
Denisov [1] provided examples with at least linear and superlinear growth, respectively. The
period of relatively slow progress in this direction was ended by a striking recent result of
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Kiselev and Šverák [5]. Motivated by numerical simulations of Luo and Hou [8, 9] which
suggest blow-up for axisymmetric 3D Euler equations, they proved that solutions exhibiting
double-exponential growth of the vorticity gradient indeed do exist in two dimensions. This
result, which was proved on a disc, was extended to general smooth two-dimensional domains
with an axis of symmetry by Xu [15].

The double-exponential growth in [5] is proved to occur on the boundary ∂D, whose
presence is therefore crucial. We note that the fastest growth currently known to occur on a
domain without a boundary (i.e., on R2 or T2) is exponential growth of the vorticity gradient
for solutions ω(·, t) ∈ C1,α(T2) (α < 1), proved by the author in [16] (see also [7]). Smooth
solutions that grow super-linearly have been shown to exist as well, by Denisov [1], who also
constructed solutions exhibiting double-exponential growth rate on arbitrarily long but finite
time intervals [2] as well as patch solutions subject to a prescribed (regular) stirring for which
the two patches approach each other double-exponentially in time [3]. Finally, we note that
Kiselev and the author proved that on domains whose boundaries are not everywhere smooth
finite time blow-up can occur [6].

We will consider here (1.1) on a disc, as in [5], although our results easily extend to general
smooth two-dimensional domains with a symmetry axis via [15]. For convenience we will
work with the unit disc D := B1(e2) centered at e2 = (0, 1), and we will denote its right/left
halves by D± := D ∩ (R± × R). Then we have

GD(x, y) =
1

2π
ln

|x− y|
|x− ȳ||y − e2|

for x 6= y 6= e2, with ȳ := e2 + (y − e2)|y − e2|−2, as well as

u(x, t) = −
∫
D

[
(x− y)⊥

|x− y|2
− (x− ȳ)⊥

|x− ȳ|2

]
ω(y, t)dy, (1.3)

where (a1, a2)
⊥ := (−a2, a1).

The following is our main result.

Theorem 1.1. For D = B1(e2) and each A ≥ 1, there is δ > 0 and ω0 ∈ C∞(D) with
‖ω0‖L∞ = 1 such that the solution ω to (1.1)–(1.3) satisfies the following. For any t ≥ 0 we
have

ω(0, β, t) = 0 for each β ∈ (0, δ),

and there is a function αt : (0, δ)→ (0, e−At) such that the set of those β ∈ (0, δ) for which

ω(αt(β), β, t) = 1

has measure at least δ − 2e−At.

Remark. This result implies that ‖ω(·, t)‖W s,p also grows exponentially as t → ∞ when
sp > 1. On the other hand, the result in [5] yields double-exponential growth of these norms
when sp > 2 (as well as exponential growth for (s, p) = (1, 2)).

The solutions that we will consider here are the ones from [5], but we will track their dy-
namics in the neighborhood of the whole segment {0}× [0, δ] rather than only near the origin.
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A crucial extra ingredient in our argument will also be an explicit use of incompressibility of
the flow u, and the corresponding measure-preserving property of its flow map (see (3.1)).

We also note that if one were able to establish an additional estimate on these solutions,
then one would obtain a super-exponential rate of merging of distinct level sets of ω (see
Theorem 4.1 and Corollary 4.2 below). In the theoretically best possible case one could even
prove a double-exponential rate of merging (see the discussion after Theorem 4.1), although
it is not clear whether this case can occur.

In Section 2 we collect some estimates from [5] that we will use. For the convenience of the
reader and in order to provide more insight into the arguments that follow, we include the
derivation of most of these, with the exception of the key Lemma 2.1. We prove Theorem 1.1
in Section 3, and the discussion of its extension when we are able to obtain additional
estimates on ω appears in Section 4.

Acknowledgements. The author thanks Alexander Kiselev for useful discussions. He
also acknowledges partial support by NSF grants DMS-1652284 and DMS-1656269.

2. Some Estimates From [5]

To prove Theorem 1.1, we will employ some estimates from [5], including the following key
lemma. Just as in that paper, we will consider solutions ω that are odd in x1 and non-negative
on D+. That is,

0 ≤ ω0(x1, x2) = −ω0(−x1, x2) (2.1)

for any (x1, x2) ∈ D+. Of course, then ω(·, t) has the same properties for any t ≥ 0 and
u1(0, x2, t) = 0 for any (x2, t) ∈ (0, 2) × (0,∞). Oddness of ω in x1 also means that, with
x̃ := (−x1, x2) the reflection across the vertical axis, we have

u(x, t) = −
∫
D+

[
(x− y)⊥

|x− y|2
− (x− ȳ)⊥

|x− ȳ|2
− (x− ỹ)⊥

|x− ỹ|2
+

(x− ¯̃y)⊥

|x− ¯̃y|2

]
ω(y, t)dy.

We denote

Dγ
1 := {x ∈ D+ : x1 > γx2},

Dγ
2 := {x ∈ D+ : x2 > γx1}

for γ > 0, which are obtained by removing from D+ sectors close to the x2 and x1 axes,
respectively. Finally, we let

Q(x) := D+ ∩ ([x1,∞)× [x2,∞))

for x ∈ D+.

Lemma 2.1 ([5]). For any γ > 0 there is Cγ < ∞ such that for each ω0 ∈ L∞(D) that
satisfies (2.1) we have

uj(x, t) = (−1)j
(

4

π

∫
Q(x)

y1y2
|y|4

ω(y, t)dy +Bj(x, t)

)
xj (2.2)

when x ∈ Dγ
j (j = 1, 2), with Bj satisfying

|Bj(x, t)| ≤ Cγ‖ω0‖L∞ . (2.3)
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Note that when such ω0 is close to ‖ω0‖L∞ on all of D+ except of a small enough region
(this property is then preserved by the evolution because ω is odd in x1), then the first term
in the parenthesis in (2.2) will dominate the second term for all x close enough to the origin,
regardless of where the small exceptional region is located. Indeed, if∣∣{y ∈ D+ : ω0(y) < α‖ω0‖L∞

}∣∣ ≤ δ2 ≤ 1

16
(2.4)

for some α > 0 (this then also holds for ω(·, t) and any t ≥ 0) and x ∈ D+ ∩ B2δ(0), then a
simple analysis of the kernel y1y2|y|−4 (which decreases radially and is maximized at y1 = y2
for any fixed |y|) shows that∫
Q(x)

y1y2
|y|4

ω(y, t)dy ≥ α‖ω0‖L∞
∫
[D+\B4δ(0)]∩D

1/2
1 ∩D1/2

2

y1y2
|y|4

dy ≥ α‖ω0‖L∞
∫ 1

4δ

∫ π/3

π/6

sin 2φ

2r
dφdr

for each t ≥ 0. Therefore, by Lemma 2.1,

(−1)juj(x, t) ≥ ‖ω0‖L∞
(
α| ln 4δ|

4
− Cγ

)
xj (2.5)

for each γ, α, t > 0 and j = 1, 2 when (2.1) and (2.4) hold and x ∈ D+ ∩ B2δ(0) ∩ Dγ
j . Of

course, this estimate is only useful when δ > 0 is sufficiently small (depending on γ, α).
We next consider the case ‖ω0‖L∞ = 1, for the sake of simplicity, although it is clear that

the argument below works for any fixed ‖ω0‖L∞ > 0. Let us take any A ≥ 1, choose γ = 1
2

and α = 1, and let

δ :=
1

4
e−4(A+C1/2). (2.6)

If now ω0 satisfies (2.1), ‖ω0‖L∞ = 1, and (2.4) with α = 1, then (2.5) yields for j = 1, 2,

(−1)juj(x, t) ≥ Axj for (x, t) ∈ (D+ ∩B2δ(0) ∩D1/2
j )× (0,∞). (2.7)

We pick such ω0 ∈ C∞(D), which also equals 1 on the set {x ∈ D+ : x2 ≤ x1 ∈ [δ2, δ]}.
Following [5], for such ω0 and the corresponding solution ω and velocity u, let us denote

u1(x1, t) := inf
(x1,x2)∈D+ &x2≤x1

u1(x1, x2, t),

u1(x1, t) := sup
(x1,x2)∈D+ &x2≤x1

u1(x1, x2, t),

and let a, b be the solutions of

a′(t) = u1(a(t), t), a(0) = δ2, (2.8)

b′(t) = u1(b(t), t), b(0) = δ. (2.9)

Note that a, b are decreasing due to (2.7), and they are positive on (0,∞) because (2.2) yields
the bound

|u1(x, t)| ≤
4

π
‖ω0‖L∞(ln 2− ln |x|+ Cγ)x1 (2.10)

for any x ∈ D+ with x2 ≤ x1. Since (2.7) shows that

u1(x, t) < 0 < u2(x, t) when 0 < x1 = x2 ≤ δ and t > 0,
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it follows that
ω(·, t) = 1 on {x ∈ D+ : x2 ≤ x1 ∈ [a(t), b(t)]} (2.11)

for any t ≥ 0 such that infs∈[0,t](b(s)− a(s)) > 0. For any such t, comparing (2.2) for points
(a(t), x2) ∈ D+ with x2 ≤ a(t) and for points (b(t), y2) ∈ D+ with y2 ≤ b(t) (and also using
the properties of ω(·, t)) yields

d

dt
(ln a(t)− ln b(t)) ≤ − 4

π

∫
y∈D+ & a(t)<y2<y1∈[a(t),b(t)]

y1y2
|y|4

dy +
4

π

∫
[b(t),1]×[0,b(t)]

y1y2
|y|4

dy + 2C1/2.

The second integrand is no more than y−21 so the integral is bounded above by 1, and the
first integral is bounded below by∫ b(t)

2a(t)

∫ π/4

π/6

sin 2φ

2r
dφdr ≥

√
3π

48
(ln b(t)− ln a(t)− ln 2) ≥ π

32
(ln b(t)− ln a(t)− ln 2),

provided b(t) ≥ 2a(t). This yields

d

dt
(ln a(t)− ln b(t)) ≤ 1

8
(ln a(t)− ln b(t)) + C

for such t, with C := ln 2
8

+ 4
π

+ 2C1/2. Gronwall’s lemma then shows

ln
a(t)

b(t)
≤
(

ln
a(0)

b(0)
+ C

)
et/8 (2.12)

on any interval [0, T ] such that supt∈[0,T ]
a(t)
b(t)
≤ 1

2
. Since δ < e−1−C due to (2.6), the paren-

thesis in (2.12) is less than −1 (< ln 1
2
), and we thus obtain (2.12) for all t ≥ 0. We then

have

a(t) ≤ a(t)

b(t)
≤ (δeC)e

t/8 ≤ e−e
t/8

(2.13)

for all t ≥ 0. In particular, ‖∇ω(·, t)‖L∞ grows double-exponentially in time (because (2.11)
holds and ω(0, t) = 0 for all t ≥ 0), which is the main result of [5].

3. Proof of Theorem 1.1

Consider now any A ≥ 1, and let δ be from (2.6) and ω0 as in the two sentences following
(2.6). Then a, b from the previous section satisfy (2.11) and (2.13). Fix any T ≥ 0, let

VT := (0, a(T ))2 ∩D+,

and for s ≥ 0 let
U s
T := Φs

T (VT ),

where Φ is the flow map for u, given by

d

ds
Φs
T (x) = u(Φs

T (x), T + s), Φ0
T (x) = x ∈ D.

That is, U s
T is the set to which the flow u transports VT between times T and T + s. We also

let
Ũ s
T := {Φs

T (x) : x ∈ VT & Φr
T (x) ∈ (0, δ)2 for each r ∈ [0, s]}
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be the set of all points from U s
T which never left (0, δ)2 ∩D+ as they were transported by u

between times T and T + s. Since u is divergence free, we have

|Ũ s
T | ≤ |U s

T | = |VT | < a(T )2 (3.1)

for each T, s ≥ 0.
The estimate (2.7) applied at {x ∈ D+ : 0 ≤ x3−j ≤ xj = δ} shows that any point starting

in VT at time T and leaving (0, δ)2∩D+ at a later time must do so across the line [0, δ]×{δ},
as well as that it will also leave [0, δ]2 at the same time. It therefore can lie in ∂Ũ s

T at time
T + s only if that is the time of its first departure from VT , in which case it also lies in
[0, δ]× {δ}. It therefore follows that

∂Ũ s
T ⊆ Φs

T (∂VT ) ∪ ([0, δ]× {δ})

for each T, s ≥ 0. (Note that Φs
T extends continuously to ∂D because both ω and u extended

continuously to ∂D × [0,∞), with u remaining log-Lipschitz because ∂D is smooth.)
Let us now denote by Rk (k = 1, 2, 3, 4) the four closed segments of ∂VT with endpoints at

(0, 0), (a(T ), 1−
√

1− a(T )2), (a(T ), a(T )), and (0, a(T )), with R1 being the segment between
the first two of these points, and the other three segments labeled in counter-clockwise order.
Let us also fix

sT :=
1

A
| ln a(T )|. (3.2)

Then (2.7) and δ ≤ 1
4

show that for each x ∈ R3 there is r < sT such that (Φr
T (x))2 = 4

3
δ. In

particular,

ΦsT
T (R3) ∩ ∂Ũ sT

T = ∅.
Next, (2.7) together with ΦsT

T being continuous and satisfying ΦsT
T (D+ ∩ D−) = D+ ∩ D−

and ΦsT
T (0) = 0 show that {0} × [0, δ] ⊆ ΦsT

T (R4) and in fact

{0} × [0, δ] ⊆ ∂Ũ sT
T (3.3)

From (2.7), ΦsT
T (∂D) = ∂D and ΦsT

T (0) = 0 we also have

Φs
T (R1) ⊆ R1

for any T, s ≥ 0. From all this it follows that

B := ∂Ũ sT
T \ [R1 ∪ ({0} × [0, δ]) ∪ ([0, δ]× {δ})] ⊆ ΦsT

T (R2). (3.4)

Moreover, (3.3) shows that for each β ∈ (0, δ) there is αβT > 0 such that

(αβT , β) ∈ ∂Ũ sT
T and (0, αβT )× {β} ⊆ Ũ sT

T . (3.5)

Then from (3.1) we conclude that∣∣∣{β ∈ (0, δ) : αβT < a(T )
}∣∣∣ ≥ δ − a(T ) for each T ≥ 0. (3.6)

Finally, the definition of B and (3.5) show that

(αβT , β) ∈ B for each β ∈ (1−
√

1− a(T )2, δ), (3.7)
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and then (3.4) with 1−
√

1− a(T )2 ≤ a(T ) yield

ω(αβT , β, T + sT ) = 1 for each β ∈ (a(T ), δ) and T ≥ 0. (3.8)

Indeed, this holds because (1.1) is a transport equation and ω(x, T ) = 1 for any x ∈ R2 due
to (2.11). Since ω(0, x2, T +sT ) = 0 for any x2 ∈ (0, 2), the result follows once we notice that
(2.13) and (3.2) yield

T + sT ≤ 8 ln | ln a(T )|+ 1

A
| ln a(T )|. (3.9)

Indeed, since a(·) is continuous, for each

t ≥ − 1

A
ln a(0) =

2

A
| ln δ|

there is Tt such that Tt + sTt = t. If we also require t ≥ 2
A
e8A, then either

| ln a(Tt)| = AsTt ≥ e8A (3.10)

or Tt ≥ 1
A
e8A. In the latter case we use e8A ≥ (8A)2 (due to A ≥ 1) to conclude Tt ≥ 64A,

and then (3.10) again follows from (2.13). Since lnx ≤ x
8A

for x ≥ e8A, we now obtain from

(3.9) that t ≤ 2
A
| ln a(Tt)|. This yields a(Tt) ≤ e−At/2, which together with (3.6) implies∣∣∣{β ∈ (0, δ) : αβTt ≤ e−At/2

}∣∣∣ ≥ δ−e−At/2 for each t ≥ max
{

2e8A, 12(1 + C1/2)
}

, (3.11)

where we also used A ≥ 1 and

| ln δ| = 4(A+ C1/2) + ln 4 ≤ 6(A+ C1/2).

On the other hand, (3.8) and a(Tt) ≤ e−At/2 now yield

ω(αβTt , β, t) = 1 for each β ∈
(
e−At/2, δ

)
and t ≥ max

{
2e8A, 12(1 + C1/2)

}
. (3.12)

Replacing A by 2A now yields the result for all t ≥ max
{

2e16A, 12(1 + C1/2)
}

. To obtain it

also for all t ∈ [0,max
{

2e16A, 12(1 + C1/2)
}

], we only need to pick ω0 as above which is also
equal to 1 on D+ ∩ ([c, 1]×R) for a small enough c > 0 (because u is log-Lipschitz [4,11], so
|u1(x, t)| ≤ C(| log x1|)x1 holds for some C and all (x, t) ∈ D+ × (0,∞)).

4. Towards a Faster Rate of Merging

Notice that the double-exponential upper bound (2.13) on a(t) is in fact not crucial for
proving an exponential rate of approach of level sets of ω along a segment. Indeed, if we only
knew a(T ) ≤ e−cT for some c > 0 and all t ≥ 0, we would obtain

t = Tt + sTt ≤
A+ c

Ac
| ln a(Tt)|.

Then a(Tt) ≤ e−Act/(A+c), which would yield (3.11) and (3.12) with e−At/2 replaced by
e−Act/(A+c) and a different lower bound on t.

The limitation on obtaining a stronger result using (2.13) comes from our use of the bound
(2.7) for u2 on the time interval [T, T + sT ], which dictates our choice of sT from (3.2).



8 ANDREJ ZLATOŠ

However, if we could gain more mileage from (2.2) by proving a faster growth of the second
coordinate of Φs

T (x) for all x ∈ R3, we might be able to improve Theorem 1.1 further.
This would be the case, for instance, if we could obtain a better lower bound on b(t) than

(2.13), such as b(t) ≥ e−3e
t/8

for large t. More generally, let us assume that we have

a(t) ≤ e−ce
t/C

and b(t) ≥ e−c̃e
t/C

for all large enough t, (4.1)

with some C > 0 and c > 2c̃ > 0. Let us then, for the sake of simplicity, define VT in
Section 3 with e−ce

T/C
in place of a(T ), and change everything else up to the definition of Rk

accordingly (also, below only consider T large enough so that (4.1) holds for all t ≥ T ).
Now for any t ≥ 0 and any a(t) ≤ x1 ≤ x2 ≤ b(t), we obtain

u2(x1, x2, t) ≥
(

4

π

∫
x2≤y2≤y1≤b(t)

y1y2
|y|4

dy − C1/2

)
x2

from (2.2) and (2.11). The integral can be estimated below by∫ b(t)

2x2

∫ π/4

π/6

sin 2φ

2r
dφdr ≥

√
3π

48
(ln b(t)− ln 2x2)

when x2 ≤ b(t)
2

, so then

u2(x1, x2, t) ≥
− lnx2 + ln b(t)− ln 2− 8C1/2

8
x2. (4.2)

This is a better estimate than (2.7) when x2 ≤ b(t)
2
e−8(A+C1/2), so it would be useful for Φs

T (x)
when x ∈ R3 as long as

(Φs
T (x))2 ≤

b(T + s)

2e8(A+C1/2)
.

Let us therefore take x ∈ R3 and consider s ≥ 0 such that Φs
T (x) did not yet exit (0, δ)2 —

thus, in particular, (Φs
T (x))1 ≤ (Φs

T (x))2 — and also such that with γ := 1
2
e−8C1/2 we have

(Φs
T (x))2 ≤ γ2b(T + s)2

(
≤ b(T + s)

2e8(A+C1/2)
when T ≥ 4 due to (2.6) and (2.7)

)
. (4.3)

Then from (4.2) we obtain

u2(Φ
s
T (x), T + s) ≥ | ln(Φs

T (x))2|
16

(Φs
T (x))2.

Since also (Φ0
T (x))2 = x2 = e−ce

T/C
, we obtain

(Φs
T (x))2 ≥ e−ce

(16T−Cs)/16C
until (Φs

T (x))2 = γ2b(T + s)2. (4.4)

The equality in (4.4) will be achieved at some s′ ≤ 16
C
T . Then considering s ≥ s′ and applying

(2.7) shows that Φs
T (x) exits (0, δ)2 at some

r < s′ +
2

A
| ln γb(T + s′)| ≤ 16

C
T +

2

A

∣∣∣∣ln γb(16 + C

C
T

)∣∣∣∣ =: sT .
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The argument from the proof of Theorem 1.1 then applies with this sT , and we obtain (3.4)–

(3.8) for all large T , with e−ce
T/C

in place of a(T ). Then for any large enough t, the equality
Tt + sTt = t from that proof becomes

16 + C

C
Tt +

2

A

∣∣∣∣ln γb(16 + C

C
Tt

)∣∣∣∣ = t. (4.5)

Since b(t) ≤ e−At by (2.7), we have 16+C
C

Tt ≤ 1
A
| ln γb(16+C

C
Tt)|, so we know that Tt satisfies

b

(
16 + C

C
Tt

)
≤ γ−1e−At/3 = 2e8C1/2e−At/3. (4.6)

This finally yields (3.11) and (3.12) with e−At/2 replaced by e−ce
Tt/C and a different lower

bound on t. Note that this argument also requires

a(t) ≤ 1

4
e−16C1/2b(t)2 for all large enough t, (4.7)

so that (4.3) holds at least for s = 0 when T = Tt (since obviously limt→∞ Tt =∞), but this
is guaranteed by c > 2c̃ in (4.1). (The power 2 in (4.3) and (4.7) could be replaced by any
power p > 1, at the expense of some constants above being different, so c > c̃ in fact suffices
to obtain a result here.)

We have therefore proved the following result (notice that b is decreasing, so replacing ≤
by = in (4.6) can only decrease Tt).

Theorem 4.1. Let D = B1(e2), D+ := D ∩ (R+×R), C1/2 be from Lemma 2.1, A ≥ 1, and
δ be from (2.6). Consider any ω0 ∈ C∞(D) satisfying (2.1), ‖ω0‖L∞ = 1,∣∣{x ∈ D+ : ω0(x) < 1

}∣∣ ≤ δ2,

and equal to 1 on the set {x ∈ D+ : x2 ≤ x1 ∈ [δ2, δ]}, and let ω solve (1.1)–(1.3). If a, b
from (2.8), (2.9) satisfy (4.1) with C > 0 and c > 2c̃ > 0, then the claims in Theorem 1.1

hold for all large enough t, with e−At replaced by e−ce
Tt/C and Tt solving

b

(
16 + C

C
Tt

)
= 2e8C1/2e−At/3.

Let us now consider the theoretically best possible scenario. For ω as above, the best lower
bound on b we could hope for is

b(t) ≥ c′e−C
′t for all large enough t, (4.8)

with some c′ ∈ (0, 1) and C ′ ≥ A (due to (2.7)). If this is the case, then (4.1) certainly holds
and (4.6) yields

Tt ≥
CA

(50 + 3C)C ′
t for all large enough t.

That is, (3.11) and (3.12) would hold with e−At/2 replaced by e−ce
At/(50+3C)C′

and a different
lower bound on t. Hence, the exponential lower bound (4.8) on b(t) would yield a double-
exponential rate of approach of two distinct level sets of ω along a segment.
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Of course, it is not at all clear whether (4.8) can hold for some ω satisfying our hypothe-
ses. Nevertheless, even a much weaker lower bound may provide a stronger result than
Theorem 1.1. For instance, if we can prove that

a(t) ≤ e−ce
t/C

and b(t) ≥ e−c
′et/C

′

for all large enough t, (4.9)

with c, c′ > 0 and C < C ′, then Theorem 4.1 yields a super-exponential rate of approach

whenever C ′ > 16+C (we obtain (3.11) and (3.12) with e−At/2 replaced by e−c(At/4C
′)C
′/(16+C)

).
However, we can do even better in this case because if we only have a double-exponential

lower bound on b(t), then the above argument may be further optimized by this time choosing

s′ so that (Φs′
T (x))2 = γ2e−2c

′e(T+s′)/C′
. We then obtain s′ ≤ 16(C′−C)

(16+C′)C
T+o(1) (with o(1) = o(T 0)

as T →∞). Therefore

T + s′ ≤ (16 + C)C ′

(16 + C ′)C
T + o(1),

so we can replace (4.5) by

(16 + C)C ′

(16 + C ′)C
Tt + o(1) +

2

A

∣∣∣ln γe−c′e[(16+C)C′Tt/(16+C
′)C+o(1)]/C′

∣∣∣ = t.

This yields

Tt =
(16 + C ′)C

16 + C
ln
At

2c′
+ o(1),

and hence leads to (3.11) and (3.12) with e−At/2 replaced by e−κt
(16+C′)/(16+C)

for some κ > 0,
and with a different lower bound on t. So we again have a super-exponential rate of approach
of distinct level sets of ω along a segment, but this time whenever C < C ′:

Corollary 4.2. Let D,A, δ, ω be as in Theorem 4.1. If a, b from (2.8), (2.9) satisfy (4.9)
with c, c′ > 0 and C < C ′, then the claims in Theorem 1.1 hold for all large enough t, with

e−At replaced by e−κt
(16+C′)/(16+C)

for some κ > 0.
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[6] A. Kiselev and A. Zlatoš, Blow up for the 2D Euler equation on some bounded domains, J. Differential
Equations 259 (2015), 3490–3494.

[7] Z. Lei and J. Shi, Infinite-time exponential growth of the Euler equation on two-dimensional torus,
preprint.



RATE OF MERGING OF VORTICITY LEVEL SETS 11

[8] G. Luo and T.Y. Hou, Potentially singular solutions of the 3D axisymmetric Euler equations, Proc. Natl.
Acad. Sci. U.S.A. 111 (2014), 12968–12973.

[9] G. Luo and T.Y. Hou, Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numer-
ical investigation, Multiscale Model. Simul. 12 (2014) 1722–1776.

[10] N. S. Nadirashvili, Wandering solutions of the two-dimensional Euler equation (Russian), Funktsional.
Anal. i Prilozhen. 25 (1991), 70–71; translation in Funct. Anal. Appl. 25 (1991), 220–221.

[11] W. Wolibner, Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incom-
pressible, pendant un temps infiniment long (French), Mat. Z. 37 (1933), 698–726.

[12] V.I. Yudovich, The flow of a perfect, incompressible liquid through a given region, Dokl. Akad. Nauk
SSSR 146 (1962) 561–564 (Russian); translated as Soviet Physics Dokl. 7 (1962) 789–791.
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