
DIFFUSION IN FLUID FLOW:
DISSIPATION ENHANCEMENT BY FLOWS IN 2D

ANDREJ ZLATOŠ

Abstract. We consider the advection-diffusion equation

φt +Au · ∇φ = ∆φ, φ(0, x) = φ0(x)

on R2, with u a periodic incompressible flow and A� 1 its amplitude. We provide a sharp
characterization of all u that optimally enhance dissipation in the sense that for any initial
datum φ0 ∈ Lp(R2), p <∞, and any τ > 0,

‖φ(·, τ)‖∞ → 0 as A→∞.

Our characterization is expressed in terms of simple geometric and spectral conditions on
the flow. Moreover, if the above convergence holds, it is uniform for φ0 in the unit ball in
Lp(R2), and ‖ · ‖∞ can be replaced by any ‖ · ‖q, q > p. Extensions to higher dimensions
and applications to reaction-advection-diffusion equations are also considered.

1. Introduction and Backgroud

In the present paper we study the influence of fast incompressible advection on diffusion.
We are mainly interested in the case of unbounded domains and consider the passive scalar
equation

φAt + Au · ∇φA = ∆φA, φA(x, 0) = φ0(x) (1.1)

on D = Rn × Tm, with initial datum φ0 ∈ Lp(D) for some p < ∞. Here u is a periodic
divergence-free vector field (also called flow), the parameter A ∈ R accounts for its amplitude,
and we will study the behavior of the solutions φA of (1.1) at fixed positive times τ > 0 in
the regime of large A. Our goal is to identify those flows which are the most efficient in
enhancing the dissipative effect of diffusion at arbitrarily small time scales, provided their
amplitude is large enough. More precisely, we aim to characterize the class of flows which
yield

‖φA(·, τ)‖L∞ → 0 as A→∞ (1.2)

for any τ > 0 and any φ0 ∈ Lp(D). We will call such flows dissipation-enhancing and our main
result is their characterization in two dimensions in Theorem 2.1 below (see also Theorem 9.1
for the case of more dimensions). In addition to being of independent interest, our study
of this class is also motivated by applications to quenching in reaction-diffusion equations,
where good understanding of short-term dynamics for (1.1) is often an essential ingredient
(see Theorem 8.3 and [3, 4, 5, 19, 25, 27, 28]).

The problem of diffusion of passive scalars in the presence of a flow is one with a long
history. It has been studied in both mathematical and physical literature and we start with

1



2 ANDREJ ZLATOŠ

reviewing some related literature. The long time behavior of the solutions of (1.1) for a fixed
A is by now well understood and, in particular, one has for each φ0,

‖φA(·, t)‖L∞ → 0 as t→∞. (1.3)

The question of determining finer properties of the solutions has been addressed within the
framework of homogenization theory, which identifies an effective diffusion equation that
governs the long time–large space asymptotic behavior of solutions of (1.1). The depen-
dence of the corresponding effective diffusivity matrix σ(Au) on A has been investigated by
many authors and classes of flows which enhance diffusion in arbitrary directions e the least
(eTσ(Au)e bounded in A) or the most (eTσ(Au)e ∼ A2) have been identified. The paper of
Fannjiang and Papanicolaou [7] and the extensive review by Majda and Kramer [21] contain
these results and provide many further references. However, flows efficient in enhancing dif-
fusion on large time scales may have isolated pockets of stagnation in which solutions persist
on short and intermediate time scales. Thus, in general, the knowledge of the asymptotic
behavior of σ(Au) is not sufficient to obtain satisfactory answers to the kind of questions
about short-term dynamics we are interested in.

Closer in spirit is the Freidlin-Wentzell theory [10, 11, 12, 13] which addresses the question
of short-term behavior of solutions of (1.1) with large A in the equivalent formulation of
fixed flow and vanishing diffusion −ε∆ + u · ∇ (on time scales ∼ ε−1 � 1). It applies to a
class of Hamiltonian flows in two dimensions, with the Hamiltonian (stream function) satis-
fying certain non-degeneracy and growth assumptions. By studying random perturbations of
Hamiltonian systems via probabilistic methods, it shows the convergence of the solution of
(1.1) to that of an effective diffusion equation on the Reeb graph of the Hamiltonian, which
is obtained by collapsing each streamline of the flow to a point. However, the flows in this
class have only closed streamlines and thus cannot be dissipation-enhancing, meaning that
the Freidlin-Wentzell method is not applicable to the problem of our interest.

It turns out that this problem can instead be approached via methods pioneered in a recent
work of Constantin, Kiselev, Ryzhik, and the author [4]. That paper has studied the question
of influence of advection on diffusion in the simpler setting of bounded domains and compact
Riemannian manifolds, and we now briefly review the literature most relevant to this setting.

Long time behavior of solutions of (1.1) on bounded domains D with Dirichlet boundary
conditions at ∂D has been investigated in many works. It is well known (see, e.g. [14]) that
the asymptotic rate of decay of the solution of (1.1) in this setting is given by the principal
eigenvalue λA0 of the corresponding elliptic operator −∆ + Au · ∇. More precisely, we have

t−1 log ‖φA(·, t)‖L2 → −λA0 as t→∞. (1.4)

The question of dependence of λA0 on A has been addressed by Kifer [14, 15, 16, 17] in
the small diffusion formulation −ε∆ + u · ∇. Using probabilistic methods, he has obtained
estimates on λA0 for large A under certain smoothness assumptions on u.

More recently and using PDE methods, Berestycki, Hamel, and Nadirashvili [2] have char-
acterized those flows u for which λA0 → ∞ as A → ∞ (the limit limA→∞ λ

A
0 in the opposite

case is also determined via a variational principle). These are those that have no non-zero
first integrals (i.e., solutions of u · ∇ψ ≡ 0) in H1

0 (D). Moreover, and particularly interesting
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to us, [2] shows that (1.2) with L2 in place of L∞ holds precisely for these flows. This can
be shown to imply (1.2) using Lemma 5.4 below, thus answering our basic question in the
setting of bounded domains with Dirichlet boundary conditions.

However, the situation is quite different in the case of unbounded domains, when the
equivalent of λA0 , the bottom of the spectrum of −∆ + Au · ∇, is always zero. In the light
of this fact, the problem on bounded domains with Neumann boundary conditions or on
compact manifolds (when the principal eigenvalue is also always zero) is more relevant to our
investigation. This is precisely the focus of [4]. In this setting the average of the solution of
(1.1) over D (which has a finite volume) stays constant and we are therefore interested in
the enhancement of the speed of relaxation of φA to this average φ̄0. That is, one wants to
characterize the flows for which

‖φA(·, τ)− φ̄0‖L∞ → 0 as A→∞ (1.5)

for each φ0 ∈ Lp(D) and τ > 0. It has been proved in [4] that these relaxation-enhancing
flows are precisely those for which the operator u · ∇ has no non-constant eigenfunctions
in H1(D). The method is based on a functional-analytic approach and spectral techniques
(e.g., the RAGE theorem), and rests on an abstract result concerning evolution equations in
a Hilbert space governed by the coupling of a dissipative evolution to a fast unitary evolution,
with the latter having no “slowly dissipating” eigenfunctions (see Theorem 2.3 below). We
also note that the property (1.5) has been showed to be equivalent to <(λA1 )→∞ as A→∞
by Franke et al. [9], where λA1 is an eigenvalue of −∆ +Au · ∇ with the smallest positive real
part (so <(λA1 ) is the spectral gap of −∆ + Au · ∇).

Similar questions in the time-discrete setting have been studied by Fannjiang, Nonnen-
macher, and Wolowski [6, 8]. In these a unitary evolution step, represented by a measure
preserving automorphism of the torus, alternates with a dissipative step, represented by
multiplication of Fourier coefficients by damping factors. Estimates on the dissipation rates
for certain classes of toral automorphisms have been provided, along with results linking
enhanced dissipation and absence of sufficiently regular eigenfunctions.

As mentioned before, our main goal is to extend the results of [4] to the non-compact
setting of unbounded domains. Having [4] at hand, one may consider the following idea. Let
φ0 have a compact support and assume that a periodic flow u on Rn (let the period be 1 in all
directions) is relaxation-enhancing on all scales. That is, u is relaxation-enhancing on each
compact manifold Mk = (kT)n. Since the average of φ0 over Mk decays to zero as k →∞,
large k and A together with (1.5) will make ‖φA(·, τ)‖L∞ as small as desired when φA solves
(1.1) on Mk. The comparison principle ensures that the solution on Rn is dominated by
that on Mk and so (1.2) follows. Moreover, we prove in Lemma 5.3 that flows which are
relaxation-enhancing on a single scale are also relaxation-enhancing on all other scales. Thus
we obtain the result of Theorem 9.1 below that all flows which are relaxation-enhancing on
their cell of periodicity are also dissipation-enhancing on Rn (Theorem 9.1 also covers the
more general case of spacetime-periodic flows).

It turns out, however, that these flows are only some of the periodic dissipation-enhancing
ones on Rn. For instance, it has been showed in [3, 19] that all generic shear (i.e., unidirec-
tional) flows satisfy (1.2) but no shear flow is relaxation-enhancing on Tn. The requirement
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(1.5) is quite strong and forces the flow to have certain mixing properties which are not
possessed by shear flows, whose streamlines are straight lines. The issue here is that when
k is large, a flow need not make φA “evenly distributed” over all of Mk in order to make
‖φA‖L∞ small.

Nevertheless, we are still able to provide a sharp characterization of the dissipation-
enhancing flows in two dimesions in Theorem 2.1. The proof uses, among others, a gen-
eralization of the abovementioned abstract Hilbert space result from [4], which also allows
the existence of slowly dissipating eigenfunctions of the fast unitary evolution (see Theo-
rem 2.4 and its time-periodic version, Theorem 4.1). It turns out that this characterization
can again be stated in terms of a simple condition concerning H1(C) eigenfunctions of the
operator u ·∇, with C the cell of periodicity of u, plus the requirement that no open bounded
set be invariant under u. This time, however, the condition excludes only the existence of
H1(C) eigenfunctions of u · ∇ with non-zero eigenvalues, placing no restrictions on the first
integrals of u.

We note that an extension of this characterization to more than two dimensions will not
be trivial. Limitations of the proof include the use of the stream function of the flow (e.g.,
in the proof that flows with bounded invariant domains are not dissipation-enhancing) as
well as the use of continuity of H1(C) eigenfunctions of u · ∇ where u(x) 6= 0 (because
streamlines have co-dimension 1). The descriptions of some of the main ideas of the proof
at the beginnings of Sections 5 and 6 provide a few more details in this direction. As a
result, in more than two dimensions we are only able to obtain a sufficient condition for
dissipation-enhancement in Theorem 9.1 mentioned above. A characterization of (periodic
incompressible) dissipation-enhancing flows in three and more dimensions thus remains open.

As mentioned above, our study of dissipation enhancement by flows on fixed time scales
is motivated in part by applications to quenching in reaction-diffusion equations. In this
case we consider (1.1) in two dimensions with an ignition-type non-negative non-linear re-
action term added to the right-hand side (8.1), and the question is which flows are able to
extinguish (quench) any initially compactly supported reaction, provided their amplitude
is large enough. Our main result here is Theorem 8.2 (and its extension to some strictly
positive non-linearities, Theorem 8.3), which shows that outside of the class of flows that do
have H1(C) eigenfunctions other than the first integrals but none of them belongs to C1,1(C),
these strongly quenching flows are precisely the dissipation-enhancing ones.

The rest of the paper is organized as follows. In Section 2 we state our main result,
Theorem 2.1, as well as the abstract Hilbert space result, Theorem 2.4, which is an important
step in the proof. In Section 3 we prove Theorem 2.4 and in Section 4 its time-periodic version,
Theorem 4.1. Sections 5 and 6 contain the proof of Theorem 2.1, and Section 7 extends it
to the case of the strip R × (0, 1) with Dirichlet or Neumann boundary conditions, along
with providing some examples. In Section 8 we apply of our main result to quenching in
reaction-diffusion equations, and in Section 9 we provide sufficient conditions for dissipation-
enhancement and quenching by space- and time-periodic flows in all dimensions.
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2. Statements of the Main Results

Let u be a periodic, incompressible, Lipschitz flow on the domain D = Rn × Tm, and
let C be its cell of periodicity with each couple of opposite (n + m− 1)-dimensional “faces”
identified, so that C is a blown-up (m + n)-dimensional torus. Then u defines a unitary
evolution {Ut}t∈R on L2(C) (and also on L2(D)) in the following manner. For each x ∈ C
there is a unique solution X(x, t) to the ODE

d

dt
X(x, t) = u(X(x, t)), X(x, 0) = x. (2.1)

We then let
(Utψ)(x) ≡ ψ(X(x,−t))

for any ψ ∈ L2(C). Incompressibility of u implies that the group {Ut}t∈R is unitary, and its
generator is the operator −iu ·∇. It is self-adjoint on L2(C) and for each ψ ∈ H1(C) we have

i
d

dt
(Utψ) = −iu · ∇(Utψ). (2.2)

If ψ ∈ L2(C) is an eigenfunction of the anti-self-adjoint operator u · ∇ (i.e., u · ∇ψ ≡ iλψ
for some λ ∈ R), and therefore also an eigenfunction of each Ut = e−(u·∇)t, we say that ψ is
an eigenfunction of the flow u on C. The eigenfunctions ψ of u that correspond to eigenvalue
zero (i.e., u · ∇ψ ≡ 0) are called the first integrals of u. We also say that a set V ⊆ D is
invariant under the flow u if and only if V 6= ∅ and X(x, t) ∈ V for all x ∈ V and t ∈ R.
Finally, if v is an incompressible Lipschitz flow on D, we let Pt(v) be the solution operator
for

ψt + v · ∇ψ = ∆ψ, ψ(0) = ψ0 (2.3)

on D. That is, Pt(v)ψ0 = ψ(·, t) when ψ solves (2.3).
We can now state our main result.

Theorem 2.1. Let u be a periodic, incompressible, Lipschitz flow on D = R2 or D = R×T
with a cell of periodicity C, and let φA solve (1.1) on D. Then the following are equivalent.

(i) For some 1 ≤ p ≤ q ≤ ∞ and each τ > 0, φ0 ∈ Lp(D),

‖φA(·, τ)‖Lq(D) → 0 as A→∞. (2.4)

(ii) For any 1 ≤ p ≤ q ≤ ∞ such that p <∞ and q > 1, and each τ > 0, φ0 ∈ Lp(D),

‖φA(·, τ)‖Lq(D) → 0 as A→∞.
(iii) For any 1 ≤ p < q ≤ ∞ and each τ > 0,

‖Pτ (Au)‖Lp(D)→Lq(D) → 0 as A→∞. (2.5)

(iv) No bounded open subset of D is invariant under u and any eigenfunction of u on C that
belongs to H1(C) is a first integral of u.



6 ANDREJ ZLATOŠ

Remarks. 1. The couples p, q in the theorem are the only ones for which the corresponding
claims can possibly hold. The conclusion of (ii) and (iii) cannot hold for p > q because then
Pτ (v) does not map Lp to Lq. As for p = q, note that since d

dt

∫
D
ψ dx ≡ 0 for solutions of

(2.3) when v is incompressible, the L1 norm of non-negative solutions does not decay. This
and the fact that ψ ≡ 1 is a constant solution mean that (ii) cannot hold for p = q ∈ {1,∞}.
The above arguments and the maximum principle give

‖Pτ (v)‖Lp→Lp = 1 (2.6)

for p ∈ {1,∞}. Finally, the estimate 0 ≤ kv(x − v̄t, y, t) ≤ Ct−1e−|x−y|
2/Ct on the heat

kernel kv(x, y, t) for the flow v on D from [24] (with v̄ the mean of v and C = C(v)) and∫
D
kv(x, y, t)dy = 1, applied to slowly varying initial data φ0, gives ‖Pτ (v)‖Lp→Lp ≥ 1 for any

p ≥ 1. Interpolation then extends (2.6) to all p and so (iii) cannot hold for any p = q.

2. The claim (iii) means that for p < q, the decay in (ii) is uniform for ‖φ0‖Lp ≤ 1. In
particular, taking p = 1 and q =∞ yields a characterization of the (periodic incompressible
Lipschitz) flows for which the corresponding heat kernel kAu(x, y, t) on D satisfies

‖kAu(·, ·, τ)‖L∞ → 0 as A→∞
for each τ > 0. Namely, these are the flows from Theorem 2.1(iv). One direction of our proof
— (iv)⇒(i),(ii),(iii) in Section 5 — will actually only concentrate on the case (p, q) = (1,∞),
since the others will follow by (2.6) and interpolation.

3. In the case of the strip D = R × (0, 1) we only consider periodic boundary conditions
here. The result remains unchanged (with C the surface of a cylinder rather than a torus)
if Dirichlet or Neumann boundary conditions are assumed and u(x) · (0, 1) = 0 for x ∈ ∂D.
See Section 7 below, which also provides examples demonstrating that the two conditions in
(iv) are independent in general.

4. Notice that for some u (e.g., vertical shear flows), the first condition in (iv) is satisfied
when D = R2 but not when D = R× T.

Definition 2.2. We will call the flows that satisfy (2.5) dissipation-enhancing on D.

It is natural to ask what makes the first integrals different from eigenfunctions correspond-
ing to a non-zero eigenvalue. The answer is essentially the fact that the existence of a single
H1 eigenfunction corresponding to eigenvalue λ 6= 0 implies the existence of infinitely many
eigenspaces of u with H1 eigenfunctions — those corresponding to all integer multiples of λ.
This can be seen from the proof of Lemma 5.3 below.

We will see from the proof of Theorem 2.1 that condition (iv) essentially tells us that
the flow Au quickly “stretches” any initial datum φ0 and exposes it to diffusion (by making
‖∇φA‖L2 large), thus enhancing the dissipation rate as much as desired when A is large. One
might therefore think that a sufficient condition for a flow to not be dissipation-enhancing
could be the existence of a stable solution of (2.1). If (2.1) on C has no dense orbits, then
this is indeed the case (see Theorem 7.3). However, the claim is not true in general. We
will not provide all details here, but a counterexample can be obtained in the following
manner. One first constructs a 1-periodic flow u whose spectrum is {n+mα |n,m ∈ Z} for
some α ∈ R \ Q, and such that all the eigenfunctions of u except of the constant function
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belong to C(T2) \ H1(T2). This can be done using Example 2 in Section 6 of [4], with the
obtained flow smoothly isomorphic to a reparametrization of the constant flow (α, 1) (and
therefore no bounded subset of D is invariant under the flow). The construction goes back
to Kolmogorov’s work [20] and at its core is the problem of small divisors — it is based on
the existence of a smooth function Q : T → T with

∫
TQ(ξ) dξ = 1 and α ∈ T such that the

homology equation (6.2) in [4]

R(ξ + α)−R(ξ) = Q(ξ)− 1, (2.7)

has a solution R ∈ H 1
2

+ε(T) \H1(T) ⊆ C(T) \H1(T). This is possible when α is Liouvillean,
that is, well approximated by rationals. The (continuous, non-H1) eigenfunctons of the
constructed flow have absolute value one and u is non-zero everywhere, so our analysis in
Section 6 below can be used to show that all solutions of (2.1) are stable. Nevertheless,
Theorem 2.1 shows that u is dissipation-enhancing!

As we have mentioned in the Introduction, the proof of Theorem 2.1 crucially uses an
abstract result concerning dissipative evolution in a Hilbert space — Theorem 2.4. This is a
generalization of Theorem 1.4 in [4] and we now state both results.

Let Γ be a self-adjoint, non-negative, unbounded operator with a discrete spectrum on a
separable Hilbert space H. Let λ1 ≤ λ2 ≤ . . . be the eigenvalues of Γ (so that λ1 ≥ 0 and
λn → ∞) and let κj be the corresponding orthonormal eigenvectors forming a basis in H.
The Sobolev space Hm(Γ) associated with Γ is formed by all vectors ψ =

∑
j cjκj such that

‖ψ‖Ḣm(Γ) ≡
(∑

j

λmj |cj|2
)1/2

<∞.

This is the homogeneous Sobolev semi-norm (which is a norm if λ1 > 0), and the Sobolev
norm is defined by ‖ · ‖2

Hm(Γ) = ‖ · ‖2
Ḣm(Γ)

+ ‖ · ‖2
H. Note that the domain of Γ is H2(Γ).

Let L be a self-adjoint operator on H such that, for any ψ ∈ H1(Γ) and t > 0 we have

‖Lψ‖H ≤ C‖ψ‖H1(Γ) and ‖eiLtψ‖H1(Γ) ≤ B(t)‖ψ‖H1(Γ) (2.8)

where the constant C < ∞ and the function B(t) ∈ L2
loc[0,∞) are independent of ψ. Here

eiLt is the unitary evolution group generated by the self-adjoint operator L. It has been
shown in [4] that the two conditions in (2.8) are independent in general.

Finally, let φA(t) be a solution of the Bochner differential equation

d

dt
φA(t) = iALφA(t)− ΓφA(t), φA(0) = φ0. (2.9)

Then we have the following result from [4].

Theorem 2.3 ([4]). Let Γ be a self-adjoint, positive, unbounded operator with a discrete
spectrum and let a self-adjoint operator L satisfy (2.8). Then the following are equivalent.

(i) For any τ, δ > 0 and φ0 ∈ H there exists A0(τ, δ, φ0) such that for any A > A0(τ, δ, φ0),
the solution φA(t) of (2.9) satisfies ‖φA(τ)‖2

H < δ.
(ii) For any τ, δ > 0 there exists A0(τ, δ) such that for any A > A0(τ, δ) and any φ0 ∈ H

with ‖φ0‖H ≤ 1, the solution φA(t) of (2.9) satisfies ‖φA(τ)‖2
H < δ.
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(iii) The operator L has no eigenfunctions belonging to H1(Γ).

Remark. Note that the theorem says that if A0 above exists, it is independent of φ0 inside
the unit ball in H. This is the same as the equivalence of Theorem 2.1(ii) and (iii).

If one takes Γ ≡ −∆ and L ≡ iu·∇, both restricted to the space of mean-zero L2 functions,
then (2.9) is (1.1) and this result can be applied to the study of fast relaxation by flows on
compact manifolds or on bounded domains D (where Γ > 0 has a discrete spectrum). It
obviously only provides L2 → L2 estimates, but after coupling these with Lemma 5.4 below,
one can obtain the characterization of relaxation-enhancing flows on D from [4] mentioned
in the Introduction.

In the light of our earlier observation that on unbounded domains not all periodic flows
satisfying (1.2) are relaxation-enhancing on their cell of periodicity, a natural next question
is what happens to the dissipative dynamics (2.9) when some eigenfunctions of L do lie in
H1(Γ). We denote by Ph : H → H the projection onto the closed subspace PhH ⊆ H
generated by all such eigenfunctions. That is, PhH is the closure in H of the set of all linear
combinations of those eigenfunctions of L which lie in H1(Γ). Notice that PhH need not be
contained in H1(Γ) since the latter is not closed. Now we can provide the following answer.

Theorem 2.4. Let Γ be a self-adjoint, non-negative, unbounded operator with a discrete
spectrum and let a self-adjoint operator L satisfy conditions (2.8). Then for any τ, δ > 0
there exists A0(τ, δ) such that for any A > A0(τ, δ) and any φ0 ∈ H with ‖φ0‖H ≤ 1, the
Lebesgue measure of the set of times t for which the solution φA(t) of (2.9) satisfies

‖(I − Ph)φA(t)‖2
H ≥ δ (2.10)

is smaller than τ . Moreover, if dim(PhH) <∞, then ‖(I − Ph)φA(t)‖2
H < δ for all t > τ .

Remarks. 1. That is, if A is large, any solution starting in the unit ball in H will spend
a lot of time

√
δ-close to the subspace PhH. We will actually show that this is even true for

some (τ, δ)-dependent finite-dimensional subspace of PhH ∩H1(Γ) (see the proof).

2. It follows from (3.9) below that PhH is the smallest closed subspace (and its unit ball
the smallest closed subset) of H for which a result like this holds. In this sense, Theorem 2.4
is not only natural but also optimal.

3. It remains an open problem whether for large A the evolution stays close to PhH for
all t > τ when dim(PhH) =∞ (note that, e.g., dim(PhH) =∞ when u in Theorem 2.1 has
an H1 eigenfunction with non-zero eigenvalue, due to Lemma 5.3). We conjecture that this
is the case. A related interesting problem is to find the A→∞ asymptotics of the evolution
(2.9) and determine whether one recovers an effective evolution equation on the subspace
PhH in this way.

4. We allow here Γ ≥ 0 rather than Γ > 0 (Theorem 2.3 can also be extended to this case).
In the proof of Theorem 2.1 we will take Γ ≡ −∆ and L ≡ iu · ∇ on H ≡ L2(Mk) (withMk

from the Introduction), rather than just the mean-zero L2 functions.
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3. The Abstract Result

In this section we prove Theorem 2.4. As in [4], we reformulate (2.9) as a small diffusion–
long time problem. By setting ε = A−1 and rescaling time by the factor 1/ε, we pass from
considering (2.9) to

d

dt
φε(t) = (iL− εΓ)φε(t), φε(0) = φ0. (3.1)

We now want to show that for all small enough ε > 0 the measure of times for which (2.10)
holds (with A replaced by ε) is smaller than τ/ε.

We will be comparing this dissipative dynamics to the “free” one given by

d

dt
φ0(t) = iLφ0(t), φ0(0) = φ0, (3.2)

so that φ0(t) = eiLtφ0. Notice that if L ≡ iu · ∇, then this is just

φ0
t + u · ∇φ0 = 0, φ0(x, 0) = φ0(x), (3.3)

that is, (2.2) with φ0 ≡ ψ and φ0(x, t) ≡ (Utψ)(x) = φ0(X(x,−t)).
For the sake of convenience, in the remainder of this section we will denote the norm ‖ · ‖H

by ‖ · ‖, the space Hm(Γ) by Hm, and the semi-norm ‖ · ‖Ḣm(Γ) by ‖ · ‖m.

We begin with collecting some preliminary results from [4] in the following lemma.

Lemma 3.1 ([4]). Assume that conditions (2.8) hold.
(i) For ε ≥ 0 and φ0 ∈ H1 there exists a unique solution φε(t) of (3.1) on [0,∞). If ε > 0,

then for any T <∞,

φε(t) ∈ L2([0, T ], H2) ∩ C([0, T ], H1),
d

dt
φε(t) ∈ L2([0, T ],H). (3.4)

If ε = 0, then for any T <∞,

φ0(t) ∈ L2([0, T ], H1) ∩ C([0, T ],H),
d

dt
φ0(t) ∈ L2([0, T ],H)

(ii) We have
d

dt
‖φε‖2 = −2ε‖φε‖2

1 (3.5)

for a.e. t, and hence

‖φε(t)‖2 ≤ ‖φ0‖2 and

∫ ∞
0

‖φε(t)‖2
1dt ≤

‖φ0‖2

2ε
. (3.6)

(iii) If φε and φ0 solve (3.1) and (3.2), respectively, with φ0 ∈ H1, then

d

dt
‖φε(t)− φ0(t)‖2 ≤ ε

2
‖φ0(t)‖2

1 ≤
ε

2
B(t)2(‖φ0‖2

1 + ‖φ0‖2) (3.7)

for a.e. t. In particular,

‖φε(t)− φ0(t)‖2 ≤ ε

2
(‖φ0‖2

1 + ‖φ0‖2)

∫ T0

0

B(t)2 dt (3.8)
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for any φ0 and t ≤ T0. Moreover, if b = b(φ0, T0) <∞ is such that ‖φ0(t)‖1 ≤ b‖φ0‖ for
any t ∈ [0, T0], then for all such t,

‖φε(t)− φ0(t)‖2 ≤ b2εt

2
‖φ0‖2. (3.9)

Remarks. 1. We consider here φε to be a solution of (3.1) if it is continuous and satisfies
(3.1) for a.e. t.

2. The solution φε also exists for any φ0 ∈ H, but then it may be rougher on time intervals
containing 0 when ε > 0, and everywhere when ε = 0. We will only need to consider φ0 ∈ H1

in the proof of Theorem 2.4. This is because H1 is dense in H, and the norm of the difference
of two solutions of (3.1) with the same ε cannot increase due to (3.6).

Notice that according to (3.5), the rate of decrease of ‖φε‖2 is proportional to ‖φε‖2
1. This

illuminates the following result from which Theorem 2.4 will follow.

Theorem 3.2. Consider the setting of Theorem 2.4. Then for any τ, δ > 0 there exists
ε0(τ, δ) > 0 and T0 = T0(τ, δ) such that for any ε ∈ (0, ε0(τ, δ)), any φ0 ∈ H1 with ‖φ0‖ ≤ 1,
and any t ≥ 0, the solution φε of (3.1) satisfies at least one of the following:
(a)

‖φε(t)‖2
1 >

1

τ
; (3.10)

(b) ∫ T0+t

t

‖φε(s)‖2
1ds ≥

T0

τ
; (3.11)

(c)

‖(I − Ph)φε(t)‖2 < δ and neither (a) nor (b) holds. (3.12)

Remark. This result in the absence of H1-eigenfunctions was the cornerstone of the proof
of Theorem 1.4 in [4].

Proof of Theorem 2.4 given Theorem 3.2. Let t1 ≥ 0 be the first time such that Theorem 3.2(b)
holds for t = t1, let t2 ≥ t1 +T0 be first such time after t1 +T0, etc. Thus we obtain a sequence
of times tj such that tj+1 ≥ tj + T0 and (b) holds for t = tj. If J1 =

⋃
j[tj, tj + T0], then

(b) does not hold for any t ∈ R+ \ J1 by construction. Let J2 be the set of all t ∈ R+ \ J1

for which (a) holds and let J0 ≡ J1 ∪ J2, so that neither (a) nor (b) holds for t ∈ R+ \ J0.
Therefore (c) holds for these t, and so (2.10) (with ε in place of A) can only hold for t ∈ J0.
From the definition of J0 we have that∫

J0

‖φε(t)‖2
1dt ≥

|J0|
τ
.

From (3.6) we obtain |J0| ≤ τ/2ε < τ/ε. This proves the first claim in Theorem 2.4 when
φ0 ∈ H1 (after rescaling time by a factor of ε to pass from (3.1) to (2.9)). As explained
above, the case φ0 ∈ H is immediate from the density of H1 in H.
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Let {φn}n∈N be an orthonormal basis of PhH with each φn an H1 eigenfunction of L.
Notice that each φε(t) satisfying Theorem 3.2(c) belongs to

K ≡
{
φ

∣∣∣∣ ‖φ‖2 ≤ 1, ‖φ‖2
1 ≤

1

τ
, and ‖(I − Ph)φ‖2 ≤ δ

}
.

This set is compact and hence so is PhK ⊆ PhH. Each element of K is
√
δ-close to PhK, and

compactness shows that there is n0 = n0(τ, δ) <∞ such that each element of PhK is
√
δ-close

to the subspace with basis {φn}n0
n=1. Replacing δ by δ/4 proves the claim of Remark 1 after

Theorem 2.4.
Finally, assume dim(PhH) < ∞. Then PhH ⊆ H1 and there must be b < ∞ such that

‖φ‖1 ≤ b‖φ‖ for all φ ∈ PhH. By (3.9), there is τ1 ≡ 2δ/b2 such that for all ε > 0 and all

φ1 ∈ PhH with ‖φ1‖ ≤ 1, the solution of (3.1) with initial condition φ1 stays
√
δ-close to

PhH on the time interval [0, τ1/ε].
Now change τ to min{τ, τ1}, and change ε0(τ, δ) accordingly. The first claim of Theorem 2.4

says that for any φ0 with ‖φ0‖ ≤ 1 and any t > τ/ε there is t0 ∈ [t − τ/ε, t] and φ1 ∈ PhH
with ‖φ1‖ ≤ 1 such that ‖φε(t0)− φ1‖ <

√
δ. But then from (3.6) and t− t0 ≤ τ/ε ≤ τ1/ε,

dist(φε(t), PhH) ≤ ‖φε(t)− φε1(t− t0)‖+ dist(φε1(t− t0), PhH) < 2
√
δ,

where φε1 is the solution of (3.1) with initial condition φ1. Again, replacing δ by δ/4 gives
the second claim of Theorem 2.4. �

We devote the rest of this section to the proof of Theorem 3.2.

Proof of Theorem 3.2. We let Pc and Pp be the spectral projections in H onto the continuous
and pure point spectral subspaces of L, respectively. We also let ej be the eigenvalues of
L and Pj the projection onto the eigenspace corresponding to ej. Finally, let QN be the
projection onto the subspace generated by the eigenfunctions κ1, . . . , κN corresponding to
the first N eigenvalues of Γ.

Take ε > 0 and let us assume that ‖φε(t0)‖2
1 ≤ 1/τ and ‖(I−Ph)φε(t0)‖2 ≥ δ. We then need

to show that (b) holds with t = t0 provided ε ∈ (0, ε0), with ε0 = ε0(τ, δ) and T0 = T0(τ, δ)
to be determined later. To simplify notation we rename φε(t0) to φ0 and φε(t0 + t) to φε(t)
so that φε(t) solves (3.1) and we have

‖φ0‖2 ≤ 1, ‖φ0‖2
1 ≤

1

τ
, and ‖(I − Ph)φ0‖2 ≥ δ. (3.13)

We now need to show ∫ T0

0

‖φε(t)‖2
1dt ≥

T0

τ
(3.14)

in order to conclude (b), which is what we will do.
The idea, partly borrowed from [4], is as follows. We let φ0(t) ≡ eiLtφ0 solve (3.2) and note

that (3.8) guarantees φε(t) to be close to φ0(t) for all t ≤ T0 as long as ε is sufficiently small.
As a result we will be left with studying the free dynamics φ0(t). We will show, in an averaged
sense over [0, T0], that its pure point part Ppφ

0(t) will “live” in low and intermediate modes
of Γ (i.e., in QNH for some N < ∞) with a large H1 norm there if ‖(Pp − Ph)φ0‖2 ≥ δ/2.
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On the other hand the continuous part Pcφ
0(t) will live in high modes (i.e., in (I −QN)H),

and thus also have large H1 norm if ‖Pcφ0‖2 ≥ δ/2. Since I − Ph = Pc + (Pp − Ph), (3.13)
will ensure (3.14) for both the free and dissipative dynamics. The key to these conclusions
will be the compactness of the set of φ0 satisfying (3.13).

The main point is that the pure point and continuous parts of the free dynamics effectively
“decouple” into different modes of Γ and therefore do not cancel out each other’s contribution
to the H1 norm. We note that in [4], the possibility of Ppφ

0(t) leaking into the high modes
has not been excluded, resulting in the limitation mentioned in the remark after Theorem 3.2.

The next three lemmas make the above heuristic rigorous.

Lemma 3.3 ([4]). Let K ⊂ H be a compact set. For any N,ω > 0, there exists Tc(N,K, ω)
such that for all T ≥ Tc(N,K, ω) and any φ ∈ K, we have

1

T

∫ T

0

‖QNe
iLtPcφ‖2 dt < ω. (3.15)

This is the “uniform RAGE theorem” for a compact set of vectors [4]. It says that if we
wait long enough, the continuous part of the free dynamics starting in K escapes into the
high modes of Γ in a time average. The next lemma shows that the pure point dynamics
stays in low and intermediate modes.

Lemma 3.4. Let K ⊂ H be a compact set. For any ω > 0, there exists Np(K,ω) such that
for any N ≥ Np(K,ω), φ ∈ K, and t ∈ R, we have

‖(I −QN)eiLtPpφ‖2 < ω. (3.16)

Proof. Let {φn} be an orthonormal basis of PpH such that each φn is an eigenfunction of
L with eigenvalue ej(n). Since PpK is compact, it has a finite 1/k net for any k ∈ N.
Moreover, this net can be chosen so that each its element is a finite linear combination
of the φn, since these are dense in PpH (of course, it may happen that some elements of
this net are not in PpK). Let the net be {

∑n0

n=1 αm,nφn}
m0
m=1. Since eiLt is unitary, R ≡⋃

t∈R{
∑n0

n=1 e
iej(n)tαm,nφn}m0

m=1 is a 1/k net for K ′ ≡
⋃
t∈R e

iLtPpK. Let α ≥ sup |αm,n| be an
integer and S ≡ 2π

4nαk
{1, 2, . . . , 4nαk}. Then⋃

qm,n∈S

{
n0∑
n=1

eiqm,nαm,nφn

}m0

m=1

is a finite 1/k net for R, and thus a 2/k net for K ′. Since k was arbitrary, K ′ must be
compact. We have that I −QN converges strongly to zero as N →∞, and so there must be
N such that ‖(I −QN)φ‖2 < ω for all φ ∈ K ′. �

Finally, we show that the H1 norm of the pure point part of the free dynamics will become
large provided Ppφ0 is sufficiently “rough”. Recall that Pj are the projections onto the
eigenspaces of L.

Lemma 3.5. Let K ⊂ H be a compact set and Ω < ∞ be such that each φ ∈ K satisfies∑
j ‖Pjφ‖2

1 ≥ 3Ω (the sum may be equal to ∞). Then there exists N1(K,Ω) and T1(K,Ω)
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such that for all N ≥ N1(K,Ω) and T ≥ T1(K,Ω) we have

1

T

∫ T

0

‖QNe
iLtPpφ‖2

1 dt > Ω. (3.17)

This is almost identical to Lemma 3.3 in [4] (which only treats the case
∑

j ‖Pjφ‖2
1 =∞)

and the proof carries over. Namely, one first shows using compactness that there is N such
that for all φ ∈ K we have

∑
j ‖QNPjφ‖2

1 ≥ 2Ω. Then one shows∣∣∣∣∣ 1

T

∫ T

0

‖QNe
iLtPpφ‖2

1 dt−
∑
j

‖QNPjφ‖2
1

∣∣∣∣∣→ 0

as T →∞, with the convergence being uniform on compacts. We refer to [4] for details.
We are now ready to finish the proof of Theorem 3.2. Recall that we need to show (3.14),

assuming (3.13). Let

K0 ≡
{
φ

∣∣∣∣ ‖φ‖2 ≤ 1 and ‖φ‖2
1 ≤

1

τ

}
,

K1 ≡ K0 ∩
{
φ

∣∣∣∣ ‖(Pp − Ph)φ‖2 ≥ δ

2

}
, (3.18)

Np = Np

(
K0,

δ

12

)
,

N1 = N1

(
K1,

10

τ

)
, (3.19)

N2 ≡ min

{
N

∣∣∣∣λN ≥ 48

τδ

}
,

Nc ≡ max
{
Np, N1, N2

}
,

ω ≡ min

{
δ

48
,

1

τλN1

}
,

T0 = T0(τ, δ) ≥ max

{
T1

(
K1,

10

τ

)
, Tc
(
Nc, K0, ω

)}
, (3.20)

ε < ε0(τ, δ) ≡ 2τ

1 + τ

(∫ T0

0

B(t)2 dt

)−1

ω.

Note that K0 is compact and hence so is K1. Also, N1 and T1 are well defined because if
φ ∈ K1, then Pnφ 6∈ PhH for some n by the definition of K1. Since Pnφ is an eigenfunction of
L, we have Pnφ 6∈ H1, and so

∑
j ‖Pjφ‖2

1 = ∞ (note that we do not claim Ppφ /∈ H1). This

suggests that we could have used the version of Lemma 3.5 from [4] (with 3Ω replaced by
∞). We shall see later that the current form will be necessary in the proof of Theorem 2.1.



14 ANDREJ ZLATOŠ

From (3.13) we know that either ‖(Pp − Ph)φ0‖2 ≥ δ/2 or ‖Pcφ0‖2 ≥ δ/2. Assume the
former. Then φ0 ∈ K1 and so by Lemma 3.5,

1

T0

∫ T0

0

‖QN1e
iLtPpφ0‖2

1 dt ≥
10

τ
.

We also know from Lemma 3.3 and (3.20) that

1

T0

∫ T0

0

‖QN1e
iLtPcφ0‖2 dt ≤ 1

T0

∫ T0

0

‖QNce
iLtPcφ0‖2 dt ≤ ω ≤ 1

τλN1

and so
1

T0

∫ T0

0

‖QN1e
iLtPcφ0‖2

1 dt ≤
1

τ
.

It follows using the triangle inequality for ‖ · ‖1 and (a− b)2 ≥ 1
2
a2 − b2 that

1

T0

∫ T0

0

‖QN1φ
0(t)‖2

1 dt ≥
4

τ
.

From (3.8) and (3.13) we know that

‖φε(t)− φ0(t)‖2 ≤ ε

2

(
1

τ
+ 1

)∫ T0

0

B(t)2 dt ≤ ω (3.21)

for t ≤ T0, and so
1

T0

∫ T0

0

‖QN1(φ
ε(t)− φ0(t))‖2

1 dt ≤ λN1ω ≤
1

τ
.

Using again (a− b)2 ≥ 1
2
a2 − b2 yields

1

T0

∫ T0

0

‖QN1φ
ε(t)‖2

1 dt ≥
1

τ

and (3.14) follows.
Next we assume (3.13) and ‖Pcφ0‖2 ≥ δ/2. Since φ0 ∈ K0, Lemma 3.3 gives

1

T0

∫ T0

0

‖(I −QNc)e
iLtPcφ0‖2 dt >

δ

2
− ω > δ

3
.

Lemma 3.4 and Nc ≥ Np give

1

T0

∫ T0

0

‖(I −QNc)e
iLtPpφ0‖2 dt <

δ

12
,

so we obtain
1

T0

∫ T0

0

‖(I −QNc)φ
0(t)‖2 dt >

δ

12
.

Applying (3.21) yields

1

T0

∫ T0

0

‖(I −QNc)φ
ε(t)‖2 dt >

δ

24
− ω ≥ δ

48
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and so
1

T0

∫ T0

0

‖(I −QNc)φ
ε(t)‖2

1 dt >
δ

48
λNc ≥

δ

48
λN2 ≥

1

τ
.

Again (3.14) follows and the proof of Theorem 3.2 is complete. �

4. The Time-Periodic Case

Theorem 2.3 has a natural extension to the case of time-periodic family of operators Lt in
place of L [18]. We provide here the corresponding extension of Theorem 2.4.

Let Γ be as before and let Lt be a periodic family of self-adjoint operators on H such that
for some C <∞, all ψ ∈ H1(Γ), and all t ∈ R,

‖Ltψ‖H ≤ C‖ψ‖H1(Γ). (4.1)

Without loss of generality assume Lt has period 1. Let {Ut}t∈R be a strongly continuous
family of unitary operators on H such that for any φ0 ∈ H1(Γ), the function φ0(t) ≡ Utφ0

satisfies
d

dt
φ0(t) = iLtφ

0(t) (4.2)

for almost every t. Notice that if Lt ≡ L is constant, then Ut = eiLt. Finally, assume there
is a locally bounded function B(t) such that for any ψ ∈ H1(Γ) and t ∈ R,

‖Utψ‖H1(Γ) ≤ B(t)‖ψ‖H1(Γ). (4.3)

We denote by Ph the projection onto the closed subspace PhH ⊆ H generated by all H1(Γ)
eigenfunctions of U1 (these coincide with those of L when Lt ≡ L) and we let φA(t) be the
solution of

d

dt
φA(t) = iALAtφ

A(t)− ΓφA(t), φA(0) = φ0. (4.4)

Note that this is the right choice of the fast dissipative evolution to consider since the orbits
of the fast free evolution d

dt
φ(t) = iALAtφ(t) coincide with those of (4.2).

Theorem 4.1. Let Γ be a self-adjoint, non-negative, unbounded operator with a discrete
spectrum and let Lt and Ut satisfy conditions (4.1)–(4.3). Then for any τ, δ > 0 there exists
A0(τ, δ) such that for any A > A0(τ, δ) and any φ0 ∈ H with ‖φ0‖H ≤ 1, the Lebesgue
measure of the set of times t ≥ 0 for which the solution φA(t) of (4.4) satisfies

‖(I − Ph)U∗AtφA(t)‖2
H ≥ δ (4.5)

is smaller than τ .

Remark. Let Us,t ≡ UtU
∗
s with U∗s the adjoint of Us. Then B(t), B(−t) <∞ and periodicity

of Lt guarantee that Ut = U0,t maps H1 eigenfunctions of U1 = U0,1 onto those of Ut,t+1, and
that Ut,0 = U∗t maps H1 eigenfunctions of Ut,t+1 onto those of U1. Hence Pt,h ≡ UtPh is the
projection on the subspace of H generated by all H1 eigenfunctions of Ut,t+1, and so

‖(I − Ph)U∗t φ‖ = ‖(I − Pt,h)φ‖.
This illuminates (4.5). Notice also that Pt+1,h = Pt,h by definition.
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We will now sketch the proof, which follows the lines of the proof of Theorem 2.4. The
point is to obtain Theorem 3.2 with (c) replaced by

‖(I − Ph)U∗t φε(t)‖2 < δ and neither (a) nor (b) holds (4.6)

(from which Theorem 4.1 follows immediately). This is done in two steps.
First we fix any γ ∈ [0, 1). We then obtain Theorem 3.2 with (b) replaced by

T0−2∑
n=0

‖φε(dte+ γ + n)‖2
1 >

2T0

τ
(4.7)

and (c) by (4.6). Here dte is the least integer not smaller than t (and we let β ≡ dte− t), and
the obtained T0, ε0 additionally depend on γ. The proof extends directly with the following

changes. After renaming φε(t) to φ0, we replace all integrals
∫ T0

0
. . . dt in the proof by the

sums
∑T0−2

n=0 , with the argument t inside the integrals replaced by the argument β + γ + n
inside the sums. The role of φ0 is then played by φ0(β + γ), and that of eiLt by Un

γ,γ+1 (since

φ0(β + γ + n) = Un
γ,γ+1φ

0(β + γ)). The assumption (3.13) now reads

‖φ0‖2 ≤ 1, ‖φ0‖2
1 ≤

1

τ
, and ‖(I − Ph)U∗t φ0‖2 ≥ δ,

which together with

‖(I−Pγ,h)φ0(β+γ)‖ = ‖U∗dte(I−Ph)U∗γφ0(β+γ)‖ = ‖(I−Ph)U∗t+β+γφ
0(β+γ)‖ = ‖(I−Ph)U∗t φ0‖

guarantees

‖φ0(β + γ)‖2 ≤ 1, ‖φ0(β + γ)‖2
1 ≤

b

τ
, and ‖(I − Pγ,h)φ0(β + γ)‖2 ≥ δ,

where b ≡ supt∈[0,2]B(t). From this (4.7) follows as in Section 3, with the definitions of K0

and K1 involving ‖φ‖2
1 ≤ b/τ and ‖(Pγ,p−Pγ,h))φ‖2 ≥ δ/2, respectively, and with τ replaced

by τ/2 in order to account for the extra factor of two in (4.7).
Next we notice that we can actually pick T0, ε0 uniformly for all γ inside a set G of measure

1
2
. This is because the maximum in (3.20) is finite for each γ, and so the same T0 (and hence

the same ε0) can be chosen for all γ outside of a set of a small measure. Integrating (4.7)
over G now gives Theorem 3.2 with (a) and (b) the same as in (3.10) and (3.11), and (c)
replaced by (4.6). This finishes the proof.

5. Proof of Theorem 2.1: Part I

We devote the next two sections to the proof of Theorem 2.1. We will consider D = R×T
and since the case D = R2 is almost identical, we will just indicate along the way where
adjustments for this setting are required. We will also assume that u has period one in each
coordinate, that is, C = T2. The general case is again identical.

In this section we prove that if Theorem 2.1(iv) holds, then so do parts (i)–(iii). Let us
therefore assume that the 1-periodic incompressible Lipschitz flow u leaves no open bounded
subset of D invariant and has no H1(T2) eigenfunctions except possibly with eigenvalue zero
(i.e., first integrals). We will then show that Theorem 2.1(i)–(iii) hold.
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Let us start with a description of the main idea. Fix any τ, δ > 0 and let ‖φ0‖L2 ≤ 1 (we
will actually take ‖φ0‖L1 ≤ 1 to obtain the desired L1 → L∞ bounds). As mentioned in the
Introduction, we periodize the domain and consider the solution φA of (1.1) onM≡ kT×T
with k � 1 depending on τ, δ (we use M≡ (kT)2 when D = R2). Here kT for k ∈ N is the
interval [0, k] with 0 and k identified, and the φA onM will majorize the |φA| on D. We will
show that onM the flow u also cannot have H1 eigenfunctions other than the first integrals
(i.e., the operator u · ∇ on M can only have H1(M) eigenfunctions with eigenvalue zero).
We will then show that if k and A are large enough, ‖φA(τ)‖L∞ will be small.

To this end we notice that we are now in the setting of our main abstract result because
the Laplacian on M has a discrete spectrum. Similarly to (3.5), we now have

d

dt
‖φA‖2

L2 = −2‖φA‖2
H1 , (5.1)

and so ‖φA‖L2 will decay quickly as long as ‖φA‖H1 stays large. Theorem 3.2 for φA says
that if A is large, then the latter can only be prevented by φA becoming close to an H1 first
integral ψ of u.

If ‖ψ‖L∞ is small, ‖φA‖L∞ will also become small after a short time interval during which
Lemma 5.4 below takes care of φA − ψ (which is small). In this case we will be done.

If, on the other hand, ‖ψ‖L∞ is large, then we will show that ψ has to be large on a long
streamline of u. More precisely, we will show using dim(M) = 2 that under our hypotheses
ψ has to be continuous, constant on the streamlines of u on M, and that long streamlines
must be dense. As a result, we will obtain that ‖ψ‖H1 is large (again using dim(M) = 2).
We would like to conclude that ‖φA‖H1 must also be large but we only know that ‖φA−ψ‖L2

is small, which does not guarantee this. Instead, we will need to slightly adjust the proof
of Theorem 2.4 to obtain that ‖φA‖H1 will be large on average during a short time interval
(essentially showing that the fast flow quickly aligns φA with ψ). Thus the fast decay of
‖φA‖L2 can only be stopped by ‖φA‖L∞ becoming small. Since this fast decay can only be
sustained for a short time due to ‖φ0‖L2 ≤ 1, we will indeed obtain that ‖φA(τ)‖L∞ is small.
Lemma 5.4 and interpolation will take care of the rest.

In what follows we make this heuristic rigorous. A stream function for u is a function
H ∈ C1(D) with values in R if D = R2 and in aT for some a > 0 if D = R× T such that

u(x1, x2) =
(
u1(x1, x2), u2(x1, x2)

)
= ∇⊥H(x1, x2) ≡

(
− ∂H

∂x2

(x1, x2),
∂H

∂x1

(x1, x2)

)
. (5.2)

If D = R2, then we can take

H(x1, x2) ≡
∫ x1

0

u2(s, 0) ds−
∫ x2

0

u1(x1, s) ds,

which satisfies (5.2) because u is incompressible and so∫ x1

0

u2(s, 0) ds−
∫ x2

0

u1(x1, s) ds = −
∫ x2

0

u1(0, s) ds+

∫ x1

0

u2(s, x2) ds.

For the same reason and from periodicity of u we also have that ã ≡ H(x1, x2 +1)−H(x1, x2)
is independent of (x1, x2). Let a ≡ |ã| if ã 6= 0 and let a be any positive number otherwise.
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Changing H to (H mod aZ) gives a C1 stream function with values in aT which is 1-periodic
in x2, that is, a stream function on R× T. Without loss of generality we will assume a ≡ 1,
as this can be achieved by changing u to a−1u. Note also that

u · ∇H ≡ 0 (5.3)

by (5.2), so that H is constant on the streamlines of u.

Lemma 5.1. Let u be a 1-periodic incompressible Lipschitz flow. Then u leaves no open
bounded subset of D invariant if and only if the union of unbounded streamlines of u is a
dense subset of D.

Proof. If the unbounded streamlines of u are dense in D, clearly no open bounded subsets of
D are left invariant by the flow.

Assume now that the unbounded streamlines of u are not dense in D and let Y ⊂ D be
open bounded and such that all streamlines intersecting Y are bounded. If u ≡ 0 on Y , then
Y is an open bounded set invariant under u.

Otherwise take x0 ∈ Y such that u(x0) 6= 0. This means that 0 6= ∇H(x0) ⊥ u(x0), and
since H ∈ C1, there is a neighborhood V ⊆ Y of x0 such that for each y0 ∈ V the set{

x ∈ V
∣∣H(x) = H(y0)

}
is precisely the intersection of V with the streamline passing through y0. Pick V small enough
so that there is t0 > 0 such that X(V, t0) ∩ V = ∅, with X the solution of (2.1) on D. This
is possible because u is continuous. Finally, we let

W0 ≡
{
x ∈ V

∣∣ |X(x, t)| ≤M for all t ∈ R
}

with M large enough so that |W0| > 0. This is possible because all streamlines intersecting
V are bounded.

Let Wj ≡ X(W0, jt0), so that Wj ⊆ B(0,M) and incompressibility of u gives |Wj| =
|W0| > 0. Hence there must be j < k with Wj ∩Wk 6= ∅, which in turn gives existence of
y0 ∈ W0 ∩Wm for m ≡ k − j > 0 (and then obviously we must have m ≥ 2). So there is
y ∈ W0 such that X(t, y) = y0 for some t ∈ [(m− 1)t0, (m + 1)t0]. But then H(y) = H(y0),
and so y must lie on the streamline through y0. It follows that this non-trivial streamline S
is closed, that is, X(y, τ) = y for some τ ≥ (m− 1)t0 > 0.
S is a simple closed curve in D and therefore it is either homotopic to a point (which is

always the case if D = R2) or to {0} ×T (i.e., it winds around D = R×T). In the first case
the interior of S is an open bounded set invariant under u because streamlines of u cannot
intersect. In the second case we let S ′ ≡ S + (1, 0). Then S ′ is also a streamline of u and
S ′ 6= S, due to periodicity of u and boundedness of S. Then the open bounded domain
between S and S ′, homotopic to a cylinder, is invariant under u. �

Lemma 5.2. Let u be an incompressible Lipschitz flow onM≡ kT× lT and let ψ ∈ H1(M)
satisfy u ·∇ψ ≡ 0. Then ψ is constant on each streamline of u and continuous at each x ∈M
for which u(x) 6= 0. Moreover, if for some ε > 0 the union of streamlines of u of diameter at
least ε is dense in M, then ψ is continuous.
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Proof. Let x0 ∈M be such that u(x0) 6= 0, let v ⊥ u(x0) have length 1, and set xs ≡ x0 + sv
for s ∈ R. Define g(t, s) ≡ X(xs, t) with X from (2.1). Since u is Lipschitz, g is a bilipschitz
diffeomorphism between some neighborhoods of 0 ∈ R2 and x0. This means that the H1

function ω(·) ≡ ψ(g(·)) satisfies (1, 0) · ∇ω ≡ 0. That is, ω(t, s) = ω̃(s) almost everywhere,
with ω̃ an H1 function of a single variable and so continuous on a neighborhood of 0. We
conclude that ψ is continuous on a neighborhood of x0 (after possibly changing it on a
measure-zero set). This means that ψ is (equivalent to a function) continuous at each x such
that u(x) 6= 0. This and the dependency of ω on s only means that ψ is constant on all
non-trivial streamlines. It is obviously constant on the trivial ones, too.

Next assume that the union of streamlines of diameter at least ε > 0 is dense in M. It
is sufficient to consider ε = 1, the general case is identical. The open set R of all x with
u(x) 6= 0 is dense in D. We will now show that ψ|R can be continuously extended to M.
Assume the contrary, that is, there is x0 ∈ M and xn, zn ∈ R with limxn = lim zn = x0

such that either lim |ψ(xn)| = ∞ or limψ(xn) 6= limψ(zn). We can assume without loss of
generality that xn, zn ∈ S, the union of streamlines with diameter at least 1, because S is
dense in R and ψ is continuous on R.

If lim |ψ(xn)| = ∞, then for each M < ∞ there is a curve joining the inner and outer
perimeter of the annulus B2 ≡ B(x0,

1
2
) \B(x0,

1
4
) on which |ψ| is continuous and larger than

M . Namely, it is a part of the streamline going through xn ∈ B(x0,
1
4
) (which cannot be

completely contained inside B(x0,
1
2
), and on which ψ is constant). On the other hand, we

have |J | ≥ 1
8

where J ⊆ [1
4
, 1

2
] is the set of all r for which the measure of all θ ∈ [0, 2π] such

that |ψ(x0 + reiθ)| ≤ 4‖ψ‖L2 is positive. But then

‖ψ‖2
H1 ≥

∫
B2

|∇ψ|2dx ≥
∫
J

∫ 2π

0

r

∣∣∣∣1r ∂ψ∂θ
∣∣∣∣2dθdr ≥ ∫

J

1

2πr

(∫ 2π

0

∣∣∣∣∂ψ∂θ
∣∣∣∣dθ)2

dr ≥ (M − 4‖ψ‖L2)2

8π

using the Schwartz inequality in the third step. Since the rightmost expression diverges as
M →∞, we have a contradiction.

If on the other hand limψ(xn) = L1 6= L2 = limψ(zn), then for each n ∈ N there must be
two curves joining the inner and outer perimeters of the annulus Bn ≡ B(x0,

1
2
) \B(x0, 2

−n),
on which ψ is continuous and has constant values an and bn, respectively, with |an − bn| ≥
1
2
|L1 − L2|. A similar argument as above gives

‖ψ‖2
H1 ≥

∫
Bn

|∇ψ|2dx ≥
∫ 1/2

2−n

1

r

∫ 2π

0

∣∣∣∣∂ψ∂θ
∣∣∣∣2dθdr ≥ ∣∣∣∣L1 − L2

2

∣∣∣∣2 ∫ 1/2

2−n

1

2πr
dr,

with a contradiction when n→∞.
Hence ψ|R has a continuous extension ω to M and it remains to show ψ = ω almost

everywhere. Assume this is not the case and let x0 ∈M be a Lebesgue point of the set Pε of
all x ∈ T2 such that |ψ(x)− ω(x)| > 2ε (by the hypothesis, |Pε| > 0 for some ε > 0). Then
for some r > 0 and all x ∈ B(x0, r) and z ∈ B(x0, r) ∩ Pε we have

|ψ(z)− ω(x)| > ε (5.4)
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because ω is continuous. Since x0 is a Lebesgue point of Pε, we have

|B(x0, r) ∩ Pε| · |B(x0, r)|−1 → 1

as r → 0. Hence for any δ > 0 and a small enough δ-dependent r0, there is a set J with
|J | ≥ (1 − δ)r0 of r ∈ [0, r0] such that |{θ |x0 + reiθ ∈ Pε}| > 0. Again we can find a curve
joining the inner and outer perimeter of the annulus B ≡ B(x0, r0) \ B(x0, δr0) on which ψ
is continuous and equal to ω, and an argument as above together with (5.4) gives

‖ψ‖2
H1 ≥

∫
B

|∇ψ|2dx ≥
∫
J∩[δr0,r0]

1

r

∫ 2π

0

∣∣∣∣∂ψ∂θ
∣∣∣∣2dθdr ≥ ε2

∫ r0

2δr0

1

2πr
dr =

ε2

2π
| log(2δ)|.

Taking δ → 0 yields a contradiction, so ψ must be continuous. �

Lemma 5.3. Let u be a 1-periodic incompressible Lipschitz flow on Rn and letM≡
∏n

j=1 kjT
for some kj ∈ N.

(i) If ψ is an H1 eigenfunction of u onM, then |ψ| is an H1 eigenfunction of u onM with
eigenvalue 0.

(ii) The flow u on M has an H1 eigenfunction with a non-zero eigenvalue if and only if the
same is true for u on Tn.

(iii) The flow u on M has a non-constant H1 eigenfunction if and only if the same is true
for u on Tn.

Remark. The exclusion of constants in (iii) is natural as these are always eigenfunctions
of u. We will us this part in Section 9.

Proof. (i) is an easy computation using(
∇|ψ|

)
(x) =

{
ψ̄(x)∇ψ(x)+ψ(x)∇ψ̄(x)

2|ψ(x)| ψ(x) 6= 0,

0 ψ(x) = 0,
(5.5)

the fact that u is real, and that all eigenvalues of u · ∇ are purely imaginary.
(ii) Let us first consider the caseM = 2T×Tn−1. If ψ is an H1 eigenfunction of u on Tn,

then φ(x1, x
′) ≡ ψ({x1}, x′) is obviously an H1 eigenfunction onM with the same eigenvalue

(here {x1} is the fractional part of x1 and x′ = (x2, . . . , xn)). This proves one implication.
Let us now assume ψ is an H1 eigenfunction of u onM with eigenvalue iλ ∈ iR, and define

ψe(x1, x
′) ≡ 1

2
[ψ(x1, x

′)+ψ(x1 +1, x′)] and ψo(x1, x
′) ≡ 1

2
[ψ(x1, x

′)−ψ(x1 +1, x′)]. Periodicity
of u shows that ψe, ψo are also H1 eigenfunctions on M with the same eigenvalue. If ψe 6≡ 0
then it is an H1 eigenfunction on Tn because it is 1-periodic. If ψe ≡ 0, then ψo 6≡ 0, and we
let φ ≡ ψ2

o/|ψo|. Again using (5.5) we find that φ is an H1 eigenfunction of u on M, with
eigenvalue 2iλ. But φ is 1-periodic (because ψo(x1 + 1, x′) = −ψo(x1, x

′)), and so it is also
an H1 eigenfunction of u on Tn. Since iλ and 2iλ are either both zero or both non-zero, this
proves (ii) for M = 2T× Tn−1.

If now M = kT× Tn−1, we use the same argument but with ψe, ψo replaced by{
ψj(x1, x

′) ≡ 1

k

k−1∑
m=0

e2πijm/kψ(x1 +m,x′)

}k−1

j=0
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and φ ≡ ψkj /|ψj|k−1 ∈ H1 associated to the eigenvalue kiλ (when ψj 6≡ 0). The general case
is treated by subsequently repeating this “unfolding” for each coordinate.

(iii) The proof is essentially identical to that of (ii) after noting that ψkj /|ψj|k−1 cannot be

a constant function when ψj ∈ H1(M) is non-constant. �

The final lemma is based on [4, 5].

Lemma 5.4. For each p ∈ [1,∞] and each integer d ≥ 1 there exists C(d) ≥ 1 such that for
any D = Rn ×

∏m
j=1 kjT with n + m = d and n,m ≥ 0, any 1-periodic incompressible flow

v ∈ Lip(D), any ψ0 ∈ L1(D), and any t ≤ 1 the solution of (2.3) on D satisfies

‖ψ(·, t)‖L∞(D) ≤ C(d)t−d/2p‖ψ0‖Lp(D). (5.6)

Proof. Interpolation and (2.6) for p =∞ imply that we only need to obtain (5.6) for p = 1.
Consider first d = 2. When D = T2 and ψ̄0 ≡ |D|−1

∫
D
ψ0(x)dx = 0 (in which case ψ is

mean zero at all times because the evolution given by (2.3) preserves its mean), then this is
just Lemma 3.3 in [5]. That is,

‖ψ(·, t)− ψ̄0‖L∞ ≤ Ct−d/2‖ψ0 − ψ̄0‖L1 (5.7)

for any ψ0. Using
‖ψ̄0‖L∞ = ‖ψ̄0‖L1 ≤ ‖ψ0‖L1

and t ≤ 1, we obtain (5.6) for D = T2 and p = 1.

Take now any other D with n + m = d = 2 and let ψ̃ solve (2.3) on T2 with ψ̃0(x1, x2) ≡
supj,m |ψ0(x1+j, x2+m)|. Then by the comparison principle [26], ψ̃(x1, x2, t) ≥ supj,m |ψ(x1+
j, x2 +m, t)|, and so

‖ψ(·, t)‖L∞ ≤ ‖ψ̃(·, t)‖L∞ ≤ Ct−d/2‖ψ̃0‖L1 ≤ Ct−d/2‖ψ0‖L1

with the same C (we then have C(2) = max{C, 1}).
If d ≥ 3, then the proof is identical, using Lemma 5.6 in [4] in place of Lemma 3.3 in [5]

to obtain (5.7). Finally, the case d = 1 is obvious since the only incompressible flows in one
dimension are the constant ones, so (2.3) is just the heat equation in a moving frame. �

Next we show that given our assumptions on u, we have for each fixed τ > 0,

‖Pτ (Au)‖L1(D)→L∞(D) → 0 as A→∞. (5.8)

More precisely, we let φ̃0 ∈ L1(D) be such that

‖φ̃0‖L1 ≤ C−1/2τ 1/2 (5.9)

with C ≡ C(2), and we will show that for each δ ∈ (0, 1) and A > A1(τ, δ) (for some

A1(τ, δ) <∞), the solution φ̃A of (1.1) with initial condition φ̃0 satisfies

‖φ̃A(·, 3τ)‖L∞ ≤ 3δ. (5.10)

Equality (2.6) with p =∞ shows that it is only necessary to consider τ ≤ 1.
We will actually replace the problem on D by the same problem on M ≡ kT × T, with

k > 270/τδ2 and with φ̃0 replaced by supj∈Z |φ̃0(x1 + jk, x2)|. This new φ̃0 also satisfies
(5.9), and by the argument in the proof of Lemma 5.4, it is sufficient to show (5.10) for the
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new φ̃A. Note that if D = R2, then we consider the problem on M ≡ (kT)2 and change φ̃0

accordingly. In either case Lemma 5.3 shows that u can only have H1 eigenfunctions with
eigenvalue 0 on M.

From (5.6) and (5.9) we get ‖φ̃A(·, τ)‖L∞ ≤ C1/2τ−1/2 and (2.6) gives ‖φ̃A(·, τ)‖L1 ≤
‖φ̃0‖L1 ≤ C−1/2τ 1/2, so ‖φ̃A(·, τ)‖L2 ≤ 1. It is important here that C is independent of k and

A. Let us now define φ0(x) ≡ φ̃A(x, τ) and φA(x, t) ≡ φ̃A(x, τ + t) so that ‖φ0‖L2 ≤ 1 and
φA solves (1.1).

We now use the abstract framework of Theorem 2.4 with H ≡ L2(M), Γ ≡ −∆, and
L ≡ iu ·∇. It is easy to see [4] that the hypotheses of Theorem 2.4 are satisfied in this setting
sinceM is a compact manifold and u is Lipschitz. However, instead of directly applying the
result we will need to adjust the proof a little, as has been mentioned at the beginning of the
present section. Namely, we replace (3.18) by

K1 ≡ K0 ∩
{
φ

∣∣∣∣ ‖(Pp − Ph)φ‖2
L2 ≥

δ̃

2
or
∣∣Wφ,δ

∣∣ ≥ δ̃

}
, (5.11)

where δ̃ ≡ δ2τ 2/C2 and
Wφ,γ ≡

{
x
∣∣ |(Phφ)(x)| ≥ γ

}
.

Note that K1 is again compact because φn → φ∞ implies Phφn → Phφ∞, and so (3.19) will
be meaningful provided we show ∑

j

‖Pjφ‖2
H1 ≥

30

τ
(5.12)

for all φ ∈ K1.
So assume φ ∈ K1. Since u can only have H1 eigenfunctions for eigenvalue zero, PhH must

be a subspace of the eigenspace of u ·∇ corresponding to the eigenvalue zero. This shows that
if (Pp − Ph)φ 6= 0, then at least one of Pjφ 6∈ H1 and so

∑
j ‖Pjφ‖2

H1 = ∞ > 30
τ

. If, on the

other hand, (Pp − Ph)φ = 0, then we must have |Wφ,δ| ≥ δ̃ (and thus also Ppφ = Phφ 6= 0).
If now Phφ /∈ H1 (recall that PhH need not be contained in H1), then again

∑
j ‖Pjφ‖2

H1 =

‖Phφ‖2
H1 = ∞. If Phφ ∈ H1, then ψ ≡ Phφ is an H1 eigenfunction of u with eigenvalue

zero. Lemma 5.2 shows that ψ is continuous, and |Wφ,δ| > 0 together with the density of
unbounded streamlines of u (by Lemma 5.1) and the fact that ψ is constant on them imply
that there is a streamline of u joining {0} × T and {k} × T inside [0, k] × T on which |ψ|
is greater than 2δ/3. This is because any unbounded streamline must wind infinitely many
times around M in the first coordinate. Since obviously ‖ψ‖L2 ≤ 1 and k > 9δ−2, the same
reasoning shows that there must also be a streamline of u joining {0} × T and {k} × T on
which |ψ| is smaller than δ/3. Therefore

‖ψ‖2
H1 ≥

∫ k

0

∫ 1

0

∣∣∣∣ ∂ψ∂x2

∣∣∣∣2dx2dx1 ≥
∫ k

0

(∫ 1

0

∣∣∣∣ ∂ψ∂x2

∣∣∣∣dx2

)2

dx1 ≥
∫ k

0

(
δ

3

)2

dx1 ≥
30

τ
.

In particular,
∑

j ‖Pjφ‖2
H1 = ‖ψ‖2

H1 ≥ 30
τ

, and hence (5.12) holds for all φ ∈ K1.

We note that in the case D = R2 the last argument has to be changed slightly. Namely,
we obtain that there must be a streamline of u joining either {0} × kT and {k} × kT inside
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[0, k]×kT, or one joining kT×{0} and kT×{k} inside kT×[0, k], on which |ψ| is greater than
2δ/3. Assume the former. Then for each x1 ∈ [0, k] there is x2(x1) such that |ψ(x1, x2(x1))| >
2δ/3. But since ‖ψ‖L2 ≤ 1 and k > 18δ−2, there must be at least measure k

2
set of x1 ∈ [0, k]

such that |ψ(x1, x2(x1) + z(x1))| < δ/3 for some |z(x1)| ≤ 1
2
. As above, ‖ψ‖2

H1 ≥ 30
τ

follows.
We have thus shown that N1, T1 are well defined, and so Theorem 3.2(b) must hold when-

ever φε(·, t) ∈ K1 (with ε = A−1 and φε as in Section 3). This allows us to strengthen

the condition in Theorem 3.2(c) by adding the requirement |Wφε(·,t),δ| < δ̃. Ultimately we
obtain Theorem 2.4 on L2(M) with the conclusion that if ‖φ0‖L2 ≤ 1 (which is our case) and
A > A1(τ, δ) (with A1 only dependent on τ, δ because k = k(τ, δ) and C is universal), then
the set of all times t for which

‖(I − Ph)φA(·, t)‖2
L2 ≥ δ̃ or |WφA(·,t),δ| ≥ δ̃

has measure less than τ . Since φ̃A(x, t) = φA(x, t − τ), this says that there must be a time
t0 ∈ [τ, 2τ ] such that

‖(I − Ph)φ̃A(·, t0)‖2
L2 < δ̃ and

∣∣Wφ̃A(·,t0),δ

∣∣ < δ̃. (5.13)

We now let χ be the characteristic function of Wφ̃A(·,t0),δ, define

ψ1
0(·) ≡ (I − Ph)φ̃A(·, t0),

ψ2
0(·) ≡ χ(·)Phφ̃A(·, t0),

ψ3
0(·) ≡ (1− χ(·))Phφ̃A(·, t0),

and let ψj solve (1.1) with initial condition ψj0 so that φ̃A(x, t) =
∑3

j=1 ψ
j(x, t−t0). Lemma 5.4,

(5.13), C = C(2) ≥ 1, and τ ≤ 1 give ‖ψ1(·, τ)‖L∞ ≤ Cτ−1/2δ̃ ≤ δ, and obviously
‖ψ2(·, τ)‖L∞ ≤ ‖ψ2

0‖L∞ ≤ δ. Finally, we have

‖ψ3
0‖L1 ≤ |supp(ψ3

0)|1/2‖ψ3
0‖L2 ≤ δ̃1/2‖Phφ̃A(·, t0)‖L2 ≤ δ̃1/2‖φ̃A(·, t0)‖L2 ≤ δ̃1/2‖φ̃A(·, τ)‖L2 ≤ δ̃1/2,

and Lemma 5.4 again gives ‖ψ3(·, τ)‖L∞ ≤ Cτ−1δ̃1/2 = δ. It follows using (2.6) that

‖φ̃A(·, 3τ)‖L∞ ≤ ‖φ̃A(·, t0 + τ)‖L∞ ≤ 3δ,

that is, (5.10) holds and (5.8) follows.
Interpolation and (2.6) then give (2.5) for any 1 ≤ p < q ≤ ∞, thus yielding Theorem

2.1(i)–(iii) for p < q. The case p = q ∈ (1,∞) in part (ii) follows by splitting φ0 = φ′0 + φ′′0
with φ′0 ∈ L1 and ‖φ′′0‖Lp small. Using (2.5) for φ′0 and (2.6) for φ′′0 then gives the result.

6. Proof of Theorem 2.1: Part II

In the present section we complete the proof of Theorem 2.1. We now assume that u is
a 1-periodic incompressible Lipschitz flow on D = R× T that either leaves a bounded open
subset of D invariant or has an H1(T2) eigenfunction with a non-zero eigenvalue. We will
then show that Theorem 2.1(i)–(iii) do not hold. Again the cases of D = R2 and/or of other
periods are handled similarly.
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The main point here is that flows with the above properties do not “stretch” compactly
supported initial data in the way the flows considered in the previous section do, which means
the exposure of the solution to the effects of diffusion is limited (at least for a short time),
regardless of the flow strength. More precisely, we will show

Lemma 6.1. Under the above assumptions on u, there is a bounded non-zero compactly sup-
ported φ0 ∈ H1(D) and b <∞ such that the solution of (3.3) on D satisfies ‖φ0(·, t)‖H1(D) ≤ b
for all t ≥ 0.

Assume for the moment that Lemma 6.1 holds. Then (3.9) with Γ ≡ −∆ and L ≡ iu · ∇
on H ≡ L2(D), and after setting A = ε−1 and rescaling time appropriately, shows that for
each A,

‖φA(·, t)− φ0(·, At)‖2
L2 ≤

b2t

2
‖φ0‖L2 .

Note that (3.9) extends to the non-compact setting of D, where Γ does not have a discrete
spectrum. Since the measure of the set{

x
∣∣ |φ0(x, t)| ≥ γ

}
is constant in t for each γ, this means that φA(·, t) cannot be small in any Lp norm for t
sufficiently small, regardless of the choice of A. Thus none of Theorem 2.1(i)–(iii) can be
valid and we are left with establishing Lemma 6.1.

Proof of Lemma 6.1. Let us first assume that u leaves an open bounded domain Y ⊆ D
invariant. If u ≡ 0 on some such Y , then we only need to take φ0 to be any bounded H1

function supported in Y .
If this is not the case, then we know from the proof of Lemma 5.1 that there is such a

domain Y with ∂Y a union of one or two non-trivial streamlines of u. If H is a stream
function for u, we then have H(∂Y ) = {β, γ} (with possibly β = γ). Since H cannot be
constant inside Y (because u(y) 6= 0 on ∂Y ), there is y0 ∈ Y with H(y0) /∈ {β, γ}. Then

φ0(x) ≡ χY (x)(H(x)− β)(H(x)− γ) 6≡ 0.

is a compactly supported Lipschitz (and therefore H1) function that is constant on the
streamlines of u and thus φ0(x, t) ≡ φ0(x) for all t. The claim of the lemma follows.

It remains to consider the case that u on T2 has an eigenfunction ψ ∈ H1(T2) with
eigenvalue iλ ∈ iR \ {0}. Notice that the first paragraph of the proof of Lemma 5.2 again
shows that ψ has to be continuous at each x for which u(x) 6= 0 (the only difference is that
now we obtain (1, 0) · ∇ω ≡ iλω and so ω(t, s) = eiλtω̃(s)).

Let x0 ∈ T2 be such that ψ(x0) 6= 0 6= u(x0). Such x0 exists because λ 6= 0 implies
u(x0) 6= 0 for almost all x0 with ψ(x0) 6= 0. Without loss of generality we can assume that
x0 = 0 and on a neighborhood V of 0 we have u(x) ≡ (1, 0); otherwise a Lipschitz change of
coordinates as in the proof of Lemma 5.2 will bring us to this situation. Then

ψ(x1, x2) = eiλx1ψ̃(x2) (6.1)

(with ψ̃ continuous) for |x1|, |x2| ≤ 2α and some small α ∈ (0, π
λ
). Also, ∇H ≡ (0,−1) on V .



DIFFUSION IN FLUID FLOW 25

Choose a non-negative function ω : C → R that is smooth as a function from R2 to R
and is supported on a small ball around ψ̃(0), so that for some small β, γ > 0 we have
ω(ψ(x1, x2)) = 0 for (x1, x2) ∈ ([α, α+ γ]∪ [−α− γ,−α])× [−β, β]. This is possible because

of the continuity of ψ̃ and λ 6= 0 in (6.1), together with α < π/λ (this is where we crucially
use λ 6= 0). We also let θ with θ(0) 6= 0 be a smooth non-negative function supported in
[−α − γ, α + γ] × [−β, β] which only depends on x2 in R ≡ [−α, α] × [−β, β] ⊆ V . Since

H(x) = c − x2 on V (for some c), we have θ(x) = θ̃(H(x)) for all x ∈ R and a smooth

compactly supported θ̃.
Now extend ψ periodically and θ by 0 onto D and consider

φ0(x) ≡ θ(x)ω(ψ(x)) = χR(x)θ̃(H(x))ω(ψ(x)) ∈ H1(D).

Then φ0(x, t) = φ0(X(x,−t)) (with X from (2.1)) is supported in Rt ≡ X(R, t) and

ω(ψ(X(x,−t))) = ω(e−iλtψ(x))

because u · ∇ψ = iλψ. Since constancy of H on the streamlines of u gives

θ(X(x,−t)) = θ̃(H(X(x,−t))) = θ̃(H(x)) (6.2)

for x ∈ Rt, we have

φ0(x, t) = χRt(x) θ̃(H(x))ω(e−iλtψ(x)). (6.3)

Note that since R ⊆ T2, the domain Rt ⊆ D is simply connected and the natural map
from D onto T2 is one-to-one when restricted to Rt. Hence∫

Rt

|∇[ω(e−iλtψ(x))]|2 dx ≤
∫

T2

|∇[ω(e−iλtψ(x))]|2 dx ≤ ‖∇ω‖2
L∞(T2)‖ψ‖2

H1(T2).

Since θ̃ and ω are bounded and φ0 vanishes on ∂Rt, to obtain the claim of the lemma, we
only need to show that

∫
Rt
|∇[θ̃(H(x))]|2 dx is uniformly bounded in t. But |Rt| ≤ 1 and

|∇[θ̃(H(x))]| ≤ ‖∇θ̃‖L∞(R)‖∇H‖L∞(Rt) ≤ ‖∇θ̃‖L∞(R)‖u‖L∞(T2),

for x ∈ Rt, so this is obvious. �

We note that θ is only needed when |ψ̃(x2)| is constant on an open interval containing
zero. Otherwise φ0(x) ≡ χR(x)ω(ψ(x)) does the job.

This finishes the proof of Theorem 2.1.

7. Other Boundary Conditions and Examples

In the case D = R × (0, 1) we have so far only considered periodic boundary conditions
on ∂D. It turns out that there is no change to Theorem 2.1 when we impose Dirichlet or
Neumann boundary conditions, provided u(x) · (0, 1) = 0 for x ∈ ∂D.

Corollary 7.1. Assume that u is a periodic, incompressible, Lipschitz flow on D = R×(0, 1)
with a cell of periodicity C = αT× (0, 1) such that u(x) · (0, 1) = 0 for x ∈ ∂D. Let φA be the
solution of (1.1) on D with either Dirichlet or Neumann boundary conditions on ∂D. Then
Theorem 2.1(i)–(iv) are again equivalent.
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Remarks. 1. The operator u · ∇ is again anti-self-adjoint on L2(C) due to u2 ≡ 0 on ∂C.
2. Notice that there is no distinction between dissipation-enhancing flows in the Dirichlet

and Neumann boundary conditions cases. This is because u2 ≡ 0 on ∂D means that boundary
conditions do not considerably affect dissipation away from ∂D on short time scales.

Proof. Extend u to D′ ≡ R× 2T by letting

(u1(x1, x2), u2(x1, x2)) ≡ (u1(x1, 2− x2),−u2(x1, 2− x2))

for x2 ∈ [1, 2]. That is, u is periodic and symmetric across x2 = 1. Consider the the Dirichlet
boundary conditions case first. It is sufficient to show that each of Theorem 2.1(i)–(iv) holds
on D if and only if u is dissipation-enhancing on D′.

The “if” part of this claim is immediate. Indeed, if φA is a solution on D with Dirichlet
boundary conditions, then we can extend it to a solution on D′ by letting φA(x1, x2) ≡
−φA(x1, 2− x2). Hence any of Theorem 2.1(i)–(iii) on D′ implies its counterpart on D. The
same is true in the case of part (iv) because if ψ is an eigenfunction of u in H1(C), then by
letting ψ(x1, x2) ≡ ψ(x1, 2− x2) one extends ψ to an eigenfunction of u in H1(αT× 2T).

As for the “only if” part, assume u on D′ is not dissipation-enhancing. Take some φ0 that
satisfies Lemma 6.1 for D′ and that is supported inside D. This can be done because the
streamlines of u do not cross ∂D. For the same reason φ0 from Lemma 6.1 stays inside D,
and so if we extend φ0 to D by letting φ0(x1, x2) ≡ −φ0(x1, 2 − x2), then this φ0 satisfies
all conditions of that lemma. The corresponding φA vanishes on ∂D and as in Section 6, it
follows that none of Theorem 2.1(i)–(iii) can hold on D. The same is true for part (iv) after
realizing that the restriction to D of a bounded open subset of D′ invariant under u (or the
restriction to C of an H1(aT× 2T) eigenfunction of u) has the same property on D (on C).

This finishes the case of Dirichlet boundary conditions. Neumann boundary conditions are
treated identically, with φA and φ0 extended evenly (rather than oddly) to D′. �

We will now present a simple example of flows on R2 that demonstrates the independence
of the two conditions in Theorem 2.1(iv).

Example 7.2. Let p : T→ T and H̃ : T→ R be C1 with
∫ 1

0
p′(s)ds = 0. Define H(x1, x2) ≡

H̃(y(x1, x2)) with y(x1, x2) ≡ {p(x1)− x2} and consider the flow

u(x1, x2) ≡ ∇⊥H(x1, x2) =
(
H̃ ′(y), p′(x1)H̃ ′(y)

)
(7.1)

on R × T or on R2. In particular, we have u(x1, x2) = 0 if and only if H̃ ′(y(x1, x2)) = 0. If
p ≡ 0 then this is a mean-zero shear flow. For general p (and H̃ ′ 6≡ 0) these are examples of
percolating flows.

It is easy to see that the flow preserves y, and its first coordinate H̃ ′(y) is therefore
constant on the streamlines. The unbounded streamlines are those corresponding to y’s for
which H̃ ′(y) 6= 0 (they are then 1-periodic functions of x1 due to

∫ 1

0
p′(s)ds = 0). This means

that there is an open bounded domain invariant under the flow if and only if H̃ ′ has a plateau
(a non-trivial interval where it is constant) with H̃ ′ = 0. Note that (7.1) on T × R always
has invariant bounded open domains.
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There are always many H1 eigenfunctions of such u, since each ψ̃(y) is a first integral. On
the other hand, it turns out that u has H1 eigenfunctions other than the first integrals if and
only if H̃ ′ has plateaus with H̃ ′ 6= 0.

Indeed, if H̃ ′(y) ≡ C 6= 0 for y ∈ [a, b] and θ is a smooth function supported on [a, b], then
ψ(x1, x2) ≡ e2πix1θ(y) is an H1 eigenfunction of u with eigenvalue 2πiC. On the other hand,
any H1 eigenfunction with an eigenvalue iλ 6= 0 must be continuous a.e. where u 6= 0 (i.e.,
H̃ ′ 6= 0) and zero a.e. where u = 0 (i.e., H̃ ′ = 0). This means that it must be of the form

ψ(x1, x2) ≡ eiλx1/H̃′(y)θ(y) with θ continuous where H̃ ′ 6= 0 and zero where H̃ ′ = 0. But for ψ
to be well defined as a function on T2, 2πλ/H̃ ′(y) must be an integer where θ(y) 6= 0. Since
ψ 6≡ 0 and so θ 6≡ 0, this means that there must be a plateau of H̃ ′ with H̃ ′ 6= 0.

Finally, since the existence of a plateau of H̃ ′ with H̃ ′ = 0 and the existence of a plateau of
H̃ ′ with H̃ ′ 6= 0 are “independent”, we can construct flows u given by (7.1) that demonstrate
all four possibilities of the conditions in Theorem 2.1(iv) either being satisfied or not.

Notice that if H̃ ′(y) ≡ C for y ∈ [a, b], then the solutions of (2.1) starting inside the
“channel” given by y(x1, x2) ∈ [a, b] move along this channel with the same (horizontal)
velocity H ′(y). This shows that any initial datum supported inside the channel will not
get stretched too much regardless of the amplitude A of the flow, as was mentioned at the
beginning of Section 6. On the other hand, H̃ ′(y) not locally constant means any compactly
supported initial datum will be stretched quickly when A is large because “neighboring”
streamlines move at different horizontal speeds and this difference is magnified by A.

We also mention that in the case of shear flows (i.e., p ≡ 0) Theorem 2.1 follows from
the results of [19] (the earlier paper [3] also considers shear flows and can treat all H̃ except
of those that have no plateaus but all their derivatives vanish at some y0). The above
stretching argument was made rigorous there using probabilistic methods (Malliavin calculus
in particular), but unlike our functional-analytic method, the approach does not seem to be
applicable to general non-shear flows.

Finally, notice that if H̃ ′ 6= 0 only on a dense set of a small measure and H̃ ′ has no plateaus,
then u vanishes on a large set but it is dissipation-enhancing nevertheless.

We end this section by proving the following claim from Section 2.

Theorem 7.3. Let u be a periodic, incompressible, Lipschitz flow on D = R2 or D = R×T
with a cell of periodicity C. If (2.1) on C has a stable solution and no dense orbits, then u is
not dissipation-enhancing.

Remark. Recall that the claim is false in general if a dense orbit exists.

Proof. We first assume that u on C is a Hamiltonian flow with (multivalued) Hamiltonian
H : C → aT. That is, there is a > 0 such that if H : R2 → R is the stream function of
u on R2, then H(1, 0) − H(0, 0) and H(0, 1) − H(0, 0) are both integer multiples of a. Let
X(x0, ·) be a stable solution of (2.1) on C. If X(x0, t) ≡ x0, then solutions starting near x0

must either all be constant or there is one whose orbit is a closed curve (homotopic in D
to a point because it is contained in a small neighborhood of x0). In either case there is a
bounded open subset of D invariant under u.
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Let now X(x0, ·) be non-constant. Since u is Lipschitz, H ∈ C1,1(R2) and the Lipschitz
Morse-Sard theorem of Bates [1] shows that almost all values of H are regular. If h is such a
value then any solution X(x, t) of (2.1) on C with H(X(x, t)) = h must be periodic. Indeed,
{X(x, n)}∞n=1 has a subsequence converging to some x1 with H(x1) = h. But |∇H| 6= 0
near x1, so the intersection of the h-level set of H and a small neighborhood of x1 is a curve
which is also a solution of (2.1). Then X(x, n) must lie on this curve for infinitely many
n, so X(x, ·) is periodic. Since |∇H(x0)| 6= 0, this means that there are periodic solutions
arbitrarily close to X(x0, ·). Stability and non-constancy of X(x0, ·) then show that all these
must have the same period p, along with X(x0, ·). Thus |∇H(X(x0, ·))| is bounded away
from zero, and stability of X(x0, ·) shows that all solutions of (2.1) starting near x0 have
period p. If now α ∈ C1(C) is supported near the orbit of X(x0, ·) and is only a function of
H(x), then u · ∇α ≡ 0. For small |s| and all t ∈ R we let β(X(x0 + s∇H(x0), t)) = e2πit/p.
Then β is C1 near the orbit of X(x0, ·) and u · ∇(αβ) = i2π

p
αβ, so αβ is an H1 eigenfunction

of u · ∇ with a non-zero eigenvalue. This finishes the case of Hamiltonian u.
Let now u be non-Hamiltonian, that is, such that a ≡ H(1, 0)−H(0, 0) and b ≡ H(0, 1)−

H(0, 0) are rationally independent. We will show that then there is a bounded open subset of
D invariant under u. Again almost all values of H are regular, so assume that h is (then so is
h+ma+ nb for m,n ∈ Z by periodicity of u). Pick x0 so that H(x0) = h and let V ⊆ R2 be
the closure of

⋃
n,m∈Z,t∈R{X(x0 +(m,n), t)}. Here we consider solutions of (2.1) on R2. Then

V 6= R2 because otherwise
⋃
t∈R{X(x0, t) mod 1} were dense in C. Pick x1 ∈ W ≡ R2 \ V

and denote Wm,n the connected component of W containing x1 + (m,n). We can assume
they are all simply connected because otherwise X(x0, ·) is bounded in R2 and so periodic,
and its interior is then an open subset of D invariant under u.

We have that each connected component V ′ of ∂V = ∂W is a subset of a level set of H
(if not, then there is x ∈ V ′ with H(x) a regular value of H and it easily follows from the
definition of V and regularity of H(x) that V ′ is the orbit of X(x, ·), i.e., a subset of a level
set of H). This means that all the open sets Wm,n are different (and thus disjoint) because
the values of H on their boundaries are different (since Wm,n = W0,0 +(m,n)). It follows that
each of them has a finite area, and so limn→∞ |W0,0∩B′n| = 0, with B′n the complement of the
ball of radius n centered at the origin. So uniform continuity of H and simple connectedness
of W0,0 show that ∂W0,0 is a subset of a single level set h of H and for each ε there is n such
that H(W0,0 ∩ B′n) ⊆ (h − ε, h + ε). If H is constant on W0,0, then any subset of W0,0 is
invariant under u. If not, then {x ∈ W0,0

∣∣ |H(x)−h| > ε} is a bounded open set (non-empty
for small enough ε > 0) invariant under u. In either case we are done. �

8. Applications to Reaction-Diffusion Equations

We now turn to applications of Theorem 2.1 to quenching in reaction-advection-diffusion
equations. We consider the equation

TAt (x, t) + Au · ∇TA(x, t) = ∆TA(x, t) + f(TA(x, t)), TA(x, 0) = T0(x) (8.1)

for x ∈ R×T or x ∈ R2. Here TA(x, t) ∈ [0, 1] is the (normalized) temperature of a premixed
combustible gas that is advected by the periodic incompressible flow Au(x). The nonlinear
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reaction term f(TA) accounts for temperature increase due to burning and will be considered
to be of the ignition type, that is,

(i) f(0) = f(1) = 0 and f(T ) is Lipschitz continuous on [0, 1],

(ii) ∃η0 ∈ (0, 1) such that f(T ) = 0 for T ∈ [0, η0] and f(T ) > 0 for T ∈ (η0, 1).
(8.2)

The value η0 is called the (normalized) ignition temperature. We also take T0(x) to be
compactly supported with values in [0, 1], so that TA(x, t) ∈ [0, 1] for all x, t by the maximum
principle.

Definition 8.1. We say that the initial “flame” T0 is quenched by the flow Au if

‖TA(·, t)‖L∞ → 0 as t→∞. (8.3)

A flow u is said to be strongly quenching if for each compactly supported T0 and each ignition-
type reaction f there exists A0 such that Au quenches T0 for each A > A0.

That is, strongly quenching flows are those that have the ability to extinguish any initially
localized reaction, provided their amplitude is large enough. Notice also that due to the
compactness of supp(T0) and η0 > 0, (8.3) is equivalent to ‖TA(·, t0)‖L∞ ≤ η0 for some
t0 <∞.

We can now state

Theorem 8.2. Assume that u is a periodic, incompressible, Lipschitz flow on D = R2 or
D = R× T with a cell of periodicity C.

(i) If u is dissipation-enhancing, then u is strongly quenching.
(ii) If either u leaves an open bounded subset of D invariant or u has an eigenfunction

ψ ∈ C1,1(C) that is not a first integral of u, then u is not strongly quenching.

Remarks. 1. C1,1(C) is the set of all ψ ∈ C1(C) with ∇ψ ∈ Lip(C).
2. This of course leaves open the case when no open bounded sets are invariant under

u, the flow does have H1(C) eigenfunctions with non-zero eigenvalues, but none of them
belongs to C1,1(C). Such flows can again be constructed using Example 2 in Section 6 of
[4], this time with a smooth Q : T → T and a Liouvillean α such that (2.7) has a solution
R ∈ H1(T)\H2(T). We conjecture that u is not strongly quenching in such cases, and hence
that the strongly quenching periodic flows in two dimensions are precisely the dissipation-
enhancing ones.

Proof. (i) Let c be the Lipschitz constant for f so that f(T ) ≤ cT . If φA solves (1.1) with
initial condition φ0 ≡ T0 ∈ L1(D), then TA(x, t) ≤ ectφA(x, t). The result follows by choosing
A large enough so that ‖φA(·, 1)‖L∞ ≤ e−cη0.

(ii) Assume first there is an open bounded domain Y ⊆ D invariant under u. From the
proof of Lemma 6.1 we know that then there is such a Y so that either u ≡ 0 on Y , or ∂Y
consists of one or two closed streamlines of u (one if Y is simply connected, two otherwise).
In either case we will construct a stationary subsolution T0 of (8.1) for some f and any A.
From this the claim will follow, because then TA(x, t) ≥ T0(x) for all A, x, t and so u cannot
be quenching.
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Assume the first case (i.e., u ≡ 0 on Y ) and choose a smooth function T0 supported in Y
and bounded above by 2

3
such that ∆T0(x) ≥ 0 when T0(x) < 1

3
. We then have

∆T0 + f(T0) ≥ 0

whenever f is larger than ‖∆T0‖L∞ on [1
3
, 2

3
]. Hence T0(x) is a subsolution of (8.1) for such

f and any A.
Next assume the second case above and assume Y is bounded and simply connected (the

other alternative can be handled by a simple modification of the following argument). Notice
that we have that u 6= 0 on ∂Y by construction (see Section 6) and so |∇H| ≥ c for some
c > 0 on some open neighborhood Ṽ of ∂Y . This, the fact that we are in two dimensions,
and u Lipschitz ensure that all streamlines that are close enough to ∂Y must also be closed.
It follows that there is a domain V ⊆ Ṽ ∩ Y with ∂V consisting of two streamlines of u, one
of which is ∂Y . Since |∇H| is strictly positive on V and continuous, V can be chosen so that
H(∂V ) = ∂H(V ).

Let φ̃0 be a smooth function on the interval H(V ) with φ̃0(H(∂Y )) = 0 and φ̃0(H(∂V \
∂Y )) = 2

3
, with the first and second derivatives of φ̃0 vanishing on ∂H(V ), and with

φ̃′′0(s) ≥ c−2‖∆H‖L∞ |φ̃′0(s)| (8.4)

when φ̃0(s) < 1
3
. This is possible because H ∈ C1,1(D) and so ‖∆H‖L∞ <∞. We then let

M ≡ ‖φ̃′′0‖L∞‖∇H‖2
L∞ + ‖φ̃′0‖L∞‖∆H‖L∞ (8.5)

and pick f that is larger than M on [1
3
, 2

3
]. We define

T0(x) ≡


φ̃0(H(x)) x ∈ V,
2
3

x ∈ Y \ V,
0 x /∈ Y,

so that ∆T0 + f(T0) = f(T0) ≥ 0 outside V and

∆T0(x) + f(T0(x)) = φ̃′′0(H(x))|∇H(x)|2 + φ̃′0(H(x))∆H(x) + f(T0(x)) ≥ 0

in V (using (8.4) when T0(x) < 1
3

and (8.5) otherwise). This and the fact that T0 is constant
on the streamlines of u means that T0 is a subsolution of (8.1) for any A.

Let us now assume that u has an eigenfunction ψ ∈ C1,1(C) with eigenvalue iλ ∈ iR \ {0}.
We will show that if we choose f and the functions ω and θ from the corresponding part of
Section 6 appropriately, then the (time-dependent) solution of the fast free linear dynamics
φ0(x,At) from (6.3) will be a subsolution of (8.1) for each A.

Take x0 such that ψ(x0) 6= 0 6= u(x0). Without loss of generality we can assume that
x0 = 0, ψ(0) = 1, and H(0) = 0, as this can be achieved by a translation of the problem,
multiplication of ψ by a constant, and additon of a constant to H. In what follows we will
call C2 functions smooth.

Assume first that the flow u(x) ≡ (1, 0) in a neighborhood of 0. Repeat the construction
from Section 6 to obtain smooth non-negative ω, θ, and a small rectangleR ≡ [−α, α]×[−β, β]
such the following hold with ψ extended periodically onto D. The product θ(x)ω(ψ(x)) is
supported in R (by slightly enlarging R we can actually assume that θ(x)ω(ψ(x)) is supported
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on a compact subset of the interior of R) and on R we have θ(x) = θ̃(H(x)) for some smooth

non-negative compactly supported θ̃. Moreover, we will also pick ω so that ω(z) = ω̃(=z) on
ψ(R) for some compactly supported smooth ω̃ and =z the imaginary part of z. This can be
achieved thanks to ψ(0) = 1, the continuity of ψ on R, and λ 6= 0 in (6.1), provided R is small
(recall that so far ω was only required to be supported on a small ball around ψ(0) = 1).
The picture we are establishing here is that H(x) and =ψ(x) determine a coordinate system
on R, while inside R each of the functions θ and ω ◦ ψ depends on one of these coordinates
only (and their product is supported in the interior of R). The main point is that, as we
shall see, this setup will be preserved by the free evolution and hold on Rt ≡ X(R, t).

This time, however, we need to impose additional conditions on R, ω̃, and θ̃. This will be
necessary because we will deal with second derivatives here, and possible because these will
not clash with the conditions we imposed so far — that R be small and ω̃, θ̃ be non-negative,
nonzero, smooth, and have small supports containing zero (since =ψ(0) = H(0) = 0).

We first ask that R is small enough so that

|ψ(x)− 1| ≤ 1

2
(8.6)

for x ∈ R. Since the flow preserves |ψ|, we have |ψ(x)| ≥ 1
2

for x ∈ Rt. This and u ·∇ψ = iλψ
mean that if

C ≡ max{‖u‖L∞ , ‖∇ψ‖L∞ , ‖∆H‖L∞ , ‖∆ψ‖L∞ ,
√
λ, 1} <∞,

c ≡ min

{
λ

2C
,
1

2

(
1−

√
1− λ2

4C4

)}
> 0,

then

|∇H(x)| = |u(x)| ≥ λ

2C
≥ c (8.7)

for x ∈ Rt. We let κt(x) ≡ =(e−iλtψ(x)) so that

u · ∇κt(x) = λ<(e−iλtψ(x))

together with
e−iλtψ(x) = ψ(X(x,−t)) ∈ ψ(R) (8.8)

for x ∈ Rt and with (8.6) gives

|∇κt(x)| ≥ λ

2C
≥ c (8.9)

for x ∈ Rt. Finally, we note that ∇H ⊥ u and |∇H| = |u| give for x ∈ Rt,

|∇H(x) · ∇κt(x)| =
(
|∇H(x)|2|∇κt(x)|2 − |u(x) · ∇κt(x)|2

)1/2

= |∇H(x)| |∇κt(x)|

√
1−

∣∣λ<(e−iλtψ(x))
∣∣2

|∇H(x)|2|∇κt(x)|2

≤ |∇H(x)| |∇κt(x)|
√

1− λ2

4C4

≤ (1− 2c)|∇H(x)| |∇κt(x)|,

(8.10)
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where we again used (8.8) and (8.6) in the third step.

As for θ̃ and ω̃, we ask that they be smooth, bounded above by 2
3
, and satisfy

|ω̃′(s)| = kKω̃(s)1−1/k and ω̃′′(s) = k(k − 1)K2ω̃(s)1−2/k when ω̃(s) ≤ 1

2
,

|θ̃′(s)| = kKθ̃(s)1−1/k and θ̃′′(s) = k(k − 1)K2θ̃(s)1−2/k when θ̃(s) ≤ 1

2
,

(8.11)

for some K > 1 and

k ≡ 1 + Cc−3.

This can be achieved by making ω̃, θ̃ equal to translations of (K|s|)k close to the edges of
their respective supports (with K large to ensure the supports are as small as needed) and
taking values from [1

2
, 2

3
] on the remainders of their supports. We then let

L ≡ max

{
max

{
|ω̃′(s)|
ω̃(s)

,
|ω̃′′(s)|
ω̃(s)

∣∣∣∣ ω̃(s) ≥ 1

2

}
,max

{
|θ̃′(s)|
θ̃(s)

,
|θ̃′′(s)|
θ̃(s)

∣∣∣∣ θ̃(s) ≥ 1

2

}
, 1

}
.

From now on ω̃, θ̃ will be fixed.
Finally, we note that if u 6≡ (1, 0) around 0, we can map u onto (1, 0) via a bilipschitz map-

ping J , construct R,ω, θ, ω̃, θ̃ as above (using ψ◦J), and then map R, θ back via J−1, keeping

ω, ω̃, θ̃ unchanged. This gives us R that is not necessarily a rectangle but has the properties
we are interested in. Namely, φ0(x) ≡ θ(x)ω(ψ(x)) is supported in the interior of R, and

θ(x) = θ̃(H(x)) and ω(ψ(x)) = ω̃(=ψ(x)) for x ∈ R. Therefore φ0(x) = θ̃(H(x))ω̃(=ψ(x))

on its support, and so φ0 ∈ C1,1 because ψ,H ∈ C1,1 and θ̃, ω̃ are smooth.
Once again the solution φ0(x, t) = φ0(X(x,−t)) of the free linear dynamics (3.3) is sup-

ported in the interior of Rt. The introduction of ω̃ turns (6.3) into

φ0(x, t) = θ(X(x,−t))ω(ψ(X(x,−t))) = χRt(x) θ̃(H(x)) ω̃(κt(x)).

This is because the flow preserves H, and for x ∈ Rt we have X(x,−t) ∈ R so that

ω(ψ(X(x,−t))) = ω̃(=[ψ(X(x,−t))]) = ω̃(=[e−iλtψ(x)]) = ω̃(κt(x)).

We also have
d

dt
φ0(x,At) + Au · ∇φ0(x,At) = 0, (8.12)

and we will show that φ0(x,At) is a subsolution of (8.1) with an appropriate f .
Obviously ∆φ0(x, t) = 0 for x /∈ Rt, and for x ∈ Rt,

∆φ0(x, t) =θ̃′′(H(x)) ω̃(κt(x)) |∇H(x)|2 + θ̃(H(x)) ω̃′′(κt(x)) |∇κt(x)|2

+2θ̃′(H(x)) ω̃′(κt(x))∇H(x) · ∇κt(x)

+θ̃′(H(x)) ω̃(κt(x)) ∆H(x) + θ̃(H(x)) ω̃′(κt(x)) ∆κt(x).

(8.13)

Note that from ψ,H ∈ C1,1 and θ̃, ω̃ smooth it follows that

∆φ0(x, t) ≥ −M
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for some largeM independent of x, t. Let us now assume that x ∈ Rt is such that ω̃(κt(x)) ≤ 1
2

and θ̃(H(x)) ≤ 1
2
. Then we have (after dropping the arguments)

ω̃′′ω̃ =
k − 1

k
(ω̃′)2,

θ̃′′θ̃ =
k − 1

k
(θ̃′)2,

and so a2 + b2 ≥ 2ab, (8.10), and k > c−1 give

(1− c)
(
θ̃′′ω̃|∇H|2 + θ̃ω̃′′|∇κt|2

)
≥ 2(1− c)k − 1

k
|θ̃′ω̃′| |∇H| |∇κt|

≥ 2
1− c
1− 2c

k − 1

k
|θ̃′ω̃′| |∇H · ∇κt|

≥ |2θ̃′ω̃′∇H · ∇κt|.

On the other hand, (8.7) and (8.11) show that

cθ̃′′ω̃|∇H|2 ≥ c3(k − 1)|θ̃′|ω̃ ≥ |c3C−1(k − 1)θ̃′ω̃∆H| = |θ̃′ω̃∆H|,

and the same is true for θ̃ and ω̃ exchanged and κt in place of H. Therefore ∆φ0(x, t) ≥ 0.

Next let x ∈ Rt be such that ω̃(κt(x)) ≥ 1
2

and θ̃(H(x)) ≤ 1
2
. Then

(8.13) ≥ θ̃′′ω̃c2 − θ̃ω̃LC2 − |θ̃′|ω̃2LC2 − |θ̃′|ω̃C − θ̃ω̃LC ≥ θ̃′′ω̃c2 − (|θ̃′|+ θ̃)ω̃3LC2

by the definition of L. But then (8.11) gives

∆φ0(x, t) ≥ θ̃1−2/kω̃c2k(k− 1)K2− θ̃1−1/kω̃6kKLC2 = θ̃1−1/kω̃kK(θ̃−1/kc2(k− 1)K − 6LC2).

This is greater than zero provided θ̃ ≤ ε ≡ min{(6LC2c−2(k − 1)−1K−1)−k, 1
2
}. We get the

same conlusion if ω̃(κt(x)) ≤ 1
2

and θ̃(H(x)) ≥ 1
2
.

This all means that ∆φ0(x, t) ≥ 0 when x ∈ Rt and either ω̃(κt(x)) ≤ ε or θ̃(H(x)) ≤ ε.
But then

∆φ0(x, t) + f(φ0(x, t)) ≥ 0

for all x ∈ Rt (and so for all x ∈ D), provided f is such that f(T ) ≥M for T ∈ [ε2, 4
9
] (recall

that ω̃, θ̃ ≤ 2
3
). Combining this with (8.12), we find that φ0(x,At) is indeed a subsolution of

(8.1), so that u is not strongly quenching. �

We note that the above method of construction of a subsolution to (8.1) does not extend
to the case when u only has H1 \ C1,1 eigenfunctions with non-zero eigenvalues.

It turns out that dissipation-enhancing flows quench some reactions without an ignition
temperature cutoff, in particular, Arrhenius-type reactions with f(T ) ≡ e−c/T (1 − T ) and
c > 0.

Theorem 8.3. Assume that u is a periodic incompressible Lipschitz flow on D = R2 or
D = R × T, and that the reaction function f satisfies (8.2)(i) and f(T ) ≤ cTα for some
c > 0 and α > 2 (if D = R2) resp. α > 3 (if D = R×T). If u is dissipation-enhancing, then
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for each M there is A0(M) such that when ‖T0‖L1(D) ≤M , T0 ∈ [0, 1], and A > A0(M), the
solution of (8.1) satisfies ‖TA(·, t)‖L∞(D) → 0 as t→∞.

Remarks. 1. It follows from [22] (see also [27]) that if f(T ) ≥ cTα for some c > 0, α < 2
(if D = R2) resp. α < 3 (if D = R× T), and all small T , then the conclusion of the theorem
does not hold for any A and u.

2. Theorem 8.2(ii) trivially extends to this setting since by the comparison principle,

solution of (8.1) with f̃ ≥ f dominates that of (8.1) with f .

Proof. Let D = R× T and define IA ≡
∫∞

0
‖φA(·, t)‖α−1

∞ dt where φA is the solution of (1.1)
with φ0 ≡ T0. It follows from [22] (see also [27, Lemma 2.1]) that the conclusion of the
theorem is valid whenever c(α− 1)IA < 1.

Lemma 3.1 in [5] shows that there exists C <∞ such that for each incompressible Lipschitz
flow v on D and t ≥ 1 we have

‖ψ(·, t)‖L∞(D) ≤ Ct−1/2‖ψ0‖L1(D), (8.14)

with ψ the solution of (2.3). We pick τ0 > 1 so that

c(α− 1)(CM)α−1 2

α− 3
τ
−(α−3)/2
0 <

1

3
, (8.15)

δ > 0 so that c(α − 1)τ0δ
α−1 < 1

3
, and τ ∈ (0, τ0) so that c(α − 1)τ < 1

3
. If now A0(M) is

such that

‖Pτ (Au)‖L1(D)→L∞(D) ≤ δM−1

for all A > A0(M), then c(α−1)IA < 1 for such A. This is obtained by estimating ‖φA(·, t)‖L∞
by 1 for t ∈ [0, τ), by δ for t ∈ [τ, τ0), and by (8.14) for t ≥ τ0.

The case D = R2 is identical (with τ
−(α−2)
0 in (8.15)) provided we show

‖ψ(·, t)‖L∞(D) ≤ Ct−1‖ψ0‖L1(D) (8.16)

for some C, any t ≥ 1, any incompressible Lipschitz flow v, and any solution ψ of (2.3) on
D. We provide the proof of this claim below, essentially following [5].

Solutions of (2.3) satisfy

d
dt
‖ψ‖2

2 = −2‖∇ψ‖2
2 ≤ −C‖ψ‖4

2‖ψ‖−2
1 ≤ −C‖ψ‖4

2‖ψ0‖−2
1 ,

where we used the Nash inequality ‖ψ‖2
2 ≤ C‖∇ψ‖2‖ψ‖1 [23] and (2.6) with p = 1. Dividing

by ‖ψ‖4
2 and integrating in time gives

‖ψ(·, t)‖L2 ≤ Ct−1/2‖ψ0‖L1 .

This shows that ‖Pt(v)‖L1→L2 ≤ Ct−1/2. But Pt(v) is the adjoint of Pt(−v) which satisfies
the same bound, so we obtain

‖P2t(v)‖L1→L∞ ≤ ‖Pt(v)‖L1→L2‖Pt(v)‖L2→L∞ = ‖Pt(v)‖L1→L2‖Pt(−v)‖L1→L2 ≤ C2t−1,

which gives (8.16). �
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Note that the same proof with the inequality ‖ψ‖1+2/n
2 ≤ C‖∇ψ‖2‖ψ‖2/n

1 in Rn [23] gives
(8.16) with t−n/2 when D = Rn. The claim of the theorem can be extended to this case with
α > 1 + 2

n
.

9. Dissipation-Enhancing Flows in More Dimensions

Most of Sections 5 and 6 does not extend to higher dimensions or time-periodic flows. An
exception are Lemmas 5.3 and 5.4 which have both been stated in any dimension. They also
extend to time-periodic flows. In that case Lemma 5.3 deals with H1 eigenfunctions of the
unitary evolution operator Uτ0 generated by the flow (with τ0 the time-period) rather than
those of u, and the proof stays the same. Notice that the two sets of eigenfunctions coincide
when u is time-independent. The statement of Lemma 5.4 is unchanged in this case, and the
proof uses [18] to obtain (5.7).

We call a time-dependent flow u on D = Rn×Tm dissipation-enhancing if for any 1 ≤ p <
q ≤ ∞ and τ > 0,

‖Pτ (AuA)‖Lp(D)→Lq(D) → 0 as A→∞, (9.1)

where uA(x, t) ≡ u(x,At). This is the right choice for uA as it ensures that the solutions of
X ′(t) = uA(X(t), t) with X(0) = x0 have the same orbits for different A. The definition of
strongly quenching time-dependent flows is changed analogously.

Theorem 9.1. Assume that u is a space- and time-periodic incompressible Lipschitz flow on
D = Rn × Tm with n ≥ 1, m ≥ 0, a cell of spatial periodicity C ⊆ D, and time-period τ0. If
the unitary evolution operator Uτ0 on C has no non-constant eigenfunctions in H1(C), then
u is dissipation-enhancing and strongly quenching.

Proof. The proof essentially follows Section 5, but is simpler due to the absence of non-
constant first integrals. Choose any τ, δ > 0 and let k ∈ Z be larger than δ−2/n. Let
‖φ̃0‖L1(D) ≤ 1 and periodize the problem and φ̃0 onto M ≡ (kT)n × Tm as we did in

Section 5. We define φ0(x) ≡ φ̃A(x, τ) so that by Lemma 5.4 in d = n+m dimensions,

‖φ0‖L1(M) ≤ 1 and ‖φ0‖L∞(M) ≤ Cτ−d/2

with C = C(d). This then gives

‖φ0‖L2(M) ≤ C1/2τ−d/4 and |φ̄0| ≤ k−n ≤ δk−n/2

where φ̄0 is the average of φ0 over M. Consider the operators Γ ≡ −∆ and Lt ≡ iu(·, t) · ∇
on the space H ≡ L2(M). From Lemma 5.3(iii) for time-periodic flows we know that Uτ0 ,
now as an operator on H, has no non-constant eigenfunctions in H1(Γ). It follows from
Theorem 4.1 that for each A > A1(τ, δ) (with A1 independent of φ0), there is t ≤ τ such that
the solution φA of (4.4) satisfies

‖φA(·, t)‖L2(M) ≤ ‖φA(·, t)− φ̄0‖L2(M) + ‖φ̄0‖L2(M) ≤ δ + (kn(δk−n/2)2)1/2 = 2δ.

This is because the average of φA stays constant and so Phφ
A(·, t) = |M|−1

∫
M φA(x, t) dx =

φ̄0. Another application of Lemma 5.4 gives

‖φ̃A(·, 3τ)‖L∞(M) = ‖φA(·, 2τ)‖L∞(M) ≤ ‖φA(·, t+ τ)‖L∞(M) ≤ 2Cτ−d/2δ
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and so the same is true for the original problem on D. Since δ was arbitrary and C only
depends on d, (9.1) follows with p = 1 and q = ∞ for each τ > 0. As in Section 5,
interpolation provides the other cases, so u is dissipation-enhancing. Strong quenching is
then immediate as in Theorem 8.2(i). �

The complete characterization of periodic incompressible dissipation-enhancing flows in
more than two dimensions, even in the time-independent case, remains an open problem.
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[27] A. Zlatoš, Quenching and propagation of combustion without ignition temperature cutoff, Nonlinearity

18 (2005), 1463–1475.
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