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Abstract. Consider reaction-diffusion equation ut = ∆u+f(x, u) with x ∈ Rd and general
inhomogeneous ignition reaction f ≥ 0 vanishing at u = 0, 1. Typical solutions 0 ≤ u ≤ 1
transition from 0 to 1 as time progresses, and we study them in the region where this tran-
sition occurs. Under fairly general qualitative hypotheses on f we show that in dimensions
d ≤ 3, the Hausdorff distance of the super-level sets {u ≥ ε} and {u ≥ 1 − ε} remains
uniformly bounded in time for each ε ∈ (0, 1). Thus, u remains uniformly in time close to
the characteristic function of {u ≥ 1

2} in the sense of Hausdorff distance of super-level sets.
We also show that each {u ≥ ε} expands with average speed (over any long enough time
interval) between the two spreading speeds corresponding to any x-independent lower and
upper bounds on f . On the other hand, these results turn out to be false in dimensions
d ≥ 4, at least without further quantitative hypotheses on f . The proof for d ≤ 3 is based on
showing that as the solution propagates, small values of u cannot escape far ahead of values
close to 1. The proof for d ≥ 4 is via construction of a counter-example for which this fails.

Such results were before known for d = 1 but are new for general non-periodic media in
dimensions d ≥ 2 (some are also new for homogeneous and periodic media). They extend
in a somewhat weaker sense to monostable, bistable, and mixed reaction types, as well as to
transitions between general equilibria u− < u+ of the PDE, and to solutions not necessarily
satisfying u− ≤ u ≤ u+.

1. Introduction and Motivation

Reaction-diffusion equations are used to model a variety of processes and phenomena such
as combustion, chemical reactions, or population dynamics. The baseline model, which
already captures a lot of the properties of the dynamics involved, is the parabolic PDE

ut = ∆u+ f(x, u) (1.1)

for u : (t0,∞)× Rd → R, where t0 ∈ [−∞,∞) and d ≥ 1. If t0 > −∞, then we also let

u(t0, x) = u0(x) for x ∈ Rd. (1.2)

The Lipschitz reaction function f is such that there exist two ordered equilibria (time-
independent solutions) u− < u+ for (1.1), and one is usually interested in studying the
transition of general solutions of (1.1) from one to the other as t→∞.

A prototypical situation is when u− ≡ 0 and u+ ≡ 1, with f ≥ 0 vanishing at u = 0, 1. Here
u ∈ [0, 1] is the (normalized) temperature of fuel, concentration of a reactant, or population
density. Depending on the application, f may be either an ignition reaction (vanishing near
u = 0) in combustion models; or a monostable reaction (positive for u ∈ (0, 1)) such as
Zeldovich and Arrhenius reactions with fu(x, 0) ≡ 0 in models of chemical reactions and
KPP reaction with f(x, u) ≤ fu(x, 0)u for all u ≥ 0 in population dynamics models.
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For the sake of clarity of presentation, we will first study this scenario, where our main
results are Theorems 2.4 and 2.5. Later we will extend these to more general situations: with
general u− < u+, different types of reactions, including mixtures of ignition, monostable, and
bistable reactions (the latter have [f(x, u)−f(x, u±(x))][u−u±(x)] < 0 for u near u±(x)), and
for solutions not necessarily satisfying u− ≤ u ≤ u+ (see Theorems 2.7 and 2.9). However,
in order to minimize technicalities, our first result will be stated in the even simpler setting
of ignition reactions with a constant ignition temperature (see Theorem 1.1).

The study of transitions between equilibria of reaction-diffusion equations has seen a lot
of activity since the seminal papers of Kolmogorov, Petrovskii, Piskunov [13] and Fisher [9].
Of central interest has been long time propagation of solutions with “typical” initial data,
and the related questions about traveling fronts. The first type of such initial data are spark-
like data — compactly supported, such as in (2.14) below. The second are front-like data —
vanishing on a half-space {x·e ≥ R} for some unit vector e ∈ Rd and with lim infx·e→−∞ u0(x)
close enough to 1, such as in (2.15). For ignition reaction one can also allow rapid decay to
0 as |x| → ∞ or x · e→∞, such as in (2.12) and (2.13). We will for now discuss these data
(and also call the corresponding solutions front-like and spark-like), but later we will turn to
more general ones (see, e.g., Theorem 2.5).

In both cases it was proved, first for homogeneous (x-independent) reactions in several
dimensions by Aronson, Weinberger [2] and then for x-periodic ones by Freidlin, Gärtner
[10, 11] and Weinberger [26], that for typical solutions, the state u = 1 invades u = 0 with
a speed that is asymptotically constant (in each direction for spark-like data) as t → ∞.
Specifically, that for each unit e ∈ Rd there is a (front speed) ce > 0 such that for any δ > 0,

lim
t→∞

inf
x·e≤(ce−δ)t

u(x, t) = 1 and lim
t→∞

sup
x·e≥(ce+δ)t

u(x, t) = 0 (1.3)

for front-like initial data; and there is a (spreading speed) se ∈ (0, ce] such that for any δ > 0,

lim
t→∞

inf
x∈(1−δ)tS

u(x, t) = 1 and lim
t→∞

sup
x/∈(1+δ)tS

u(x, t) = 0 (1.4)

for spark-like initial data, where S := {se
∣∣ ‖e‖ = 1 and 0 ≤ s ≤ se} is the Wulff shape for f .

Of course, for homogeneous reactions there is c > 0 such that se = ce = c for all unit e ∈ Rd.
Closely related to this is the study of traveling fronts for x-independent f and pulsating

fronts for x-periodic f . Traveling fronts are front-like entire (with t0 = −∞) solutions of (1.1)
moving with a constant speed c in a unit direction e ∈ Rd, of the form u(t, x) = U(x · e− ct)
with lims→−∞ U(s) = 1 and lims→∞ U(s) = 0. Pulsating fronts, first introduced by Shigesada,
Kawasaki, Teramoto [23] and proved to exist for general periodic f as above by Xin [27] and
Berestycki, Hamel [4], are similar but u(t, x) = U(x ·e− ct, x) and U is periodic in the second
argument. The minimal of the speeds for which such a front exists for a given unit e ∈ Rd is
then precisely ce, and we also have se = infe′·e>0[ce′/(e

′ · e)].
The above results hold for fairly general f ≥ 0, and there is a vast literature on these

and many other aspects of reaction-diffusion equations in homogeneous and periodic media.
Instead of a more comprehensive discussion, we refer to [4, 26] and the excellent reviews by
Berestycki [3] and Xin [28].
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Unsurprisingly, the picture becomes less satisfactory for non-periodic reactions, particularly
in the several spatial dimensions case d ≥ 2. The above results and the comparison principle
show that if c0 and c1 are the (e-independent) speeds associated with homogeneous reactions
f0 and f1 such that f0 ≤ f ≤ f1, then (1.3), (1.4) hold with ce and S replaced by c0 and
Bc0(0) in the first statements and by c1 and Bc1(0) in the second ones. That is, transition
between u ∼ 0 and u ∼ 1 occurs inside a spatial strip or annulus whose width grows linearly
in time with speed c1−c0 (while for homogeneous and x-periodic media it grows sub-linearly,
by taking δ → 0 in (1.3), (1.4)). In the general inhomogeneous case, these estimates cannot
be improved, unless one includes further restrictive hypotheses on f or is willing to tolerate
complicated formulas involving f .

For stationary ergodic reactions, the results should hold as originally stated, but also with
|x − x · e| ≤ Ct for any C < ∞ in (1.3). For d ≥ 2 this homogenization result was proved
only in the KPP case, by Lions, Souganidis [14]. (This case has an important advantage of a
close relationship of the dynamics for (1.1) and for its linearization at u = 0. Other authors
also exploited this link in the study of spreading for KPP reactions, e.g., Berestycki, Hamel,
Nadin [7]. However, results aiming to more precisely locate the transition region for non-
stationary-ergodic reactions are somewhat restricted by the necessity of more complicated
hypotheses involving the reaction.) Results from the present paper can be used to approach
this problem for ignition and non-KPP monostable reactions. This will be done elsewhere.

The above results hold also in the case d = 1, with the stationary ergodic KPP reaction
result proved earlier in [11]. However, some recent developments have gone further, partic-
ularly for ignition reactions. Mellet, Nolen, Roquejoffre, Ryzhik, Sire [16, 17, 20] proved for
reactions of the form f(x, u) = a(x)f0(u) (with f0 vanishing on [0, θ0] ∪ {1} and positive
on (θ0, 1), and a ≥ 1 bounded above), and Zlatoš [31] for more general ignition reactions
the following. There is a unique right-moving (and a unique left-moving) transition front
solution and as t → ∞, each front-like solution with e = 1 (e = −1) converges in L∞x to its
time-translate. A similar result holds for spark-like solutions, when restricted to R+ (R−).
Moreover, if f is stationary ergodic, then (1.3), (1.4) hold with some ce = se for e = ±1.

The transition fronts appearing here are a generalization of the concepts of traveling and
pulsating fronts to disordered (non-periodic) media. In the one-dimensional setting they are
entire solutions of (1.1) satisfying

lim
x→∓∞

u(t, x) = 1 and lim
x→±∞

u(t, x) = 0 (1.5)

for each t ∈ R (with upper sign for right-moving fronts and lower sign for left-moving fronts),
as well as supt∈R Lu,ε(t) < ∞ for each ε ∈ (0, 1

2
), where Lu,ε(t) is the length of the shortest

interval containing all x ∈ R with u(t, x) ∈ [ε, 1 − ε]. This last property is called bounded
width in [31]. The definition of transition fronts was first given in some specialized cases by
Shen [22] and Matano [15], and then in a very general setting (including several dimensions)
by Berestycki, Hamel in their fundamental papers [5, 6]. Existence of transition fronts in
one-dimensional disordered media (but no long term asymptotics of general solutions) was
also proved for bistable reactions which are small perturbations of homogeneous ones by
Vakulenko, Volpert [25], for KPP reactions which are (spatially) decaying perturbations of
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homogeneous ones by Nolen, Roquejoffre, Ryzhik, Zlatoš [19], for general KPP reactions by
Zlatoš [30], and for general monostable reactions which are close to KPP reactions by Tao,
Zhu, Zlatoš [24]. We also mention results proving existence of a critical front, once some
transition front exists, by Shen [22] and Nadin [18].

While it is again not possible to improve the estimates on the length of the interval on
which the transition between u ∼ 0 and u ∼ 1 is guaranteed to happen (which again grows as
(c1− c0)t in time if f0 ≤ f ≤ f1), bounded width of transition fronts and the convergence-to-
fronts results in [16,31] show that for ignition reactions and typical solutions, the transition
does occur within intervals whose lengths are uniformly bounded in time. Moreover, this
bound depends on some bounds on the reaction but neither on the reaction itself, nor on the
initial condition. In particular, this shows that after a uniform-in-(f, u, t) scaling in space,
each such solution becomes, in some sense, close to the characteristic function of a time-
dependent spatial interval. Moreover, the convergence-to-fronts results can be used to show
that this interval grows in (equally scaled) time with speed within [c0, c1].

Experience from observation of natural processes modeled by (1.1) suggests that this pic-
ture should be also valid for media in several spatial dimensions. For instance, aerial footage
of forest fires spreading through (spatially inhomogeneous) regions demonstrates variously
curved but usually relatively narrow lines of fire separating burned (u ∼ 1) and unburned
(u ∼ 0) areas. However, results demonstrating such phenomena for typical solutions of (1.1)
with general inhomogeneous reactions have not been previously obtained in dimensions d ≥ 2.

It turns out that the multi-dimensional case is much more involved in this respect. The
first issue is that it is not completely obvious how to extend the definition of bounded width
of solutions of (1.1), (1.2) to the multi-dimensional setting, and some first instincts may
lead to unsatisfactory results for general non-periodic media (see the discussion below). The
extension we introduce here is motivated by the Berestycki-Hamel definition of transition
fronts (which are entire solutions of (1.1)) in several dimensions [5, 6]. However, there are a
couple of differences, and we discuss the relationship of the two concepts after stating our
main results, at the end of the next section.

For solutions u ∈ [0, 1] of the Cauchy problem for (1.1), our extension is as follows. We let
Ωu,ε(t) := {x ∈ Rd |u(t, x) ≥ ε} be the ε-super-level set of u at time t and define the width of
the transition zone of u from ε to 1− ε (or to be more precise, from [ε, 1− ε) to 1− ε) to be

Lu,ε(t) := inf
{
L > 0

∣∣Ωu,ε(t) ⊆ BL (Ωu,1−ε(t))
}

(1.6)

for ε ∈ (0, 1
2
), with Br(A) :=

⋃
x∈ABr(x) and inf ∅ = ∞. Notice that this is precisely the

Hausdorff distance of the sets Ωu,ε(t) and Ωu,1−ε(t). We now say that u has bounded width if

lim sup
t→∞

Lu,ε(t) <∞ (1.7)

for each ε ∈ (0, 1
2
). It is necessary to consider large t in (1.7) because supx u(t, x) < 1 may

hold for each t (e.g., for spark-like solutions); the lim sup will be replaced by supt∈R for entire
solutions (see Definition 2.1). So by (1.7), u ∈ [0, 1] has bounded width if and only if for any
0 < ε < ε′ < 1, super-level sets Ωu,ε′(t) ⊆ Ωu,ε(t) have uniformly (in large time) bounded
Hausdorff distance. In particular, each of them is uniformly in (large) time close to Ωu,1/2(t).
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One may wonder why do we not treat the equilibria 0 and 1 in a symmetric fashion and
include a similar definition involving the sub-level sets of u as well. (We do so in (2.2) and in
the related definition of doubly-bounded width, which is for u ∈ [0, 1] equivalent to uniformly
bounded Hausdorff distance of the boundaries ∂Ωu,ε(t) and ∂Ωu,ε′(t).) While adding this
requirement works well in one dimension [16, 17, 20, 31], it turns out to be too restrictive for
the treatment of sufficiently general (not necessarily periodic) reactions and solutions of the
Cauchy problem (1.1), (1.2) in dimensions d ≥ 2. This is due to u ≡ 1 being the invading
equilibrium and u ≡ 0 the invaded one, coupled with the possibility of arbitrary variations in
the medium on arbitrarily large scales in two or more unbounded dimensions. We discuss the
issues involved after stating Theorem 1.1 for reactions with a constant ignition temperature
θ0, which is a special case of Theorem 2.4 below.

Even with a suitable definition at hand, our results proving bounded widths of typical
solutions, under quite general and physically natural qualitative hypotheses on the reaction,
only hold in dimensions d ≤ 3. In fact, such results are false for d ≥ 4 without the addition
of further quantitative hypotheses (e.g., f being sufficiently close to a homogeneous reaction;
see Remark 1 after Definition 2.6 below). The reason is that in d ≥ 4, even in the constant
ignition temperature case, intermediate values of u may spread faster than values close to
1 (see the discussion after Definition 2.3 and Remark 1 after Theorem 2.4 for the general
ignition case). This turns out to be related to the possibility of existence of non-constant
stationary solutions p ∈ (0, 1) of (1.1) in Rd−1 (see Section 10 for details).

Theorem 1.1. Let f be Lipschitz (with constant K) and non-increasing in u on [1−θ, 1] for
each x ∈ Rd (where θ > 0). Assume that f0(u) ≤ f(x, u) ≤ f1(u) for all (x, u) ∈ Rd × [0, 1],
with f0, f1 : [0, 1] → [0,∞) vanishing on [0, θ0] ∪ {1} and positive on (θ0, 1) (where θ0 > 0).
Let c0 and c1 be the spreading speeds of f0 and f1.

(i) If d ≤ 3, then the solution of (1.1), (1.2) with any spark-like (2.12) or front-like (2.13)
initial data u0 ∈ [0, 1] has bounded width (1.7). In fact, for any ε ∈ (0, 1

2
) there are `ε, Tε

such that supt≥Tε Lu,ε(t) ≤ `ε, with `ε depending only on ε, f0, K (Tε also depends on θ, u0).
Finally, u propagates with global mean speed in [c0, c1] in the sense of Definition 2.2 below,
with τε,δ in that definition depending only on ε, f0, K, δ, f1.

(ii) If d ≥ 4, then there are f, f0, f1 as above such that no solution of (1.1), (1.2) with
compactly supported u0 ∈ [0, 1] and satisfying lim supt→∞ ‖u(t, ·)‖∞ > 0 has bounded width.

Remarks. 1. Hence in dimensions d ≤ 3, any typical solution u eventually becomes
uniformly close (in the sense of Hausdorff distance of ε-super-level sets for each ε ∈ (0, 1)) to
the characteristic function of the set Ωu,1/2(t), and the latter grows with speed (averaged over
long enough time intervals) essentially in [c0, c1]. So after a uniform-in-(f, u, t) space-time
scaling, typical solutions look like Figure 1, with the shaded area expanding at speeds within
[c0, c1]. Since this also shows that an observer at any point x ∈ Rd at which u(t, x) = ε will
see transition to the value 1−ε within a uniformly bounded time interval (provided t is large
enough), this means that the reaction zone (where u ∼ 1

2
) has a uniformly bounded width in

both space and time.

2. One can use [6, Theorem 1.11] to prove (i) for homogeneous ignition reactions (see [12,21]
for bistable ones), and also for x-periodic ignition reactions and front-like solutions. However,
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besides disordered media, (i) is new for x-periodic media and spark-like solutions as well. In
fact, some of our results are new even for homogeneous media (e.g., Theorem 2.5).

3. We will generalize Theorem 1.1 in several ways. This will include a proof that solutions
eventually increase in time on each interval of values [ε, 1 − ε], extensions to other types of
reactions (ignition with non-constant ignition temperature, monostable, bistable, and their
mixtures) and to transitions between general equilibria u− < u+, as well as a treatment
of more general types of solutions (trapped between time shifts of general time-increasing
solutions, and not necessarily satisfying u− ≤ u ≤ u+).

The reasons for the new complications for d ≥ 2, described above, are not just technical
but stem from “real world” considerations in the case of two or more unbounded dimensions.
(Note that the result in [31] extends to the quasi-one-dimensional case of infinite cylinders in
Rd. The results described in Remark 2 after Theorem 1.1 also have a (quasi-)one-dimensional
nature due to either radial symmetry or periodicity.)

First, one might think that the reaction zone will always coincide with a bounded neigh-
borhood of some time-dependent hypersurface. This turns out to not be the case in general
in dimensions d ≥ 2, since without some order in the medium (such as periodicity) a fire will
not always spread at roughly the same speed everywhere, so the initial spherical or hyper-
planar shape of the reaction zone can become very distorted. In fact, areas of slowly burning
material in the medium may cause it to propagate around them faster than through them,
resulting in pockets of temporarily unburned material behind the leading edge of the fire.
See Figure 1 for an illustration of this phenomenon, and the proof of Theorem 2.12(ii) for
an extreme example of it. While these pockets will eventually burn up, variations in the
medium can create arbitrarily many or even infinitely many of them (the latter for front-like
solutions, although not spark-like) at a given (large) time, and they can be arbitrarily large
and occur arbitrarily far behind the leading edge as t → ∞. As a result of this potentially
complicated geometry of the reaction zones of general solutions of (1.1), our definition of
bounded width includes no requirements on the shape of the sets Ωu,ε(t) or their boundaries.

Figure 1. On the shaded region u ∼ 1, and on the white region u ∼ 0.

It is worth noting that while one might think that this issue can only arise if the medium
has large spatial variations in the reaction f , this is not the case either. In fact, as long as
f0, f1 satisfy c0 < c1, it is always possible to construct f such that f0 ≤ f ≤ f1 and the above
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situation (arbitrarily many unburned pockets which can be arbitrarily large and arbitrarily
far behind the leading edge) does indeed occur for typical solutions u. In particular, it
happens almost surely for stationary ergodic media with short range correlations.

Another critical issue, related to this, arises from the consideration of what happens to
such an unburned pocket far behind the leading edge of the fire. It “burns in” from its
perimeter and at the time when it is just about to be burned up (say when the minimum
of u on it is 3

4
), the nearest point where u is close to 0 (say ≤ 1

4
) may be very far from the

pocket. This shows that for general inhomogeneous media in dimensions d ≥ 2, one may
have unbounded-in-time width of the transition zone from u ∼ 1 to u ∼ 0.

On the other hand, in the situation studied here when the invaded state u = 0 is either
stable or relatively weakly unstable (the invading state u = 1 clearly must be stable), pockets
of burned material cannot form arbitrarily far “ahead” of the leading edge, unlike pockets of
yet-unburned material “behind” the leading edge. (This is very different from the KPP case
where u = 0 is strongly unstable; see [19] for examples of such media in one dimension, and
the discussion after Definition 2.1 for what may be done in that case.) This means that typical
solutions will be pushed (as opposed to pulled), their propagation being driven by intermediate
(rather than small) values of u. Thus one can still hope to see a uniformly-in-time bounded
width of the transition zone from u ∼ 0 to u ∼ 1. This lack of symmetry between the spatial
transitions 1→ 0 and 0→ 1 is why our definition of bounded width involves the Hausdorff
distance of the super-level sets of u but not of the sub-level sets (or of their boundaries).

Let us conclude this introduction with the discussion of convergence of typical solutions
of the Cauchy problem to entire solutions (such as transition fronts) of (1.1) in several
dimensions. In contrast to one dimension, it is unlikely that any general enough such results
can be obtained for disordered media. Firstly, the disorder may result in reaction zones of
solutions neither moving in a particular direction nor attaining a particular geometric shape.
Secondly, in Theorem 2.12(ii) we construct media where any entire solution with uniformly-in-
time bounded width of the transition zone from u ∼ 0 to u ∼ 1 satisfies limt→∞ infx u(t, x) = 1
(while typical solutions of the Cauchy problem have infx u(t, x) = 0 for each t ∈ R).

And thirdly, if such a result existed, one should also expect the following non-linear Liou-
ville claim to hold: If a solution u is initially between two time translates of a front-like (or
spark-like) solution v (and so by the comparison principle, v(·, ·) ≤ u(T + ·, ·) ≤ v(2T + ·, ·)
for some T ≥ 0), then for any ε > 0 there is Tε > 0 such that for any (t, x) ∈ [Tε,∞)× Rd,

‖u(t, ·)− v(t+ τt,x, ·)‖L∞(B1/ε(x)) < ε (1.8)

for some |τt,x| ≤ T . That is, u should locally look more and more like a (possibly (t, x)-
dependent) time translate of v as time progresses. Somewhat surprisingly, this claim is false
in general in dimensions d ≥ 2, even if v is required to be an entire solution. This is for
non-pathological reasons and we discuss a counter-example in Section 11.

Nevertheless, despite the likely lack of sufficiently general results on convergence to tran-
sition fronts or other entire solutions in general disordered media, these solutions will still
play an important role in our analysis. This is because one can use parabolic regularity to
build entire solutions from those of the Cauchy problem sampled near any sequence of points
(tn, xn) with tn →∞, so results for the former can be used in the analysis of the latter.
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Finally, let us mention that our results can be extended to some more general PDEs, with
x-dependent second order terms as well as first order terms with divergence-free coefficients.
This will be done elsewhere.

2. The Definition of Bounded Width and the Main Results

Let us now turn to the relevant definitions and our main results. We will first assume
that u ∈ [0, 1] and f ≥ 0 is Lipschitz and bounded below by some homogeneous pure ignition
reaction f0 (later we will consider more general situations). We will thus assume the following.

Hypothesis (H): f is Lipschitz with constant K ≥ 1 and

f(x, 0) = f(x, 1) = 0 for x ∈ Rd. (2.1)

There is also θ0 ∈ (0, 1) and a Lipshitz function f0 : [0, 1] → [0,∞) with f0(u) = 0 for
u ∈ [0, θ0] ∪ {1} and f0(u) > 0 for u ∈ (θ0, 1) such that

f(x, u) ≥ f0(u) for (x, u) ∈ Rd × [0, 1].

Finally, there is θ ∈ [0, 1
3
] such that f(x, u) = 0 for (x, u) ∈ Rd× [0, θ] and f is non-increasing

in u on [1−θ, 1] for each x ∈ Rd. If such θ > 0 exists, then f is an ignition reaction, otherwise
(in which case the last hypothesis is vacuous) f is a monostable reaction.

Remarks. 1. If there are also θ̃(x) ∈ [θ, θ0] and g : (0,∞)→ (0,∞) such that f(x, u) = 0 for

u ∈ [0, θ̃(x)]∪{1} and f(x, u) ≥ g(dist(u, {θ̃(x), 1})) for u ∈ (θ̃(x), 1), then we say that f is a
pure ignition reaction. While we will not need this extra hypothesis here, notice that reactions
with a constant ignition temperature from Theorem 1.1 (the special case f(x, u) = a(x)f0(u)
was considered in [16,17,20] in one spatial dimension) are pure ignition ones.

2. While the requirement of f being non-increasing in u on [1−θ, 1] is not always included
in the definition of ignition reactions, many results for them need to assume it. This includes
our main results, although the hypothesis is not needed for their slightly weaker versions
(specifically, not including those statements which use Theorem 2.11(ii) below). Notice also
that we can assume without loss that f0 is non-increasing on [1− δ, 1] for some δ > 0 because
this can be achieved after replacing f0(u) by minv∈[1−δ,u] f0(v). Thus f0 is itself an ignition
reaction according to the above definition.

If u : (t0,∞)× Rd → [0, 1] and ε ∈ [0, 1], we let Ωu,ε(t) := {x ∈ Rd |u(t, x) ≥ ε} for t > t0.
For ε ∈ (0, 1

2
), the width of the transition zone of u from ε to 1− ε at time t > t0 is given by

(1.6), while for ε ∈ (1
2
, 1) the corresponding width is

Lu,ε(t) := inf
{
L > 0

∣∣Rd \ Ωu,ε(t) ⊆ BL

(
Rd \ Ωu,1−ε(t)

)}
. (2.2)

For ε ∈ (0, 1
2
) we also define the length of transition from (ε, 1− ε) to either ε or 1− ε to be

Ju,ε(t) := inf
{
L > 0

∣∣Rd = BL

(
Ωu,1−ε(t) ∪

[
Rd \ Ωu,ε(t)

])}
. (2.3)

For the above to be perfectly symmetric, we could replace Rd\Ωu,ε(t) by Rd\
⋃
ε′>1−ε Ωu,ε′(t),

but as we mentioned in the introduction, only (1.6) will play a major role here.
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Definition 2.1. Let u : (t0,∞)× Rd → [0, 1] be a solution of (1.1) with t0 ∈ [−∞,∞). We
say that u has a bounded width (with respect to 0 and 1) if for any ε ∈ (0, 1

2
) we have

Lu,ε := lim
T→∞

sup
t>t0+T

Lu,ε(t) <∞. (2.4)

We say that u has a doubly-bounded width if (2.4) holds for any ε ∈ (0, 1
2
) ∪ (1

2
, 1). And we

say that u has a semi-bounded width if for any ε ∈ (0, 1
2
) we have

Ju,ε := lim
T→∞

sup
t>t0+T

Ju,ε(t) <∞. (2.5)

Remarks. 1. Notice that if t0 = −∞, then Lu,ε = supt∈R Lu,ε(t) and Ju,ε = supt∈R Ju,ε(t).
For t0 > −∞, however, Lu,ε = lim supt→∞ Lu,ε(t) and Ju,ε = lim supt→∞ Ju,ε(t). One reason
for this is that if supx∈Rd u0(x) < 1, then supx∈Rd u(t, x) < 1 for any t > t0. Thus for any
ε ∈ (0, 1

2
), Lu,ε(t) will equal ∞ up to some time tε (→∞ as ε→ 0).

2. We trivially have that Lu,ε is non-increasing in ε ∈ (0, 1
2
) (as is Ju,ε) and non-decreasing

in ε ∈ (1
2
, 1), so in fact the definition only needs to involve ε close to 0 and 1.

While the definition of bounded width involves ε ∈ (0, 1
2
), we do not make one involving

only ε ∈ (1
2
, 1). This lack of symmetry was explained in the introduction, and is due to

the possibility of existence of unburned pockets with u ∼ 0 behind the leading edge of the
reaction zone. Hence, typical solutions u in general disordered media may have Lu,ε = ∞
for ε ∈ (1

2
, 1). In particular, they would not have doubly-bounded widths, but may still have

bounded widths, at least when u ≡ 0 is a stable equilibrium.
If the equilibrium u ≡ 0 is strongly unstable (such as for KPP f), bounded width is also

too much to hope for in some situations, even when d = 1. Indeed, an easy extension of the
construction from [19] yields media where burned pockets with u ∼ 1 can form arbitrarily
far ahead of the leading edge of the reaction zone. While we do not study this case here,
we introduce the concept of semi-bounded width in Definition 2.1 because it is likely to be
relevant in such situations.

We next define the propagation speed of (the reaction zone of) u (cf. [6]).

Definition 2.2. Let u : (t0,∞)× Rd → [0, 1] be a solution of (1.1) with t0 ∈ [−∞,∞), and
let 0 < c ≤ c′ ≤ ∞. We say that u propagates with global mean speed in [c, c′] if for any
ε ∈ (0, 1

2
) and δ > 0 there are Tε,δ, τε,δ <∞ such that

B(c−δ)τ (Ωu,ε(t)) ⊆ Ωu,1−ε(t+ τ) and Ωu,ε(t+ τ) ⊆ B(c′+δ)τ (Ωu,1−ε(t)) (2.6)

whenever t > t0 + Tε,δ and τ ≥ τε,δ. If any such 0 < c ≤ c′ ≤ ∞ exist, we also say that u
propagates with a positive global mean speed.

Remarks. 1. If t0 = −∞, then obviously t ∈ R above is arbitrary.

2. Notice that the definition would be unchanged if we took Tε,δ = τε,δ. However, this
formulation will be more convenient for us because we will show that under certain conditions,
τε,δ (but not necessarily Tε,δ) will be independent of f, u.
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We now let c0 be the front/spreading speed associated with the homogeneous reaction f0.
That is, c0 is the unique value such that (1.1) for d = 1 and with f0(u) in place of f(x, u) has
a traveling front solution u(t, x) = U(x− c0t) with lims→−∞ U(s) = 1 and lims→∞ U(s) = 0.

We also let f1 : [0, 1]→ [0,∞) be any Lipschitz function with constant K such that

f(x, u) ≤ f1(u) for (x, u) ∈ Rd × [0, 1], (2.7)

which is also pure ignition if θ > 0 in (H) and pure monostable (i.e. f1(0) = f1(1) = 0 and
f1(u) > 0 for u ∈ (0, 1)) otherwise. For instance, we could pick f1(u) := supx∈Rd f(x, u),
if this function is pure ignition/monostable. We also let c1 be the front/spreading speed
associated with f1 (which is again the unique traveling front speed if f1 is ignition, and it is
the minimal traveling front speed if f1 is monostable). The existence of c0, c1 is well known,

as well as that f0(u) ≤ f1(u) ≤ Ku implies c0 ≤ c1 ≤ 2
√
K.

Our main results below say that under appropriate (quite general and physically relevant)
qualitative hypotheses on the reaction, typical solutions of (1.1) have bounded widths and
(their reaction zones) propagate with global mean speeds in the interval [c0, c1]. They also
eventually grow in time on any closed interval of values of u contained in (0, 1). Specifically,
we will prove the following conclusion for typical solutions u.

Conclusion (C): For any ε ∈ (0, 1
2
), there are `ε,mε, Tε ∈ (0,∞) such that

sup
t>t0+Tε

Lu,ε(t) ≤ `ε and inf
(t,x)∈(t0+Tε,∞)×Rd

u(t,x)∈[ε,1−ε]

ut(t, x) ≥ mε. (2.8)

In particular, Lu,ε ≤ `ε, so u has a bounded width. Moreover, if a pure ignition f1 satisfies
(2.7), then u propagates with global mean speed in [c0, c1].

Moreover, `ε,mε as well as τε,δ from Definition 2.2 will depend on some uniform bounds on
the reaction, but neither on the reaction itself nor on the solution. That is, the spatial scale
on which the transition from u ∼ 0 to u ∼ 1 happens as well as the temporal scale on which
the global mean speed of (the reaction zone of) u is observed to be in [c0, c1], will become
independent of f, u after an initial time interval.

Note that such expanding sets may also be weak solutions of appropriate Hamilton-Jacobi
equations. Connection of the two types of PDE is well-established in the homogenization
theory for various types of media (e.g., periodic or stationary ergodic), see for instance [10,14].
It will be explored, via our results, for general disordered media elsewhere.

Solutions of the Cauchy Problem with Bounded Widths

We will first show that for ignition reactions (i.e., with θ > 0), (C) holds in dimensions
d ≤ 3, but not in dimensions d ≥ 4 (under the same qualitative hypotheses).

A crucial additional (and necessary) hypothesis, which is automatically satisfied in the
case of constant ignition temperature θ0, relates to the following definition (see Remarks 1
and 2 below). It says that if for any x ∈ Rd we increase u from 0 to 1, once f(x, u) becomes
large enough, it cannot become arbitrarily small until u ∼ 1, as illustrated in Figure 2.
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Figure 2. Example of a reaction from Definition 2.3 (at some fixed x ∈ Rd).

Definition 2.3. Let f0, K, θ be as in (H) and let ζ, η > 0. If f satisfies (H), define

αf (x) = αf (x; ζ) := inf{u ≥ 0 | f(x, u) > ζu} (2.9)

and let F (f0, K, θ, ζ, η) be the set of all f satisfying (H) such that (recall inf ∅ =∞)

inf
x∈Rd

u∈[αf (x),θ0]

f(x, u) ≥ η. (2.10)

Remarks. 1. We will require that f ∈ F (f0, K, θ, ζ, η) for some not too large ζ > 0 and
some η > 0. This assumption is physically relevant, as reaction should not cease at inter-
mediate temperatures if it occurs at lower ones, and encompasses a large class of functions.
A natural example is the pure ignition reaction from Remark 1 after (H), in which case
f ∈ F (f0, K, θ, ζ, η) for any ζ > 0 and small enough η > 0.

2. Note that F (f0, K, θ, ζ, η) is spatially translation invariant and closed under locally
uniform convergence of functions. It is also decreasing in its odd arguments and increasing
in the even ones. In particular, F (f0, K, θ, ζ, η) ⊆ F (f0, K, 0, ζ, η). These facts will be useful
later, as well as the obvious αf (x) ≥ η

K
for f ∈ F (f0, K, θ, ζ, η).

Without (some version of) the assumption from Remark 1, solutions of (1.1) need not have
bounded widths even when d = 1 and f is a homogeneous ignition reaction. Indeed, assume
that f : [0, 1] → [0,∞) is such that f(u) = 0 for u ∈ [0, 1

4
], f(u) > 0 for u ∈ (1

4
, 1
2
), and

f(u) = 2f(u − 1
2
) for u ∈ [1

2
, 1]. Such f vanishes on [1

2
, 3
4
] and so belongs to F (f0, K, θ, ζ, η)

only for large ζ (specifically ζ ≥ ‖f(u)/u‖∞).
For such f , there obviously is a traveling front solution u(t, x) = U(x − ct) of (1.1) con-

necting 0 and 1
2

(i.e., such that lims→−∞ U(s) = 1
2

and lims→∞ U(s) = 0) and another

u(t, x) = 1
2

+ U(
√

2(x −
√

2ct)) connecting 1
2

and 1. Their speeds are c > 0 and
√

2c (> c)
and a simple comparison principle argument shows that all spark-like and front-like solutions
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have a linearly in time growing propagating terrace:

lim
t→∞

sup
x∈[(c+δ)t,(

√
2c−δ)t]

∣∣∣∣u(x, t)− 1

2

∣∣∣∣ = 0 (2.11)

for any δ > 0 (see [8] for further results of this nature). In particular, they do not have
bounded widths. Of course, for such solutions one can separately study the transition from
0 to 1

2
and that from 1

2
to 1, using our results. Hence, the latter can also be applied in some

situations when (2.10) is not satisfied for any η > 0 (and some not too large ζ > 0).
We are now ready to state our first main result for ignition reactions, which applies to

general spark-like and front-like initial data u0 ∈ [0, 1]. Specifically, we will assume that
either there are x0 ∈ Rd, R2 ≥ R1 > 0, and ε1, ε2 > 0 such that

(θ0 + ε1)χBR1
(x0)(x) ≤ u0(x) ≤ e−ε2(|x−x0|−R2), (2.12)

or there are e ∈ Sn−1, R2 ≥ R1, and ε1, ε2 > 0 such that

(θ0 + ε1)χ{x |x·e<R1}(x) ≤ u0(x) ≤ e−ε2(x·e−R2). (2.13)

In (2.12) we also assume that R1 is large enough (depending on ε1) to guarantee spreading
(i.e., limt→∞ u(x, t) = 1 locally uniformly in Rd), because otherwise one might have quenching
(i.e., limt→∞ ‖u(t, ·)‖∞ = 0) for ignition reactions.

Theorem 2.4. (i) Let f0, K, and θ > 0 be as in (H) and let η > 0, ζ ∈ (0, c20/4), and
f ∈ F (f0, K, θ, ζ, η). Let u solve (1.1), (1.2) with spark-like or front-like u0 ∈ [0, 1] as above.
If d ≤ 3, then (C) holds with `ε,mε depending only on ε, f0, K, ζ, η, and τε,δ in Definition 2.2
also depending on δ, f1.

(ii) If d ≥ 4, then there is f as in (H) with θ > 0 and f(x, u) = 0 for (x, u) ∈ Rd × [0, θ0]
(so that f ∈ F (f0, K, θ, ζ, η) for any ζ, η > 0) such that all claims in (C) are false for any
u0 ∈ [0, 1] supported in the left half-space for which lim supt→∞ ‖u(t, ·)‖∞ > 0.

Remarks. 1. As noted before, the hypothesis ζ < c20/4 is crucial in (i). It guarantees
that the reaction at small u (where f(x, u) ≤ ζu) is not strong enough to cause spreading at
speeds ≥ c0 (see Lemma 4.1(ii)). This is because spreading speeds for homogeneous reactions
bounded above by ζu are no more than 2

√
ζ < c0. Since f ≥ f0 has spreading speed no less

than c0, one should then expect spreading to be driven by “intermediate” values of u (above
αf (x) and not too close to 1, where f is small). Thus u would be a “pushed” solution, and
one can hope for it to have a bounded width, provided one can also show that values of u
close to 1 do not “trail” far behind the intermediate ones. We will prove the latter for d ≤ 3
in Lemma 4.2 but will also show in the proof of (ii) that it fails in general for d ≥ 4, with the
provided counter-example even having constant ignition temperature as in Theorem 1.1.

2. Note that the second claim in (2.8) and parabolic regularity shows that Ωu,ε(t) grows
with instantaneous speed greater than some positive constant at all times t ≥ t0 + Tε in (i).
An upper bound on the instantaneous speed of growth does not exist in general, however,
because for ε ∈ (0, 1

2
), Ωu,ε(t) may acquire new connected components (which then soon

merge with the “main” component) as time progresses.
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3. As the proof of (i) shows, Tε in (C) depends on ε, f0, K, ζ, η, θ, R2 − R1, ε1, ε2, and Tε,δ
in Definition 2.2 also depends on δ, f1.

4. The result extends to monostable reactions in a weaker form. (ii) holds without change
(the counter-example we construct is easily modified) but in (i) we need to assume that either
there are R1, R2, ε1 > 0 (R1 sufficiently large, depending on ε1) and x0 ∈ Rd such that

(θ0 + ε1)χBR1
(x0)(x) ≤ u0(x) ≤ χBR2

(x0)(x), (2.14)

or there are R1, R2 ∈ R, ε1, ε2 > 0, and e ∈ Sn−1 such that

(θ0 + ε1)χ{x |x·e<R1}(x) ≤ u0(x) ≤ (1− ε2)χ{x |x·e<R2}(x). (2.15)

Then for any ε ∈ (0, 1
2
) there are `ε, Tε ∈ (0,∞), depending on ε, f0, K, ζ, η, ε1, and either on

R2 (for (2.14)) or on R2 −R1, ε2 (for (2.15)), such that Lu,ε(t) ≤ `ε for t > t0 + Tε.

The first step in the proof of Theorem 2.4(i) will be to consider general solutions with
ut ≥ 0. That is, such that on Rd,

∆u0(·) + f(·, u0(·)) ≥ 0, (2.16)

which then guarantees ut ≥ 0 because v := ut solves vt = ∆v+ fu(x, u(x))v with v(0, x) ≥ 0.
For d ≤ 3 we will show that if the width of the reaction zone of such u is controlled at
the initial time t0 (see (2.17) below), then the conclusions of Theorem 2.4(i) continue to
hold. This step is related to our proof of existence of transition fronts in [31], but will be
considerably more involved, particularly for d = 3.

This latter result applies to any such solution u (as well as solutions trapped between
time-shifts of such u), not just the spark-like or front-like ones, and is stated next. We let

Lu,ε,ε′(t) := inf
{
L > 0

∣∣Ωu,ε(t) ⊆ BL (Ωu,ε′(t))
}

(2.17)

be the width of the transition zone from ε to ε′. We will assume that Lu,ε,ε′(t0) <∞ for each
ε > 0 and some fixed ε′ > θ0. Here ε′ can be arbitrary when d ≤ 2, and equals 1− ε0 when
d = 3 (with ε0 = ε0(f0, K) > 0 from Lemma 3.1 below). This choice of ε′ will guarantee
spreading for any solution satisfying (2.16) and u(t0, x) ≥ ε′ for some x ∈ Rd.

Theorem 2.5. Let d ≤ 3, let f0, K, and θ > 0 be as in (H), and let η > 0, ζ ∈ (0, c20/4), and
f ∈ F (f0, K, θ, ζ, η). Let u solve (1.1), (1.2) with u0 ∈ [0, 1] satisfying (2.16).

(i) If ε′ is as above and Lu,ε,ε′(t0) <∞ for each ε > 0, then (C) holds with `ε,mε depending
only on ε, f0, K, ζ, η, and τε,δ in Definition 2.2 also depending on δ, f1.

(ii) If u is as in (i), and a solution v of (1.1) satisfies

u(t0, ·) ≤ v(t0 + τ, ·) ≤ u(t0 + 2τ, ·)
for some τ > 0, then (C) holds for v with `ε,mε, τε,δ as in (i) (so independent of τ).

Remarks. 1. In (i), Tε in (C) depends on ε, f0, K, ζ, η, θ, u0, the dependence on u0 being
only via the number Lu,h,ε′(t0) with h := min

{
θ(c20 − 4ζ)(c20 + 4ζ)−1, η

4K
, 1− ε′, ε

2

}
(see the

proof); Tε,δ in Definition 2.2 also depends on δ, f1. In (ii) they also depend on τ .

2. (i) extends to monostable f if we also assume supε∈(0,1) εe
√
ζLu,ε,ε′ (t0) < ∞, but with

global mean speed in [c0, c
′
Y ], where c′Y is from (4.7) below.
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3. (ii) also extends to monostable f if we assume supε∈(0,1) εe
√
ζLu,ε,ε′ (t0) < ∞, but with

τ -dependent `ε, τε,δ, without the second claim in (2.8), and with global mean speed in [c0, c
′
Y ].

Notice that in (ii), the bounds in (C) are independent of the time shift τ . To prove this, we
will first need to show such solution-independent bounds for entire solutions with bounded
widths when d ≤ 3. In particular, as long as such a solution has a bounded width, the bound
on supt∈R Lu,ε(t) (for ε ∈ (0, 1

2
)) will in fact only depend on ε, f0, K, ζ, η. It will then suffice to

show, using parabolic regularity, that the solutions from (ii) asymptotically look like entire
solutions with bounded widths, where the bounds involved will be allowed to depend on τ .

A crucial ingredient in this will be the proof that entire solutions with bounded widths
satisfy ut ≥ 0 (in all dimensions). Such a result was previously proved in [6] for transition
fronts in a closely related setting. This and the uniform bounds for entire solutions with
bounded widths are stated in Theorem 2.11 below.

Theorem 2.4(i) is proved similarly to Theorem 2.5(ii), but the solution will be sandwiched
between time-shifts of a time-increasing solution, perturbed by certain exponentially in space
decreasing functions. We will therefore also need to prove stability of spark-like and front-like
time-increasing solutions with respect to such perturbations. This could be extended to other
situations where time-increasing solutions with some specific profiles are stable with respect
to appropriate (exponentially decreasing) perturbations. For instance, one could handle in
this way cone-like solutions, with initial data exponentially decreasing inside a d-dimensional
cone and converging to 1 outside it. We will not pursue this direction here.

We also note that these results cannot be extended to arbitrary spreading solutions, even
for homogeneous pure ignition reactions f(x, u) = f0(u) and d = 1. Indeed, the author
showed [29] that then there exists a unique M > 0 such that the solution of (1.1), (1.2)
with u0 := χ[−M,M ] converges locally uniformly to θ0 as t → ∞. If we now let R � 1 and
u0 := χ[−R,R] +

∑∞
n=1 χ[an−M,an+M ] with sufficiently rapidly growing an, the solution u will

have increasingly long plateaus as t→∞. Specifically, there will be tn, bn →∞ such that

lim
n→∞

sup
x∈[an−bn,an+bn]

|u(tn, x)− θ0| = 0.

Such u therefore does not even have a semi-bounded width!
Finally, most of the argument for d ≤ 3 also applies if d ≥ 4, the one exception being

Lemma 4.2 below. The reason it fails for d ≥ 4 lies in Lemma 3.4, which only excludes
existence of equilibrium solutions to (1.1) which are independent of one coordinate when
d ≤ 3. Such solutions will be the basis of the counter-example proving Theorem 2.4(ii).

Extensions to More General Reactions, Equilibria, and Solutions

Let us now discuss the more general case when typical solutions transition from some
equilibrium u− to another equilibrium u+ (instead from 0 to 1), with u− < u+ and

0 < inf
x∈Rd

[u+(x)− u−(x)] ≤ sup
x∈Rd

[u+(x)− u−(x)] <∞ (2.18)

(the case u− > u+ is identical, as one can consider the equation for −u instead). Our goal
is to extend the positive results in Theorems 2.4(i) and 2.5 to such situations. In addition,
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we will also consider more general reactions than ignition, specifically, mixtures of ignition,
monostable, and bistable ones.

We will assume u− ≡ 0 without loss, because the general case is immediately reduced to
this by taking v := u− u−, which solves (1.1) with f replaced by

g(x, v) := f(x, v + u−(x))− f(x, u−(x)).

Obviously, we can also assume u+ ≤ 1, by (2.18) and after scaling in u.
Thus we will now assume the following generalization of (H).

Hypothesis (H’): f is Lipschitz with constant K ≥ 1 and

f(x, 0) = 0 for x ∈ Rd.

There are also 0 < θ0 < θ1 ≤ 1 and Lipshitz f0 : [0, θ1]→ R with f0(0) = f0(θ0) = f0(θ1) = 0,

f0(u) < 0 for u ∈ (0, θ0), and f0(u) > 0 for u ∈ (θ0, θ1), such that
∫ θ1
0
f0(u)du > 0 and

f(x, u) ≥ f0(u) for (x, u) ∈ Rd × [0, θ1].

Furthermore, we assume that there is an equilibrium solution u+ of (1.1) with

θ0 < inf
x∈Rd

u+(x) ≤ sup
x∈Rd

u+(x) ≤ 1, (2.19)

and we have

f(x, u) ≥ 0 when u < 0 and f(x, u) ≤ f(x, u+(x)) when u > u+(x) (2.20)

Finally, there is θ ∈ [0, θ0
3

] such that f is non-increasing in u on [0, θ] and on [u+(x)−θ, u+(x)]

for each x ∈ Rd (θ = 0 obviously always works but we will obtain stronger results when θ > 0).

That is, f0 is now a pure bistable reaction (while f1 in (2.7) will still be pure ignition
or pure monostable), so f could be any mix of different reaction types. The hypothesis∫ θ1
0
f0(u)du > 0 is necessary for solutions of (1.1), (1.2), with reaction f0 and large enough

u0 ∈ [0, θ1], to spread (i.e., limt→∞ u(t, x) = θ1 locally uniformly). In fact, it guarantees
that the front/spreading speed c0 for this f0 (which corresponds to the traveling front for f0
connecting 0 and θ1, and is unique just as for ignition reactions) is positive. Thus, typical
non-negative solutions of (1.1) transition away from u = 0. Transition to u+ is, however, not
guaranteed by (H’) only. Finally, (2.20) will be needed in Theorem 2.9 to extend our results
to solutions which are not necessarily between 0 and u+.

We next need to generalize Definitions 2.1–2.3 to the case at hand. We will first consider
solutions 0 ≤ u ≤ u+ (henceforth denoted u ∈ [0, u+]), when (2.20) is of no consequece.
Definitions 2.1 and 2.2 are unchanged for such u, but use (for ε ∈ (0, 1

2
))

Ωu,ε(t) := {x ∈ Rd |u(t, x) ≥ ε}, (2.21)

Ωu,1−ε(t) := {x ∈ Rd |u(t, x) ≥ u+(x)− ε}. (2.22)

Definition 2.3, on the other hand, needs to be changed because f(x, u+(x)) 6≥ 0 in gen-
eral. The motivation for this new form comes from the proofs of Theorems 2.4(i) and 2.5,
specifically from the use of Lemma 3.4 below in the proof of the d = 3 case of Lemma 4.2.
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Definition 2.6. Let f0, K, θ be as in (H’) and ζ, η > 0. If f satisfies (H’), define αf (x; ζ)
as in (2.9). Finally, let F ′(f0, K, θ, ζ, η) be the set of all (f, u+) satisfying (H’) such that
αf (x; ζ) ≥ η for all x ∈ Rd and any equilibrium solution p of (1.1) with 0 < p < u+ satisfies

sup
x0∈Rd

∑
n≥1

1

1 + d(x0, Cn)
≤ 1

η
. (2.23)

Here d(·, ·) is the distance in Rd and C1, C2, . . . are all (distinct) unit cubes in Rd, whose
corners have integer coordinates, such that p(x) > αf (x; ζ) for some x ∈ Cn.

Remarks. 1. The advantage of (2.10), relative to (2.23), is that the former is a local
condition while the latter is not. Thus (2.23) is more difficult to check. An obvious sufficient
condition is when p(·) ≤ αf (·; ζ) for each equilibrium 0 < p < u+ (with ζ < c20/4, so that our
results apply), which may be proved under some quantitative local hypotheses on f . A simple
such example is when d = 1 = θ1 and f is sufficiently close to a homogeneous reaction f0 as

in (H’) with
∫ β
0
f0(u)du > 0, where β ∈ (θ0, 1) is smallest number such that f0(β) = βc20/4.

2. Lemma 3.4 shows that in the setting of (H), (2.10) implies (2.23) when d ≤ 3 (but not
when d ≥ 4), although with a different η > 0.

3. (2.23) will cause typical solutions between 0 and u+ to transition to u+ (instead of to
some other equilibrium p < u+), and also to have a bounded width. The latter need not
be true without a condition like (2.23), as is demonstrated by the example in the proof of
Theorem 2.4(ii), for which the sum in (2.23) diverges, albeit slowly (as log n).

Note that unlike F (f0, K, θ, ζ, η), the set F ′(f0, K, θ, ζ, η) may be neither spatially transla-
tion invariant (although it would be if the Cn were integer translations of any fixed unit cube
C, and the sup in (2.23) were also taken over all such C) nor closed with respect to locally uni-
form convergence (i.e., locally uniform convergence for q(x, u) := (f(x, u), u+(x)) on Rd×R).
Since these properties will be essential in our analysis, in the following generalization of The-
orems 2.4(i) and 2.5 we will work with subsets F ⊆ F ′(f0, K, 0, ζ, η) which possess them
both (an example of particular interest is the closure of all translations of a given (f, u+)
with respect to locally uniform convergence). We will denote Fθ := F ∩ F ′(f0, K, θ, ζ, η) for
θ ≥ 0, which then also has the same properties.

Theorem 2.7. Let f0, K, and θ > 0 be as in (H’) and let η > 0, ζ ∈ (0, c20/4), and F ⊆
F ′(f0, K, 0, ζ, η) be spatially translation invariant and closed with respect to locally uniform
convergence. Let (f, u+) ∈ Fθ and let u solve (1.1), (1.2) with u0 ∈ [0, u+].

(i) If d ≥ 1 and u0 satisfies (2.12) or (2.13), then (C) holds with 1−ε replaced by u+(x)−ε
in (2.8), with `ε,mε depending only on ε,F , and τε,δ in Definition 2.2 also depending on δ, f1.

(ii) If d ≥ 1, u0 satisfies (2.16), and Lu,ε,1−ε0(t0) <∞ for ε0 > 0 from Lemma 8.1 and each
ε > 0, then (C) holds for u and for v as in Theorem 2.5(ii), with 1− ε replaced by u+(x)− ε
in (2.8), with `ε,mε depending only on ε,F , and τε,δ in Definition 2.2 also depending on δ, f1.

Remarks. 1. Here Tε in (C) and Tε,δ in Definition 2.2 depend on the same parameters as
in Theorems 2.4 (in (i)) and 2.5 (in (ii)), but with f0, K, ζ, η replaced by F . This is also the
case in Theorem 2.9 below, but there Tε and Tε,δ depend also on ‖u0‖∞.
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2. These results again extend to the case θ = 0 in the slightly weaker form from Remark
4 after Theorem 2.4 and Remarks 2,3 after Theorem 2.5.

Next, we consider extensions of our results to solutions that are not necessarily between the
equilibria which they connect. We first need to extend Definitions 2.1 and 2.2 in a physically
relevant manner to such solutions (we will do so for general u±). Namely, we will consider u
to be ε-close to u± at (t, x) if |u(t, y)−u±(y)| < ε for all y in a ball centered at x, whose size
grows to ∞ as ε→ 0. It will therefore be useful to define for a set A ⊆ Rd its r-interior

r-intA := {x ∈ A |Br(x) ⊆ A}.

Definition 2.8. Let u± be equilibrium solutions of (1.1) with bounded Lipschitz f , satisfying
(2.18). For a solution u of (1.1) on (t0,∞)× Rd, define (for ε ∈ (0, 1

2
))

Ωu,ε(t) :=
{
x ∈ Rd

∣∣ |u(t, x)− u−(x)| ≥ ε
}
,

Ωu,1−ε(t) :=
{
x ∈ Rd

∣∣ |u(t, x)− u+(x)| ≤ ε
}
,

Lu,ε(t) := inf
{
L > 0

∣∣Ωu,ε(t) ⊆ BL

(
1
ε
-int Ωu,1−ε(t)

)}
, (2.24)

Lu,1−ε(t) := inf
{
L > 0

∣∣Rd \ Ωu,1−ε(t) ⊆ BL

(
1
ε
-int

[
Rd \ Ωu,ε(t)

])}
,

Ju,ε(t) := inf
{
L > 0

∣∣Rd = BL

(
1
ε
-int Ωu,1−ε(t) ∪ 1

ε
-int

[
Rd \ Ωu,ε(t)

])}
.

We say that u has a bounded width (with respect to u±) if (2.4) holds for any ε ∈ (0, 1
2
), a

doubly-bounded width if (2.4) holds for any ε ∈ (0, 1
2
) ∪ (1

2
, 1), and a semi-bounded width if

(2.5) holds for any ε ∈ (0, 1
2
). Definition 2.2 remains the same but with these new Ωu,ε(t).

Parabolic regularity and strong maximum principle show that if u− ≤ u ≤ u+, then this
new definition of bounded/doubly-bounded/semi-bounded width is equivalent to the one
using (1.6), (2.2), (2.3) and these new Ωu,ε(t) (which are those from (2.21), (2.22) if also
u− = 0). In fact, while the new Lu,ε(t) is larger than the original one for such u, it is finite
for all ε ∈ (0, 1

2
) resp. all ε ∈ (0, 1

2
)∪ (1

2
, 1) as long as the same is true for the original Lu,ε(t).

Finally, let us extend the definition of spark-like and front-like initial data as follows. We
will assume that either there are x0 ∈ Rd, R2 ≥ R1 > 0, and ε1, ε2 > 0 such that

(θ0 + ε1)χBR1
(x0)(x)− e−ε2(|x−x0|−R2)χRd\BR1

(0)(x) ≤ u0(x) ≤ e−ε2(|x−x0|−R2) (2.25)

(with R1 sufficiently large, depending on ε1, ε2, R2 − R1, to guarantee spreading), or there
are e ∈ Sn−1, R2 ≥ R1, and ε1, ε2 > 0 such that

(θ0 + ε1)χ{x |x·e<R1}(x)− e−ε2(x·e−R2)χ{x |x·e≥R1}(x) ≤ u0(x) ≤ e−ε2(x·e−R2). (2.26)

Theorem 2.9. Consider the setting of Theorem 2.7 but with u0 only bounded.
(i) Theorem 2.7(i) holds with (2.12)/ (2.13) replaced by (2.25)/ (2.26), provided that in the

case of (2.26), “≤” is replaced by “<” in (2.20) for all (f, u+) ∈ F .
(ii) Theorem 2.7(ii) holds, provided that “≤” and “≥” are replaced by “<” and “>” in

(2.20) for all (f, u+) ∈ F .
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Remarks. 1. The extra condition in (i) guarantees lim supt→∞ supx∈Rd [u(t, x)−u+(x)] ≤ 0
for any bounded u0, uniformly in F . This as well as (i) also hold for u0 from (2.26) if instead
we assume lim supx·e→−∞[u0(x) − u+(x)] ≤ 0, but then Tε, Tε,δ in (i) depend on u0 also via
the rate of this decay (cf. Remark 1 after Theorem 2.7).

2. The extra condition in (ii) guarantees lim supt→∞ supx∈Rd [u(t, x) − u+(x)] ≤ 0 and
lim inft→∞ infx∈Rd u(t, x) ≥ 0 for any bounded u0, uniformly in F .

3. Theorems 2.4(i) and 2.5 extend similarly to solutions u not necessarily in [0, 1].

Entire Solutions with Bounded Widths

Finally, let us turn to the discussion of the above-mentioned entire solutions of (1.1).

Definition 2.10. Let u± be equilibrium solutions of (1.1) satisfying (2.18). A transition
solution (connecting u− to u+) for (1.1) is a bounded entire solution u of (1.1) which satisfies

lim
t→±∞

u(t, x) = u±(x) (2.27)

locally uniformly on Rd.

As above, in the following we will assume u− ≡ 0 without loss.

Theorem 2.11. Let u− ≡ 0 and u+ satisfy (2.18) and be equilibrium solutions of (1.1) with
some Lipschitz f , satisfying (2.20) (but not necessarily (H’)). Let u 6≡ 0, u+ be a bounded
entire solution of (1.1) which has a bounded width with respect to 0, u+.

(i) We have 0 < u < u+.
(ii) If u propagates with a positive global mean speed, then u is a transition solution. If, in

addition, there is θ > 0 such that f is non-increasing in u on [0, θ] and on [u+(x)− θ, u+(x)]
for each x ∈ Rd, then ut > 0.

(iii) Assume f0, K, and θ > 0 are as in (H’) and η > 0, ζ ∈ (0, c20/4), F ⊆ F ′(f0, K, 0, ζ, η)
is spatially translation invariant and closed with respect to locally uniform convergence. If
(f, u+) ∈ Fθ, then (C) holds for u, with t0 + Tε replaced by −∞ and 1 − ε by u+(x) − ε in
(2.8), with `ε,mε depending only on ε,F , and τε,δ in Definition 2.2 also depending on δ, f1.

Remarks. 1. (i,ii) were proved in [6, Theorem 1.11], in a more general setting and for a
smaller class of entire solutions called invasions. The latter have doubly-bounded widths and
their reaction zones satisfy an additional geometric requirement (2.31) (see the discussion
below). Our proof proceeds along similar lines, using a version of the sliding method.

2. (ii) will play a crucial role in the proofs of Theorems 2.4(i), 2.5, 2.7, and 2.9.

3. Notice that as long as u has a bounded width in (iii), we actually have the u-independent
bound supt∈R Lu,ε(t) ≤ `ε.

The hypothesis (2.20) is necessary in Theorem 2.11, even for homogeneous f and d = 1.
It is well known that, for instance, if 0 ≤ f(u) ≤ f ′(0)u for u ∈ [0, 1] (i.e., f is a KPP

reaction with f ′(0) > 0) and f(u) = f ′(0)u for u < 0, then for any c ∈ (0, 2
√
f ′(0)) there

is a traveling front solution u(t, x) = Uc(x − ct) of (1.1) on R × R with lims→−∞ Uc(s) = 1,
lims→∞ Uc(s) = 0, and infs∈R Uc(s) < 0. This solution satisfies neither (i) nor (ii). Counter-
examples with ignition f also exist.
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Theorem 2.11 suggests a couple of interesting questions.

Open problems. 1. Does ut > 0 hold in Theorem 2.11(ii) when θ = 0?

2. Does Theorem 2.11(ii) and/or Theorem 2.11(iii) hold if we drop the hypotheses of
bounded width and positive global mean speed and instead only assume that u ∈ [0, u+] is
a transition solution? Of course, bounded width and positive global mean speed would then
follow from the claim of Theorem 2.11(iii).

A natural question is whether solutions considered in Theorem 2.11 must always exist.
The following result answers this in the affirmative under the hypotheses of Theorem 2.7,
even when θ = 0 in (H’). It also shows that transition solutions with doubly-bounded width
need not exist for d ≥ 2 even for ignition reactions, as was discussed in the introduction.

Theorem 2.12. (i) If (f, u+) ∈ F , with F as in Theorem 2.7 (so θ = 0), then there exists
a transition solution u ∈ (0, u+) for (1.1) with ut > 0 and a bounded width.

(ii) If d ≥ 2, then there exists f as in Theorem 2.4 such that any bounded entire solution
u 6≡ 0, 1 for (1.1) with bounded width is a transition solution u ∈ (0, 1) satisfying ut > 0 and
limt→∞ infx∈R2 u(t, x) = 1. In particular, there exists no transition solution with a doubly-
bounded width for (1.1) (and hence also no transition front — see the discussion below).

Remarks. 1. The hypothesis ζ < c20/4 is at least qualitatively necessary in (i), as coun-
terexamples with ζ > c20/2 exist even for d = 1 [19].

2. Note that for d = 1, transition fronts always exist under the hypotheses in (ii) [31]. The
first example of non-existence of fronts was given in [19] for KPP reactions (and d = 1). It is
based on the construction of f for which the equilibrium u ≡ 0 is strongly unstable in some
region of space, so that arbitrarily small amounts of heat diffusing far ahead of the reaction
zone quickly ignite on their own inside this region. (ii) is the first non-existence result for
ignition reactions (so it does not rely on this strong instability property of KPP reactions).

Before proving the above results, let us note that while the concepts of bounded and semi-
bounded width of solutions to (1.1) are new, the concept of doubly-bounded width is closely
related to the Berestycki-Hamel definition of transition fronts from [5, 6], which motivated
this work. The latter definition is more geometric in nature and its scope is slightly different
from ours. It involves entire solutions rather than solutions of the Cauchy problem, and
is also stated for wider classes of PDEs and spatial domains, and vector-valued solutions
with possibly time-dependent coefficients and u±. This is beyond the scope of the present
paper (although the corresponding generalizations are rather straightforward), so we will only
discuss the case at hand: (1.1) on R × Rd with bounded Lipschitz f and time-independent
u± satisfying (2.18).

In this setting, the definition in [6] says that a transition front connecting u− and u+ is an
entire solution u such that for each t ∈ R there are open non-empty sets Ω±t ⊆ Rd satisfying

Ω−t ∩ Ω+
t = ∅, ∂Ω−t = ∂Ω+

t =: Γt, Ω−t ∪ Γt ∪ Ω+
t = Rd, (2.28)

sup
{
d(y,Γt)

∣∣ y ∈ Ω±t ∩ ∂Br(x)
}
→∞ as r →∞, uniformly in t ∈ R and x ∈ Γt, (2.29)

u(t, x)− u±(x)→ 0 as d(x,Γt)→∞ and x ∈ Ω±t , uniformly in t ∈ R, (2.30)
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and there is n ≥ 1 such that for each t ∈ R,

Γt is a subset of n (rotated in Rd) graphs of functions from Rd−1 to R. (2.31)

While we have to forgo geometric conditions, such as (2.31), in our definitions (as was
explained earlier), it is not difficult to see that (2.28)–(2.30) for an entire solution u 6≡ u±

are in fact equivalent to u having a doubly-bounded width! Indeed, if u 6≡ u± has a doubly-
bounded width (in the sense of Definition 2.8 if u /∈ [u−, u+]), one only needs to take

Ω+
t := int

{
x ∈ Rd

∣∣∣∣∣u(t, x) ≥ u+(x) + u−(x)

2

}
, (2.32)

Γt := ∂Ω+
t , and Ω−t := Rd \ Ω̄+

t . (Of course, the sets Ω±t ,Γt from (2.28) are not unique!) On
the other hand, when (2.28)–(2.30) holds, it is easy to see that Γt and the boundary of the set
from (2.32) are within a (uniformly in t) bounded distance of each other. So transition fronts
are precisely those entire solutions with doubly-bounded widths which also satisfy (2.31) in
the sense that for some n ≥ 1, the boundary of the set in (2.32) is uniformly (in time) close to
the union of n t-dependent graphs. In particular, Theorems 2.11 and 2.12(ii) apply to them,
the latter also showing that transition fronts need not always exist in dimensions d ≥ 2.

We note that the condition (2.27) for our transition solutions also has a counterpart in [6].
There an invasion of u− by u+ is defined to be a transition front connecting u± for which

Ω+
s ⊆ Ω+

t when s ≤ t and lim
r→∞

inf
|t−s|=r

d(Γt,Γs) =∞. (2.33)

This condition, together with (2.28)–(2.30), implies (2.27) but is stronger than our definition
of transition solutions with doubly-bounded widths. Nevertheless, if we relax (2.33) to the
existence of T such that

Ω+
s ⊆ Ω+

t when s+ T ≤ t and lim
r→∞

inf
|t−s|=r

d(Γt,Γs) =∞, (2.34)

then (2.28)–(2.30), (2.34) are in fact equivalent to our definition of transition solutions with
doubly-bounded widths which also propagate with a positive global mean speed. Indeed,
notice that (2.34) implies that inf |t−s|=r d(Γt,Γs) grows at least linearly as r →∞, so we can
again use (2.32) to define Ω+

t .

Organization of the Paper and Acknowledgements

In Section 3 we prove some preliminary results. Section 4 is the heart of the argument
proving bounded widths of solutions for d ≤ 3 (the proof of Lemma 4.2 is considerably more
complicated for d = 3, so it is postponed until Section 7). Theorem 2.5(i) will then be
obtained in the short Section 5, and a more involved argument (along with Theorem 2.11(ii))
will be needed to prove Theorem 2.5(ii) and Theorem 2.4(i) in Section 6. All these arguments
are extended in Section 8 to obtain proofs of Theorems 2.7 and 2.9, and in Section 9 we prove
Theorem 2.11 (the proof of its parts (i,ii) only uses Lemma 3.3 below and, in particular, not
the results proved in Section 6). In Section 10 we prove Theorem 2.4(ii) by means of a
counter-example (the proof is also independent of the rest of the paper) and Theorem 2.12
is proved in Section 11.



PROPAGATION OF REACTIONS IN INHOMOGENEOUS MEDIA 21
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3. Preliminaries (case u+ ≡ 1)

In Sections 3–7 we consider the setting of Theorems 2.4 and 2.5, with f0, K, θ as in (H),
u+ ≡ 1, and u ∈ [0, 1]. We will extend the results below to the setting of (H’) in Section 8.

Let us start with some useful preliminary lemmas.

Lemma 3.1. There is ε0 = ε0(f0, K) > 0 such that for each c < c0 and ε > 0 there is
τ = τ(f0, K, c, ε) ≥ 0 such that the following holds. If u ∈ [0, 1] solves (1.1), (1.2) with f
from (H), and u(t1, x) ≥ 1− ε0 for some (t1, x) ∈ [t0 + 1,∞)×Rd, then for each t ≥ t1 + τ ,

inf
|y−x|≤c(t−t1)

u(t, y) ≥ 1− ε. (3.1)

The same result holds if the hypothesis u(t1, x) ≥ 1− ε0 is replaced by

u(t1, ·) ≥
1 + θ0

2
χBR(x)(·) (3.2)

for some (t1, x) ∈ [t0,∞)× Rd and a large enough R = R(f0) > 0.

Proof. The second claim is proved in [2] when f(y, ·) = f0(·) for all y ∈ Rd and follows for
general f by the comparison principle.

The first claim holds because (3.2) follows from u(t1, x) ≥ 1 − ε0, provided ε0 > 0 is
sufficiently small (depending on f0, K) . Indeed, assume that for each n ∈ N there were fn
satisfying (H) and un solving (1.1) on (−1,∞)×Rd with f = fn, such that un(0, 0) ≥ 1− 1

n

and infy∈BR(0) un(0, y) < 1
2
(1 + θ0) (note that we can shift (t1, x) to (0, 0) without loss, and

then t0 ≤ −1). By parabolic regularity, there is a subsequence {nj}j≥1 with unj and fnj
locally uniformly converging to u ∈ [0, 1] and f such that f satisfies (H) and u solves (1.1)
on (−1,∞)×Rd, with u(0, 0) = 1 and infy∈BR(0) u(0, y) < 1. But this contradicts the strong
maximum principle, and we are done. �

The first claim of this result immediately shows that solutions with bounded widths prop-
agate with global mean speed in [c0,∞]. It turns out that bounded width also makes the
global mean speed not exceed c1, at least in the ignition case. This can be proved by a
separate argument and we state both these results in the following lemma.

Lemma 3.2. Let f0, K be as in (H) and f1 be pure ignition. For each ε ∈ (0, 1
2
) and δ > 0

there is ε′ > 0 and τ < ∞ such that the following holds. If u ∈ [0, 1] solves (1.1) on
(t0,∞)× Rd with ignition f from (H) satisfying (2.7), and supt∈[t0+1,t3] Lu,ε′(t) ≤ L, then

B(c0−δ)(t2−t1)−L (Ωu,ε(t1)) ⊆ Ωu,1−ε(t2) and Ωu,ε(t2) ⊆ B(c1+δ)(t2−t1)+L (Ωu,1−ε(t1))

whenever t1 ≥ t0 + 1 and t2 ∈ [t1 + τ, t3].



22 ANDREJ ZLATOŠ

Proof. The first inclusion is immediate for any ε′ ∈ (0,min{ε, ε0}], with τ from Lemma 3.1
with ε and c := c0 − δ. Indeed, if x ∈ Ωu,ε(t1), then B̄L(x) ∩ Ωu,1−ε0(t1) 6= ∅, so Lemma 3.1
yields the result (even for monostable f).

Let us now consider the second inclusion. Extend f1 by 0 to R\ [0, 1]. It is well known that
for any δ > 0 there is ε′ ∈ (0, ε

2
) and a traveling front for some f2 ≥ f1(≥ 0) with f2 ≡ 0 on

[0, 2ε′]∪{1 + ε′}, which has speed c2 ∈ [c1, c1 + δ
3
] and connects ε′ and 1 + ε′. That is, there is

a solution of U ′′ + c2U
′ + f2(U) = 0 on R with U ′ < 0, U(−∞) = 1 + ε′ and U(∞) = ε′ (and

we can also assume U(0) = 2ε′ after translation). Indeed, one only needs to take ε′ small
enough and f2 close enough to f1.

Let z1 := 6d
δ

, z2 := 6d+7
δ

and let h : [0,∞) → [0,∞) be any C2 function with h ≡ 0 on

[0, z1], h
′ ≡ 1 on [z2,∞), and h′ ≤ 1 and h′′ ∈ [0, δ

6
] on [z1, z2]. We now claim that

v(t, x) := U

(
z2 − h(|x|)−

(
c2 +

δ

3

)
t

)
(3.3)

satisfies
vt ≥ ∆v + f2(v) on (−∞, 0)× Rd. (3.4)

Indeed, for |x| ≤ z1 the argument of U is positive (so f2(U) = 0) and we have

vt −∆v − f2(v) = −
(
c2 +

δ

3

)
U ′ ≥ 0.

For |x| ≥ z1 we get

−vt + ∆v + f2(v) =

[(
c2 +

δ

3

)
− h′′(|x|)− d− 1

|x|
h′(|x|)

]
U ′ + (h′(|x|))2 U ′′ + f2(U) =: (∗).

If |x| ≥ z2, then

(∗) =

[(
c2 +

δ

3

)
− d− 1

|x|

]
U ′ + U ′′ + f2(U) =

[
δ

3
− d− 1

|x|

]
U ′ ≤ 0.

If |x| ∈ [z1, z2], then again the argument of U is positive (so f2(U) = 0) and we have

(∗) =

[(
c2 +

δ

3

)
− h′′(|x|)− d− 1

|x|
h′(|x|)− c2 (h′(|x|))2

]
U ′

=

[
c2

(
1− (h′(|x|))2

)
+

(
δ

6
− h′′(|x|)

)
+

(
δ

6
− d− 1

|x|
h′(|x|)

)]
U ′.

Each of the three terms in the last square bracket is non-negative, so again (∗) ≤ 0 and (3.4)
holds.

We now let τ := 3
δ
(2z2 − U−1(1)) and consider arbitrary y /∈ B(c1+δ)(t2−t1)+L (Ωu,1−ε(t1)).

By the hypothesis and ε > ε′, we have u(t, x) < ε′ for all x ∈ B(c1+δ)(t2−t1)(y). The function

w(t, x) := v(t− t2, x− y) (≥ ε′)

is obviously a super-solution of (1.1) on (t1, t2)× Rd, and for x /∈ B(c1+δ)(t2−t1)(y) we have

w(t1, x) ≥ U

(
2z2 − |x− y| −

(
c1 +

2δ

3

)
(t1 − t2)

)
≥ U

(
2z2 −

δ

3
(t2 − t1)

)
≥ U

(
2z2 −

δ

3
τ

)
= 1
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by U ′ < 0, h(z) ≥ z − z2, c2 ≤ c1 + δ
3
, and t2 − t1 ≥ τ . Hence w(t1, ·) ≥ u(t1, ·) and so

u(t2, y) ≤ w(t2, y) = v(0, 0) = U(z2) < 2ε′ < ε.

Thus y /∈ Ωu,ε(t2) and we are done. �

During the proofs of our main results, we will sometimes need to pass to limits along
subsequences of {(fn, un)}, where fn satisfy (H) and un ∈ [0, 1] have uniform-in-n bounds on
their widths. The following will be useful.

For ε ∈ (0, 1
2
), ` > 0, and t0 ∈ [−∞,∞), let St0,ε,` = St0,ε,`(f0, K, θ) be the set of all

pairs (f, u) such that f satisfies (H) with the given f0, K, θ and u ∈ [0, 1] solves (1.1) on
(t0,∞)×Rd and satisfies Lu,ε′(t) ≤ ` for all ε′ ∈ (ε, 1

2
) and all t > t0. For non-increasing and

left-continuous L : (0, 1
2
)→ (0,∞), let

St0,L = St0,L(f0, K, θ) :=
⋂

ε∈(0,1/2)

St0,ε,L(ε)(f0, K, θ).

(so (f, u) ∈ St0,L implies Lu,ε(t) ≤ L(ε) for ε ∈ (0, 1
2
) and t > t0, by left-continuity of L) and

SL = SL(f0, K, θ) := {(f, u) | (f, u) ∈ S−∞,L(f0, K, θ) and u 6≡ 0, 1}.
Thus any entire solution u ∈ [0, 1] of (1.1) with bounded width, except u ≡ 0, 1, appears in
some SL. Of course, strong maximum principle gives u ∈ (0, 1) if (f, u) ∈ SL.

Lemma 3.3. Fix f0, K, θ and L as above and let t0 ∈ [−∞,∞).
(i) If for ε ∈ (0, 1

2
) and ` > 0 we have (fn, un) ∈ Stn,ε,`(f0, K, θ) and lim supn→∞ tn ≤ t0,

then there is nj → ∞ (as j → ∞) and (f, u) ∈ St0,ε,`(f0, K, θ) such that fnj → f locally

uniformly on Rd × [0, 1] and unj → u locally uniformly on (t0,∞)× Rd.

(ii) If for each ε ∈ (0, 1
2
) we have (fn, un) ∈ Stn(ε),ε,L(ε)(f0, K, θ) and lim supn→∞ tn(ε) ≤ t0,

then there is nj → ∞ (as j → ∞) and (f, u) ∈ St0,L(f0, K, θ) such that fnj → f locally

uniformly on Rd × [0, 1] and unj → u locally uniformly on (t0,∞)× Rd.
(iii) If ε ∈ (0, 2ε0] and ` > 0, then

inf
{
ut(t, x)

∣∣∣ (f, u) ∈ S0,ε/2,`(f0, K, 0), ut ≥ 0 on (0,∞)× Rd, t ≥ 1, u(t, x) ∈ [ε, 1− ε]
}
> 0

(3.5)

Proof. (i) The properties of fn, uniform boundedness of un, and standard parabolic regularity
for un prove existence of locally uniform limits f, u along a subsequence {nj}j≥1, as well as
that f satisfies (H) (with the same f0, K, θ) and u solves (1.1). Locally uniform convergence
unj → u then yields Lu,ε′(t) ≤ ` for all ε′ ∈ (ε, 1

2
) and all t > t0 (just pick any ε′′ ∈ (ε, ε′) and

then a large enough j). Thus (f, u) ∈ St0,ε,`.
(ii) The proof is identical to (i).
(iii) Assume that the inf in (3.5) is 0. Then there are (fn, un) ∈ S0,ε/2,` with (un)t ≥ 0

and (tn, xn) ∈ [1,∞) × Rd such that un(tn, xn) ∈ [ε, 1 − ε] and (un)t(tn, xn) ∈ [0, 1
n
]. After

shifting (tn, xn) to (1, 0) and applying (i), we obtain (f, u) ∈ S0,ε/2,` with u(1, 0) ∈ [ε, 1−ε] and
ut ≥ 0 = ut(1, 0). The strong maximum principle for the linear PDE vt = ∆v+fu(x, u(t, x))v,
satisfied by ut, then implies ut ≡ 0. This however contradicts Lemma 3.1, which yields
limt→∞ u(t, 0) = 1 (> u(1, 0)) because supx∈B`(0) u(1, x) ≥ 1− ε

2
(≥ 1− ε0). �
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An important role in the proof of Theorems 2.4 and 2.5 will be played by equilibrium
solutions of (1.1).

Lemma 3.4. Let f ≥ 0 be Lipschitz and v ∈ [0, 1] satisfy

∆v + f(x, v) = 0 (3.6)

on Rd. If d ≤ 2, then v is constant and f(x, v(x)) ≡ 0. If d ≥ 3, then∫
Rd
|x|2−df(x, v(x))dx ≤ (d− 2)|∂B1(0)|. (3.7)

Proof. Integrating (3.6) over Br := Br(0) and using the divergence theorem yields∫
Br

f(x, v(x))dx = −
∫
∂Br

∇v(x) · n(x) dσr(x) = −rd−1
∫
∂B1

ṽρ(r, y) dσ1(y)

where n is the unit outer normal and σr the surface measure for ∂Br, and ṽ(ρ, y) = v(ρy) for
(ρ, y) ∈ (0,∞)× ∂B1. Multiplying by r1−d and integrating in r ∈ [0, r0] gives∫
Br0

[l(r0)− l(|x|)]f(x, v(x))dx =

∫ r0

0

r1−d
∫
Br

f(x, v(x))dxdr =

∫
∂B1

[ṽ(0, y)− ṽ(r0, y)] dσ1(y),

where l(r) = ln r if d = 2 and l(r) = r2−d/(2− d) otherwise. Taking r0 →∞ finally yields∫
Rd

[l(∞)− l(|x|)]f(x, v(x))dx = |∂B1(0)|v(0)− lim
r→∞

r1−d
∫
∂Br

v(x)dσr(x).

Since v ∈ [0, 1], either f(x, v(x)) ≡ 0 (and then v is constant) or d ≥ 3 and (3.7) holds. �

Lemma 3.5. For ζ > 0, let Ψ(x) = ψ(|x|) be the radially symmetric solution of

∆Ψ = ζΨ (3.8)

on Rd with Ψ(0) = 1. Then ψ, ψ′ > 0 on (0,∞) and

lim
r→∞

(√
ζr
)(d−1)/2

e−
√
ζrψ(k)(r) = ζk/2ld (3.9)

for some ld ∈ (0,∞) and k = 0, 1. In particular,

lim
r→∞

ψ′(r)ψ(r)−1 =
√
ζ (3.10)

Remark. We only need k = 0, 1 here but (3.9) holds for any k ≥ 0.

Proof. Here ψ is the unique solution of ψ′′ + d−1
r
ψ′ = ζψ on (0,∞), with ψ(0) = 1 and

ψ′(0) = 0, which is obviously positive along with ψ′. If d = 1, one easily checks that

ψ(r) =
e
√
ζr + e−

√
ζr

2
, (3.11)

so (3.9) holds with l1 = 1
2
. If d ≥ 2, then φ(r) := r(d−2)/2ψ(ζ−1/2r) satisfies

φ′′ +
1

r
φ′ −

[
1 +

(d− 2)2

4r2

]
φ = 0
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on (0,∞), with limr→0 r
(2−d)/2φ(r) = 1 and limr→0

d
dr

[r(2−d)/2φ(r)] = 0. Thus by [1, p.375],
φ = cdI(d−2)/2 for Iν (ν ∈ C) the modified Bessel function of the first kind and some cd > 0

(in fact, cd = 2(d−2)/2Γ(d
2
)). But now (3.9) follows from limr→∞

√
re−rI

(k)
ν (r) = (2π)−1/2 for

k = 0, 1 [1, pp. 377 and 378], with ld := (2π)−1/2cd. �

4. Bounded Widths for Solutions u ∈ [0, 1] with ut ≥ 0 (case u+ ≡ 1)

Again we consider f0, K, θ as in (H), u+ ≡ 1, u ∈ [0, 1], and also η > 0 and ζ ∈ (0, c20/4).
All constants in this section will depend on f0, K, ζ, η (but not on θ, unless explicitly noted!).

We define ζ ′ :=
c20
8

+ ζ
2
∈ (ζ, c20/4) and choose any

h ∈
[
0,min

{
θ
c20 − 4ζ

c20 + 4ζ
,
η

4K

}]
(4.1)

(obviously h = 0 when θ = 0). This yields ζ ′(θ − h) ≥ ζθ, which guarantees ζ ′(u− h) ≥ ζu
for all u ≥ θ. Hence, any f ∈ F (f0, K, θ, ζ, η) satisfies

f(x, u) ≤ ζ ′(u− h) for x ∈ Rd and u ∈ [h, αf (x)]. (4.2)

Here, and always, αf (x) = αf (x; ζ) (not αf (x; ζ ′)). Let us also take ε0 from Lemma 3.1 and ψ
from Lemma 3.5 corresponding to ζ ′. Below, ψ−1(·) is the inverse function to ψ(·) on [0,∞)
while ψ(·)−1 = 1/ψ(·).

In the following we will assume that f ∈ F (f0, K, θ, ζ, η) (⊆ F (f0, K, 0, ζ, η)) and u ∈ [0, 1]
solves (1.1), (1.2). For any (t, y) ∈ [t0,∞)× Rd we define

Zy(t) := inf
u(t,x)≥1−ε0

|x− y| (∈ [0,∞]), (4.3)

Y h
y (t) := sup

{
ρ
∣∣u(t, ·) ≤ h+ ψ(ρ)−1ψ(| · −y|)

}
(∈ [0,∞]), (4.4)

and γhy (t) := ψ(Y h
y (t))−1. That is, Zy(t) is the distance from y to the nearest point with

value of u sufficiently close to 1, while Y h
y (t) is the distance from y to the points where the

best upper bound of the form h + γψ(| · −y|) on u takes the value 1 + h (both at time t),
and γhy (t) is the γ from that bound. The latter is clearly non-increasing in h, hence Y h

y (t) is
non-decreasing in h. Note that (3.10) immediately shows

Y h
y (t) ≤ Zy(t) +M (4.5)

for some (θ, h-independent) M ≥ 0.
Let us also fix any cY , cZ such that

2
√
ζ ′ < cY < cZ < c0, (4.6)

for instance, cY := 1
4
c0 + 3

2

√
ζ ′ and cZ := 3

4
c0 + 1

2

√
ζ ′. Let τZ ≥ 0 correspond to c = cZ and

ε = ε0 in Lemma 3.1 and let rY ≥ 0 be such that

ψ′(r)

ψ(r)
≥ 4ζ ′

cY + 2
√
ζ ′

(
>

2ζ ′

cY

)



26 ANDREJ ZLATOŠ

for r ≥ rY (which exists by (3.10), with ζ ′ in place of ζ, and cY > 2
√
ζ ′). Finally, let

c′Y :=
(K + ζ ′)cY

2ζ ′

(
>

(K + ζ ′)√
ζ ′

≥ 2
√
K ≥ c1

)
. (4.7)

The choice of Y h
y is motivated by the following result.

Lemma 4.1. Let (t1, y) ∈ [t0,∞)× Rd.
(i) If t ≥ t1 is such that Y h

y (t1)− c′Y (t− t1) ≥ rY , then

Y h
y (t) ≥ Y h

y (t1)− c′Y (t− t1). (4.8)

(ii) If t2 ≥ t1 is such that Y h
y (t1) − cY (t2 − t1) ≥ rY and u(t, x) ≤ αf (x) on the set

A := {(t, x) | t ∈ [t1, t2] and |x− y| ≤ Y h
y (t1)− cY (t− t1)}, then

Y h
y (t) ≥ Y h

y (t1)− cY (t− t1) (4.9)

for any t ∈ [t1, t2].
(iii) If t1 ≥ t0 + 1 and t ≥ t1 + τZ, then

Zy(t) ≤ [Zy(t1)− cZ(t− t1)]+ . (4.10)

Remark. The point here is that (ii) and (iii), together with cY < cZ , will keep Zy(t)−Y h
y (t)

uniformly bounded above. This is done in Lemma 4.2 below. It turns out, however, that the
hypothesis of (ii) is too strong to make this idea directly applicable for d ≥ 3. Lemma 4.2
nevertheless still holds for d = 3, albeit with a considerably more involved proof (see Section
7 below). For d ≥ 4 the lemma is false in general.

Proof. (i) Since w(t, x) := h+ e(K+ζ′)(t−t1)γhy (t1)ψ(|x− y|) is a super-solution of (1.1) due to
f(x, u) ≤ K(u− θ) ≤ K(u− h), the comparison principle gives

γhy (t) ≤ e(K+ζ′)(t−t1)γhy (t1) (4.11)

for any t ≥ t1. From this and (4.4) we obtain

lnψ(Y h
y (t)) ≥ lnψ(Y h

y (t1))− (K + ζ ′)(t− t1).

Since d
dr

[lnψ(r)] ≥ 2ζ ′/cY for r ≥ rY , it follows that

Y h
y (t) ≥ Y h

y (t1)−
(K + ζ ′)cY

2ζ ′
(t− t1) = Y h

y (t1)− c′Y (t− t1)

for all t ∈ [t1, t2], where t2 ≥ t1 is the first time such that Y h
y (t2) = rY . Thus rY ≥

Y h
y (t1)− c′Y (t2 − t1), so t ≤ t2 due to Y h

y (t1)− c′Y (t− t1) ≥ rY , and we are done.

(ii) Let β(t) be such that w(t, x) := h+ eβ(t)γhy (t1)ψ(|x− y|) equals 1 + h when t ∈ [t1, t2]

and |x− y| = Y h
y (t1)− cY (t− t1). Then β(t1) = 0 and from d

dr
[lnψ(r)] ≥ 2ζ ′/cY for r ≥ rY

we obtain β′(t) ≥ 2ζ ′ on [t1, t2]. Thus we have

wt ≥ ∆w + ζ ′(w − h).

From w ≥ h, (4.2), and the hypothesis it follows that w is a super-solution of (1.1) on A.
Since u(t, x) ≤ 1 ≤ w(t, x) when t ∈ [t1, t2] and |x−y| ≥ Y h

y (t1)−cY (t− t1), we obtain w ≥ u
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for t ∈ [t1, t2] because u(t1, ·) ≤ w(t1, ·). Therefore γhy (t) ≤ eβ(t)γhy (t1) for t ∈ [t1, t2] and the
result follows.

(iii) This is immediate from Lemma 3.1. �

The following crucial lemma, which requires ut ≥ 0, will enable us to prove the claim in
the remark after Lemma 4.1. It essentially shows that Y h

y cannot decrease faster than at

speed cY (< cZ) whenever Zy is much larger than Y h
y .

Lemma 4.2. Let d ≤ 3. There are (θ, h, f, u0-independent) TY > 0 and τY ≥ TY + 1 such
that we have the following whenever (2.16) holds on Rd. If

Zy(t1 + τY ) ≥ Y h
y (t1) (4.12)

for some (t1, y) ∈ [t0,∞)× Rd and Y h
y (t1)− cY TY ≥ rY , then

Y h
y (t1 + TY ) ≥ Y h

y (t1)− cY TY . (4.13)

Remarks. 1. For d ≤ 2 we can take any TY > 0. For d = 3 any large enough TY works.

2. When d ≥ 4, this result fails in general! The same is true for d ≥ 1 if f satisfies (H)
but we do not require f ∈ F (f0, K, θ, ζ, η).

Proof. We split the proof in two cases, d ≤ 2 and d = 3, due to Lemma 3.4.
Case d ≤ 2: We first claim that there is τ ≥ 1 such that if a solution u ∈ [0, 1] of (1.1)

on (0,∞) × Rd satisfies ut ≥ 0 and u(0, 0) > αf (0), then u(τ, 0) > 1 − ε0. Assume that
for each τ = 1, 2, . . . there is some couple fτ ∈ F (f0, K, 0, ζ, η) and uτ contradicting this
statement with (f, u) = (fτ , uτ ). Then parabolic regularity shows that there is a sequence
τj → ∞ such that fτj and uτj converge locally uniformly on Rd × [0, 1] and on (0,∞) × Rd

to some f ∈ F (f0, K, 0, ζ, η) and some solution u ∈ [0, 1] of (1.1) such that ut ≥ 0 and
limt→∞ u(t, 0) ≤ 1 − ε0. Moreover, uτj(0, 0) ≥ αfτj (0) and fτj ∈ F (f0, K, 0, ζ, η) guarantee

that f(0, ·) ≥ f0(·) + ηχ[u(0,0),θ0](·). But then v(x) := limt→∞ u(t, x) satisfies (3.6) on Rd (so
it is constant by Lemma 3.4) with f(0, v(0)) > 0, a contradiction.

We now pick any TY > 0 and apply this claim with the point (0, 0) shifted to (t1 + TY , x),
for any x ∈ BY hy (t1)(y). If we let τY := TY +τ , it follows from (4.12) that u(t1+TY , x) ≤ αf (x),

and thus u(t, x) ≤ αf (x) for all (t, x) ∈ [t1, t1 + TY ] × BY hy (t1)(y). Lemma 4.1(ii) now yields

(4.13).
Case d = 3: This case is considerably more involved, due to the limitation in Lemma 3.4.

We postpone its proof until Section 7 in order to not interrupt the flow of the presentation. �

Note that in the case d ≤ 2, this result holds even if (2.10) is replaced by

inf
x∈Rd

u∈[αf (x),θ0]

sup
y∈BR(x)

f(y, u) ≥ η

for some R <∞, because we still obtain f(x, v(x)) > 0 for the constant function v and some
|x| ≤ R. Theorems 2.4(i) and 2.5 also extend accordingly.

The following result is at the heart of the proofs of our main results.
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Theorem 4.3. Let d ≤ 3, let f0, K be as in (H), and let η > 0 and ζ ∈ (0, c20/4).
(i) There is M > 0 such that if θ ≥ 0, h satisfies (4.1), f ∈ F (f0, K, θ, ζ, η), u0 ∈ [0, 1]

satisfies (2.16), and u solves (1.1), (1.2) on (t0,∞)× Rd, then for any (t, y) ∈ (t0,∞)× Rd

we have

Zy(t)− Y h
y (t) ≤M +

[
Zy(t0)− Y h

y (t0)−
(c0

2
−
√
ζ ′
)

(t− t0)
]
+
. (4.14)

Moreover, for any ε ∈ (h, 1
2
) there is (θ, h, f, u0-independent) τε > 0, continuous and non-

increasing in ε > 0, such that

Lu,ε(t) ≤Mε−h +

[
sup
y∈Rd

(
Zy(t0)− Y h

y (t0)
)
−
(c0

2
−
√
ζ ′
)

(t− t0)

]
+

(4.15)

for any t ≥ t0 + τε, with Mδ := M + c′Y τδ + ψ−1(δ−1).
(ii) If θ, h,M,Mδ, τε, f, u are from (i) and v ∈ [0, 1] satisfies

u(t− T, ·)− ε

2
≤ v(t, ·) ≤ u(t+ T, ·) +

ε

2
(4.16)

for some ε ∈ (2h, 1
2
), T ≥ 0, and t ≥ t0 + T + τε/2, then for such t,

Lv,ε(t) ≤Mε/2−h + 3c′Y T +

[
sup
y∈Rd

(
Zy(t0)− Y h

y (t0)
)
−
(c0

2
−
√
ζ ′
)

(t− t0)

]
+

(4.17)

Remarks. 1. Recall also the bound from below in (4.5).

2. 1
2
c0 −

√
ζ ′ can be replaced by any c < c0 − 2

√
ζ ′, and then M,Mδ also depend on c.

3. Obviously Mδ is continuous and decreasing in δ > 0.

Proof. (i) Let us start with (4.14). Assume, without loss, that y = 0 and t0 = 0, and
denote Y h

0 = Y and Z0 = Z. Recall that cZ = 3
4
c0 + 1

2

√
ζ ′ and cY = 1

4
c0 + 3

2

√
ζ ′, so

that cZ − cY = 1
2
c0 −

√
ζ ′, and then pick c′Y , τZ , rY , TY , τY as above (all these constants are

independent of θ, h).
We can assume Z(t) > 0 because otherwise the claim is obvious. It is also sufficient to

prove the claim for t such that Y (t) ≥ c′Y (τY + τZ) + rY because then the result follows
for all t > 0 after increasing M by c′Y (τY + τZ) + rY . This is because Z (and also Y ) is
non-increasing due to (2.16). We also note that Y is then continuous by Lemma 4.1(i), while
Z is right-continuous and lower-semi-continuous by continuity of u on (0,∞)× Rd. Finally,
we can assume that t > τY + τZ , because for t ∈ (0, τY + τZ ] the estimate follows for any
M ≥ (c′Y + 1

2
c0−
√
ζ ′)(τY + τZ) due to Lemma 4.1(i), Z and Y being non-increasing, and the

assumption Y (t) ≥ c′Y (τY + τZ) + rY .
We will now prove (4.14) assuming t > τY + τZ , Z(t) > 0 and Y (t) ≥ c′Y (τY + τZ) + rY ,

with
M := cZτY + c′Y (τY + τZ).

Let t2 be the smallest number in [0, t−τY ] such that Z(t1+τY ) ≥ Y (t1) for all t1 ∈ (t2, t−τY ).
Lower-semi-continuity of Z(·+ τY )− Y (·) now shows the following. If t2 = 0, then Z(τY ) ≥
Y (0); if t2 ∈ (0, t− τY ), then Z(t2 + τY ) = Y (t2); and if t2 = t− τY , then Z(t) ≤ Y (t− τY ).
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If t2 = 0, let N := bt/TY c. Applying Lemma 4.1(i) once and then Lemma 4.2 N times, we
obtain using Y (t)− c′Y TY ≥ rY (recall that τY > TY ),

Y (t) ≥ Y (NTY )− c′Y TY ≥ Y (0)−NcY TY − c′Y TY ≥ Y (0)− cY t− c′Y TY .

On the other hand, Lemma 4.1(iii) and t ≥ τY + τZ yield

Z(t) ≤ Z(τY )− cZ(t− τY ) ≤ Z(0)− cZt+ cZτY

(notice that Z(τY )− cZ(t− τY ) > 0 because otherwise Z(t) = 0 by Lemma 4.1(iii)). Thus

Z(t)− Y (t) ≤ cZτY + c′Y TY + Z(0)− Y (0)− (cZ − cY )t ≤M + Z(0)− Y (0)− (cZ − cY )t.

If t2 ∈ (0, t− τY − τZ), then let N := b(t− t2)/TY c. An identical argument now yields

Y (t) ≥ Y (t2)− cY (t− t2)− c′Y TY
and

Z(t) ≤ Z(t2 + τY )− cZ(t− t2 − τY ).

Thus Z(t2 + τY ) = Y (t2) yields

Z(t)− Y (t) ≤ cZτY + c′Y TY + Z(t2 + τY )− Y (t2)− (cZ − cY )(t− t2) ≤ cZτY + c′Y TY ≤M.

If t2 ∈ [t− τY − τZ , t− τY ], then Z(t2 + τY ) ≤ Y (t2), so that

Z(t)− Y (t) ≤ Z(t2 + τY )− Y (t) ≤ Y (t2)− Y (t) ≤ c′Y (τY + τZ) ≤M.

by Lemma 4.1(i). The proof of (4.14) is finished.
Let us now turn to (4.15) and again assume t0 = 0. Let c := 1

2
c0, and for any ε ∈ (h, 1

2
)

let τε := τ + 1, with τ from Lemma 3.1 (this can obviously be chosen continuous and non-
increasing in ε > 0). For t ≥ τε, let x ∈ Ωu,ε(t). Then Y h

x (t) ≤ ψ−1((ε− h)−1), so

Y h
x (t− τ) ≤ ψ−1((ε− h)−1) + c′Y τ ≤ ψ−1((ε− h)−1) + c′Y τε

by Lemma 4.1(i), and (4.14) gives

Zx(t− τ) ≤ ψ−1((ε− h)−1) + c′Y τε +M +

[
sup
y∈Rd

(Zy(0)− Y h
y (0))−

(c0
2
−
√
ζ ′
)

(t− τ)

]
+

.

Lemma 3.1 with t1 := t− τ now shows that there is y with u(t, y) ≥ 1− ε and

|y− x| ≤ ψ−1((ε− h)−1) + c′Y τε +M +

[
sup
y∈Rd

(Zy(0)− Y h
y (0))−

(c0
2
−
√
ζ ′
)

(t− τ)

]
+

− c0
2
τ.

This yields (4.15) for t ≥ τε (recall that t0 = 0 and τ ≥ 0).
(ii) Again assume t0 = 0. An identical argument to the last one shows that if t ≥ T + τε/2

and x ∈ Ωu,ε/2(t+ T ) (the latter holds when v(t, x) ≥ ε), then

Y h
x (t− T − τ) ≤ ψ−1

((ε
2
− h
)−1)

+ c′Y (2T + τε/2),
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and ultimately that there is y with u(t− T, y) ≥ 1− ε
2

(which yields v(t, y) ≥ 1− ε) and

|y−x| ≤ ψ−1
((ε

2
− h
)−1)

+c′Y (2T+τε/2)+M+

[
sup
y∈Rd

(Zy(0)− Y h
y (0))−

(c0
2
−
√
ζ ′
)

(t− T − τ)

]
+

−c0
2
τ.

This proves (4.17) because 1
2
c0 −

√
ζ ′ ≤ c′Y . �

Before moving onto the proofs of our main results, we state an important corollary of
Theorem 4.3. For a solution u of (1.1) on (t0,∞)× Rd and for t ≥ t0, we let

Λh
u(t) := sup

y∈Rd

(
Zy(t)− Y h

y (t)
)

(≤ ∞) (4.18)

for h from (4.1). Then Λh
u is non-increasing and right-continuous in h, by definition of Y h

y .

Notice that if Λh
u is finite, then it controls Lu,ε for any ε ∈ (h, 1

2
). Indeed, the argument

proving (4.15) from (4.14) applies to any u (even if ut 6≥ 0) and, with the notation from
Theorem 4.3, yields for t ≥ t0 + τε,

Lu,ε(t) ≤Mε−h −M + Λh
u(t− τε + 1). (4.19)

For ignition f we also have the opposite direction. For any (t, y) ∈ (t0,∞) × Rd and
h ∈

(
0,min

{
θ(c20 − 4ζ)(c20 + 4ζ)−1, η

4K
, ε0
}]

, we have

sup
|x−y|<Y hy (t)

u(t, x) > h

because otherwise we would have u(t, ·) ≤ h+γψ(| · |) for some γ < ψ(Y h
y (t))−1, contradicting

the definition of Y h
y (t). But then Zy(t) ≤ Y h

y (t) + Lu,h(t) by h ≤ ε0, so

Λh
u(t) ≤ Lu,h(t). (4.20)

We now have the following result for entire solutions with ut ≥ 0.

Corollary 4.4. Let d ≤ 3, let f0, K, and θ ≥ 0 be as in (H), and let η > 0, ζ ∈ (0, c20/4),
and f ∈ F (f0, K, θ, ζ, η). Assume that u ∈ [0, 1] solves (1.1) and satisfies ut ≥ 0 on R× Rd.

(i) If h is as in (4.1) and lim supt→−∞ Λh
u(t) < ∞, then in fact supt∈R Λh

u(t) ≤ M and
supt∈R Lu,ε(t) ≤Mε−h for any ε ∈ (h, 1

2
) (here M,Mδ are from Theorem 4.3). We also have

inf
u(t,x)∈[ε,1−ε]

ut(t, x) ≥ µε,Mε/2−h (4.21)

for any ε ∈ (2h, 2ε0], where µε,` > 0 is the inf in (3.5).
(ii) If θ > 0 and u has bounded width, then supt∈R Λ0

u(t) ≤M (and so (i) holds with h = 0
and ε ∈ (0, 1

2
)). Moreover, if a pure ignition f1 satisfies (2.7), then u propagates with global

mean speed in [c0, c1], with τε,δ in Definition 2.2 depending only on δ, f1, ε, f0, K, ζ, η.

Remark. Recall that M,Mε, µε depend on f0, K, ζ, η (and ε) but not on θ, h, f, u. This and
Theorem 2.11(ii) will be the key to the independence of the bounds in Theorem 2.4(i) on u0.
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Proof. (i) The first claim is immediate from (4.14) after letting u0(x) := u(t0, x) and then
sending t0 → −∞. The second then follows from (4.19), and the third from Lemma 3.3(iii)
with θ = 0, applied to u shifted in time by 1− t.

(ii) For any h ∈
(
0,min

{
θ(c20 − 4ζ)(c20 + 4ζ)−1, η

4K
, ε0
}]

, (4.20) and (i) show supt∈R Λh
u(t) ≤

M , and right-continuity of Λh
u in h then yields supt∈R Λ0

u(t) ≤ M . The second claim now
follows from Lemma 3.2 with δ/2 instead of δ, using the bound Lu,ε′(t) ≤ Mε′ for ε′ from
that lemma (which holds by (4.19) with h = 0). Indeed, we only need to take τε,δ ≥
max{2δ−1Mε′ , τ} in Definition 2.2, with τ from Lemma 3.2. �

Open problem. It is an interesting question whether there is a transition solution u satis-
fying all the hypotheses of Corollary 4.4(ii), except of the hypothesis of bounded width, such
that Λ0

u is unbounded (cf. Open problem 2 after Theorem 2.11). It is obvious from (4.14)
that in that case one would have lim inft→−∞ |t|−1Λ0

u(t) > 0.

5. Proof of Theorem 2.5(i)

We can assume u0 6≡ 0, 1 because then the result holds trivially. As in Section 4, all
constants will depend on f0, K, ζ, η (but not on θ from (H), unless explicitly noted).

The second claim in (2.8) follows immediately from the first. Indeed: it is sufficient to
prove it for ε ∈ (0, 2ε0]; if µε,` > 0 is the inf in (3.5) for such ε and `ε, Tε are from the first
claim in (2.8), then the second claim follows with mε := µε,`ε/2 and Tε replaced by Tε/2 + 1,

after applying Lemma 3.3(iii) to u shifted in time by −(t0 + Tε/2).
Similarly, the claim about global mean speed also follows from the first claim in (2.8).

Indeed, if ε′, τ are from Lemma 3.2 with δ/2 instead of δ, then that lemma shows that we
only need Tε,δ ≥ Tε′ + 1 and τε,δ ≥ max{2δ−1`ε′ , τ} in Definition 2.2.

We are left with proving the first claim in (2.8) (which also proves that u has a bounded
width). We will do so with `ε := Mε/2 from Theorem 4.3. We define Zy, Y

h
y as in Section 4

and split the proof into two cases.
Case d = 3: Let ε′ := 1 − ε0 (which depends on f0, K) and given any ε ∈ (0, 1

2
), let

h := min
{
θ(c20 − 4ζ)(c20 + 4ζ)−1, η

4K
, ε0,

ε
2

}
. The argument which proves (4.20) now shows

Zy(t0) ≤ Y h
y (t0) + Lu,h,ε′(t0) for each y ∈ R3. Hence the right-hand side of (4.15) equals

Mε−h (≤Mε/2) for all large enough t and we are done.
Case d ≤ 2: First, there is τ ≥ 1 such that if a solution u ∈ [0, 1] of (1.1) on (t0,∞)×Rd

with f as in the theorem satisfies ut ≥ 0 and u(t0, x) ≥ ε′, then u(t0 + τ, x) > 1− ε0. This is
proved just as a similar claim in the proof of Lemma 4.2.

Define now Z ′y as Zy but with ε′ in place of 1 − ε0, and given any ε ∈ (0, 1
2
), let

h := min
{
θ(c20 − 4ζ)(c20 + 4ζ)−1, η

4K
, 1− ε′, ε

2

}
. The argument which proves (4.20) now shows

Z ′y(t0) ≤ Y h
y (t0) + Lu,h,ε′(t0), and then the previous paragraph and Lemma 4.1(i) yield

Zy(t0 + τ) ≤ Y h
y (t0) + Lu,h,ε′(t0) ≤ Y h

y (t0 + τ) + c′Y τ + Lu,h,ε′(t0).

This holds for all y ∈ Rd, so we conclude as in the first case.
The proof of Theorem 2.5(i) is finished.
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Proof of Remark 2 after Theorem 2.5. The second claim in (2.8) follows from the first as
above. To prove the first claim in (2.8), again consider two cases.

Case d = 3: Let ε′ := 1 − ε0. The hypothesis and (3.9) for k = 0 and ζ ′ in place of ζ
imply

C := sup
ε∈(0,1),r≥0

εψ(r)−1ψ(r + Lu,ε,ε′(t0)) <∞.

Assume that u0 6≡ 0 because otherwise the result holds trivially. By the definition of Y h
y , for

any y ∈ R3, there is x ∈ R3 such that

u(t0, x) = ψ(Y 0
y (t0))

−1ψ(|x− y|) (=: ε > 0).

Then there is x′ ∈ BLu,ε,ε′ (t0)
(x) with u(t0, x

′) ≥ ε′ (= 1− ε0), and we have

ψ(|x′ − y|) ≤ ψ(|x− y|+ Lu,ε,ε′(t0)) ≤ Cε−1ψ(|x− y|) = Cψ(Y 0
y (t0)).

Since C is independent of y, this means supy∈R3(Zy(t0) − Y 0
y (t0)) < ∞. We conclude as in

the ignition case, using (4.15).
Case d ≤ 2: The argument from the first case shows supy∈Rd(Z

′
y(t0)− Y 0

y (t0)) <∞, with
Z ′y from the ignition case d ≤ 2. As in the ignition case d ≤ 2, and with the same τ , we

obtain supy∈Rd(Zy(t0 + τ)− Y 0
y (t0 + τ)) <∞ and the result follows as before.

Finally, the first inclusion of the claim about global mean speed follows from the first
claim in (2.8) as in the ignition case because the first inclusion in Lemma 3.2 holds also for
monostable f . The second inclusion in Definition 2.2, with c′ := c′Y , follows from Λ0

u(t) ≤M
(which holds for all large enough t by (4.14)) and (4.8). �

6. Proofs of Theorems 2.4(i) and 2.5(ii)

As in Section 4, all constants will depend on f0, K, ζ, η (but not on θ from (H), unless
explicitly noted).

Note that the claim about global mean speed follows in both cases from the first claim in
(2.8) as in the proof of Theorem 2.5(i). Since bounded width also follows from the first claim
in (2.8), we are therefore left with proving (2.8) in both cases.

Let us start with the (easier to prove) analogous results for monostable reactions from
Remark 4 after Theorem 2.4 and Remark 3 after Theorem 2.5.

Proof of Remark 4 after Theorem 2.4. We can assume without loss that t0 = 0. The idea is
to construct w0 such that

∆w0(·) + f(·, w0(·)) ≥ 0 (6.1)

and the solution w to (1.1) with w(0, x) = w0(x) satisfies w(τ, ·) ≥ u0(·) and u(τ, ·) ≥ w0(·)
for some τ > 0. Then u will satisfy

w(t− τ, ·) ≤ u(t, ·) ≤ w(t+ τ, ·) (6.2)

for t ≥ τ . Since wt ≥ 0, Theorem 4.3(ii) for w, u in place of u, v will now do the trick.
Let us first consider (2.15), and sssume without loss e = (1, 0, . . . , 0). Let s0 > 0 be

such that there is a smooth, even, 2s0-periodic C2 function U : R→ [0, 1
2
(1 + θ0)] satisfying

U ′′ + f0(U) > 0 on R, U(0) = 1
2
(1 + θ0), U(s0) = 0, and U ′ < 0 on (0, s0) (then obviously
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U ′(0) = U ′(s0) = 0). Such U is obtained by perturbing the solution of Ũ ′′ + f0(Ũ) = 0 with
Ũ(0) = 1

2
(1 + θ0) and Ũ ′(0) = 0. The latter satisfies Ũ ′ < 0 on some interval (0, s̃0] with

Ũ(s̃0) = 0 because multiplying the ODE by Ũ ′ and integrating yields

Ũ ′(s)2 = Ũ ′(0)2 + 2

∫ Ũ(0)

Ũ(s)

f0(u)du = 2

∫ (1+θ0)/2

Ũ(s)

f0(u)du > 0

as long as Ũ(s) > 0 (notice that Ũ ′′(0) < 0). Thus we can perturb Ũ to obtain the desired
U , with s0 near s̃0. Then U, s0 depend only on f0, and we define

W (s) :=


1
2
(1 + θ0) s ≤ R2,

U(s−R2) s ∈ (R2, R2 + s0),

0 s ≥ R2 + s0.

(6.3)

Note that

inf
s<R2+s0

[W ′′(s) + f0(W (s))] = inf
s∈R

[U ′′(s) + f0(U(s))] > 0.

Then w0(x) := W (x1) satisfies (6.1), and w(τ, ·) ≥ u0(·) follows for some (f0, ε2)-dependent
τ , from ε2 > 0 and the second claim in Lemma 3.1. Similarly, u(τ, ·) ≥ w0(·) follows for some
(f0, R2−R1, ε1)-dependent τ from the second claim in Lemma 3.1 (which holds with 1

2
(1+θ0)

replaced by θ0 + ε1 when ε1 > 0, and with R = R(f0, ε1) [2]).
Thus w satisfies (6.2) for all t ≥ τ . Let us increase τ so that

w(τ, ·) ≥ (1− ε0)χ{x |x·e<R2}(·).

This makes τ also depend on K, and then Lemma 4.1(i) applied to w yields

Λ0
w(τ) ≤ s0 + c′Y τ (6.4)

because Y 0
y (0) ≥ y1 − (R2 + s0) if Y 0

y is defined with respect to w. With Mε, τε from
Theorem 4.3, let `ε := Mε/2 + 3c′Y τ and

Tε := 2τ + τε/2 +
(c0

2
−
√
ζ
)−1

(s0 + c′Y τ). (6.5)

Then Theorem 4.3(ii) with w, u in place of u, v gives Lu,ε(t) ≤ `ε for t ≥ Tε. The proof in
the case (2.15) is finished.

Let us now assume (2.14) as well as x0 = 0 without loss, and first also assume that
supu0 < 1. We can also assume without loss that (with U as above)

R2 ≥
(d− 1)‖U ′‖∞

infs∈R[U ′′(s) + f0(U(s))]
. (6.6)

The result now holds for any R1 ≥ R(f0, ε1), where the latter is from the argument above
so that the conclusion of Lemma 3.1 still holds. Indeed, this time we let w0(x) := W (|x|),
which also satisfies (6.1) due to (6.6). As above, we obtain (6.2) for some τ > 0, and then
again Lu,ε(t) ≤ `ε for t ≥ Tε.
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Finally, assume (2.14) with x0 = 0, and supu0 = 1. We let again (6.6) and w0(x) := W (|x|),
but now w(τ, ·) 6≥ u0(·) for all τ ≥ 0. Solve (1.1), (1.2) and replace u0 by u(1, ·). It is obviously
sufficient to prove this claim for the new u0. This now satisfies

u0(x) ≤ min

{
1− ε2,

|B1(0)|Rd
2

(4π)d/2
eKe−max{|x|−R2,0}2/4

}
,

by the comparison principle, for some (K,R2)-dependent ε2 > 0. Since w(τ, ·) converges

locally uniformly to 1 as τ → ∞, wt ≥ 0, and w(τ, x) ∼ e−|x|
2/4τ as |x| → ∞ by the heat

equation asymptotics, we again obtain w(τ, ·) ≥ u0(·) for some τ . The rest of the argument
is as before. �

Proof of Remark 3 after Theorem 2.5. The first claim in (2.8) is proved as above, now with
u playing the role of w because ut ≥ 0. Indeed, assume t0 = 0 and let τ < ∞ be such that
s := supy∈Rd(Zy(τ) − Y 0

y (τ)) < ∞ (which exists by the proof of Remark 2 after Theorem
2.5). With Mε, τε, `ε from the previous proof, let Tε be from (6.5) but with s0 + c′Y τ replaced
by s. Then again Lv,ε(t) ≤ `ε for t ≥ Tε by Theorem 4.3(ii), as above.

The global mean speed claim is proved as in the proof of Remark 2 after Theorem 2.5, this
time using Λ0

v(t) ≤ Λ0
u(t− τ) + 2c′Y τ ≤M + 2c′Y τ (which again holds for all large t). �

The proof of (2.8) in Theorem 2.4(i) resp. Theorem 2.5(ii) is similar but a little more
involved. To show that `ε is independent of R1, R2, ε1, ε2 resp. τ , as well as to obtain the
second claim in (2.8), we will need to use Theorem 2.11. In addition, the exponential tails of
the initial data in Theorem 2.4(i) will be handled by constructing appropriate super-solutions
and obtaining inequalities as in (4.16) instead of (6.2).

We will start with proving the result for general solutions u which (essentially) lie between
two time-translates of a solution w with initial datum satisfying (6.1). The bounds in this
result will, in fact, be independent of u,w for large t as long as the number Λh

w(0), defined
in (4.18), is finite for each small enough h > 0.

Theorem 6.1. Let d ≤ 3, let f0, K be as in (H), and let η > 0 and ζ ∈ (0, c20/4). For any
ε′ ∈ (0, 1

2
), there are `ε′ ,mε′ ∈ (0,∞) such that if θ > 0, λ : (0, 1

2
)→ (0,∞) is left-continuous

and non-increasing, τ < ∞, and ν : (0,∞) → [0,∞) satisifies limt→∞ ν(t) = 0, then there
is Tε′,θ,λ,τ,ν < ∞ such that the following holds. If f ∈ F (f0, K, θ, ζ, η) and u,w ∈ [0, 1] are
solutions of (1.1) on (0,∞) × Rd with w0(·) := w(0, ·) satisfying (6.1), with Λh

w(0) ≤ λ(h)
for all h ∈

(
0,min

{
θ(c20 − 4ζ)(c20 + 4ζ)−1, η

4K
, ε0
}]

, and with

w(t− τ, ·)− ν(t) ≤ u(t, ·) ≤ w(t+ τ, ·) + ν(t) (6.7)

for each t > τ , then

sup
t≥Tε′,θ,λ,τ,ν

Lu,ε′(t) ≤ `ε′ and inf
t≥Tε′,θ,λ,τ,ν

u(t,x)∈[ε′,1−ε′]

ut(t, x) ≥ mε′ . (6.8)

Remark. We stress that `ε′ ,mε′ are independent of f, u as well as of θ, λ, τ, ν.
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Proof. Let h0 := min
{
θ(c20 − 4ζ)(c20 + 4ζ)−1, η

4K
, ε0
}
> 0. For ε ∈ (0, 4h0], and with Mδ, τε

from Theorem 4.3, let T (ε) ≥ τ + τε/2 be such that supt≥T (ε) ν(t) ≤ ε
2
, and define L(ε) :=

Mε/4 + 3c′Y τ + λ( ε
4
). For ε ∈ (4h0,

1
2
) let T (ε) := T (4h0) and L(ε) := L(4h0).

Then for any ε ∈ (0, 4h0], by Theorem 4.3(ii) with h := ε
4
,

Lu,ε(t) ≤ L(ε) for t ≥ T (ε) (6.9)

(and this also holds for ε ∈ (4h0,
1
2
) because Lu,ε(t) is non-increasing in ε).

Let us now prove the first claim in (6.8), with `ε′ := Mε′/2 + 1. If there is no such Tε′,θ,λ,τ,ν ,
then there is a sequence (fn, un, wn, tn, xn) with fn, un, wn satisfying the hypotheses of the
theorem, limn→∞ tn =∞, un(tn, xn) ∈ [ε′, 1− ε′] and

inf
un(tn,y)≥1−ε′

|y − xn| > `ε′ . (6.10)

After shifting fn by (−xn, 0) and un by (−tn,−xn), and then applying Lemma 3.3(ii) (with
−tn + T (ε) in place of tn(ε), using (6.9)), we obtain new (f, u) ∈ S−∞,L(f0, K, θ) such that
u(0, 0) ∈ [ε′, 1 − ε′] and Lu,ε′/2(0) ≥ `ε′ > Mε′/2. We also have f ∈ F (f0, K, θ, ζ, η) because
that set is closed under locally uniform limits.

Thus (f, u) ∈ SL(f0, K, θ) since u 6≡ 0, 1 (with SL defined in Section 3). Then Theo-
rem 2.11(ii) shows ut ≥ 0, because bounded width of u and Lemma 3.1 immediately show
that u propagates with a positive global mean speed. But then Lu,ε′/2(0) > Mε′/2 yields a
contradiction with Corollary 4.4(ii,i) (with h = 0). The first claim in (6.8) is proved.

The second claim is proved similarly with mε′ := 1
2
µε′,Mε′/2

for ε ∈ (0, 2ε0], where µε,` > 0

is the inf in (3.5) (then it also holds with mε′ := m2ε0 for ε′ ∈ (2ε0,
1
2
)). Non-existence of

Tε′,θ,λ,τ,ν again yields a sequence (fn, un, wn, tn, xn) with fn, un, wn satisfying the hypotheses of
the theorem, limn→∞ tn =∞, un(tn, xn) ∈ [ε′, 1−ε′] and (un)t(tn, xn) < mε′ . We again obtain
new (f, u) ∈ SL(f0, K, θ) such that f ∈ F (f0, K, θ, ζ, η), ut ≥ 0, as well as u(0, 0) ∈ [ε′, 1−ε′],
and ut(0, 0) ≤ mε′ < µε′,Mε′/2

. This contradicts Corollary 4.4(ii,i) (with h = 0), and the

second claim in (6.8) is also proved. �

Recall that in the proof of Theorem 2.5(i) we obtained Λh
u(t0 + T ) ≤ c′Y T + Lu,h,ε′(t0) for

all h ∈
(
0,min

{
θ(c20 − 4ζ)(c20 + 4ζ)−1, η

4K
, ε0
}]

, with T = 0 if d = 3 and some T > 0 if d ≤ 2.
If we thus let λ(h) := c′Y T + infh′∈(0,h) Lu,h′,ε′(t0) (which is left-continuous) and ν ≡ 0, then
(2.8) in Theorem 2.5(ii) immediately follows from Theorem 6.1 with u, v in place of w, u and
time shifted by −(t0 + T ).

Hence we are left with proving (2.8) in Theorem 2.4(i). As in the proof of Remark 4
after Theorem 2.4, we will start with assuming (2.13), and also without loss that t0 = 0,
e = (1, 0, . . . , 0), as well as ε2 ≤ c0/4 (recall that u ∈ [0, 1]). We again let w solve (1.1) with
w(0, x) = W (x1), where W is from (6.3). As before, wt ≥ 0 and we have u(τ, ·) ≥ w(0, ·)
provided τ is large enough (depending on f0, R2 −R1, ε1). This yields the first inequality in
(6.7), with ν ≡ 0.

To obtain the second inequality in (6.7), we define β(t) := τ − e−ε22t and

v(t, x) := w(t+ β(t), x) + eε
2
2t−ε2(x1−R2) (6.11)



36 ANDREJ ZLATOŠ

for some large τ to be determined later. We then have for t > 0,

vt −∆v − f(x, v) = f(x,w(t+ β(t), x))− f(x, v) + ε22e
−ε22twt(t+ β(t), x), (6.12)

where we extend f so that f(x, u) ≤ 0 for u ≥ 1 (cf. (2.20)).
We want to show that v is a super-solution of (1.1), that is, the right hand side of (6.12) is

≥ 0 for t > 0 and x ∈ Rd. When w(t+β(t), x) ≥ 1−θ, then f(x,w(t+β(t), x)) ≥ f(x, v(t, x))
by the hypotheses on f and w ≤ 1, so this is indeed the case.

Let `θ/4,mθ/2 be from Theorem 6.1 (i.e., with ε′ := θ
4

and ε′ := θ
2
). We now let τ be large

enough so that w(t+ τ − 1, x) ≥ 1− θ whenever t ≥ 0 and

x1 ≤
c0
2
t+

1

ε2
log max

{
K

ε22mθ/2

,
2

θ

}
+R2, (6.13)

and also that

sup
t≥0

Lw,θ/4(t+ τ − 1) ≤ `θ/4 and inf
t≥0

w(t+τ−1,x)∈[θ/2,1−θ/2]

wt(t+ τ − 1, x) ≥ mθ/2. (6.14)

The former holds for all large τ due to the second claim in Lemma 3.1. The latter holds for
all large τ due to Theorem 6.1 applied to u = w, ν ≡ 0, and τ = 0, but starting from some
positive time for which Λ0

w (≥ Λh
w for all h > 0) is finite (see (6.4)), instead from time 0. This

τ then only depends on f0, K, ζ, η, ε2, θ.
When w(t+ β(t), x) < 1− θ, then w(t+ τ − 1, x) < 1− θ by wt ≥ 0, so

eε
2
2t−ε2(x1−R2) ≤ min

{
ε22mθ/2

K
,
θ

2

}
e(ε

2
2−c0ε2/2)t ≤ min

{
ε22mθ/2

K
e(ε

2
2−c0ε2/2)t,

θ

2

}
by the opposite inequality to (6.13). So either w(t + β(t), x) ≤ θ

2
, in which case v(t, x) ≤ θ

and we have f(x,w(t + β(t), x)) = f(x, v(t, x)) = 0; or w(t + β(t), x) ∈ ( θ
2
, 1 − θ), in which

case the right hand side of (6.12) can be bounded below by

−Keε22t−ε2(x1−R2) + ε22e
−ε22tmθ/2 ≥ −ε22mθ/2e

(ε22−c0ε2/2)t + ε22mθ/2e
−ε22t ≥ 0

(using ε2 ≤ c0/4 in the last inequality).
It follows that v is a super-solution of (1.1), with v(0, ·) ≥ u(0, ·) due to (2.13). Hence

v ≥ u, and the second inequality in (6.7) holds with

ν(t) := max

{
sup

x1≤R2+c0t/2

[1− w(t+ τ − 1, x)], e(ε
2
2−c0ε2/2)t

}
because u ≤ 1 and wt ≥ 0 (notice that ν depends only on τ, f0, ε2). Since limt→∞ ν(t) = 0
due to Lemma 3.1 and 0 < ε2 < c0/2, Theorem 2.4(i) for (2.13) follows from Theorem 6.1.

The proof of (2.8) in the (2.12) case of Theorem 2.4(i) is similar, with x1 replaced by

|x − x0| in the whole argument, and ε2(d − 1)|x − x0|−1eε
2
2t−ε2(|x−x0|−R2) added to the right

hand side of (6.12).

Remark. For later reference, in the proof of Theorem 2.9 below, we also construct a sub-
solution of (1.1) with the same flavor. Let w be as in the above proof, solving (1.1) with
w(0, x) := W (x1). We have infw(0,x)≥θ/4wt(0, x) > 0 by the construction of W (because
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U ′′ + f0(U) > 0), uniformly in all f ≥ f0. It follows from this and parabolic regularity that
on some short time interval [0, t̃], wt is bounded away from zero uniformly in all (t, x) with
w(t, x) ≥ θ

2
and in all f ≥ f0 with f(x, 0) ≡ 0 and Lipschitz constant K. This, wt ≥ 0, and

the first claim in (6.14) now yield

m := inf

{
wt(t, x)

∣∣∣∣ f ∈ F (f0, K, θ, ζ, η), t ≥ 0, and w(t, x) ∈
[
θ

2
, 1− θ

2

]}
> 0, (6.15)

provided we also assume (without loss) that θ ≤ 4ε0. This is because an argument as in
Lemma 3.3(iii) shows that otherwise there would be some f ∈ F (f0, K, θ, ζ, η) and a solution
u of (1.1) on (−t̃,∞)× Rd with supt≥τ Lu,θ/4(t) ≤ `θ/4 for τ from (6.14), u(0, 0) ∈ [ θ

2
, 1− θ

2
],

and ut ≡ 0. Then Lemma 3.1 and θ
4
≤ ε0 show limt→∞ u(t, 0) = 1, contradicting ut ≡ 0.

Next, pick any r ∈ R and define

v(t, x) := w(t− 1 + e−ε
2
2t, x)− eε22t−ε2(x1−r), (6.16)

so that for t > 0,

vt −∆v − f(x, v) = f(x,w(t− 1 + e−ε
2
2t, x))− f(x, v)− ε22e−ε

2
2twt(t+ β(t), x). (6.17)

Here we extend f so that f(x, u) ≥ 0 for u ≤ 0 (cf. (2.20)). We would like to show that the
right hand side of (6.17) is ≤ 0.

This is obviously true when v(t, x) ≥ 1 − θ because then the hypotheses on f and w ≤ 1

show f(x,w(t− 1 + e−ε
2
2t, x)) ≤ f(x, v(t, x)).

Now consider (t, x) ∈ (0,∞)× Rd with

x1 ≥
c0
2
t+

1

ε2
log max

{
K

ε22m
,
2

θ

}
+ r. (6.18)

Then

eε
2
2t−ε2(x1−r) ≤ min

{
ε22m

K
,
θ

2

}
e(ε

2
2−c0ε2/2)t ≤ min

{
ε22m

K
e(ε

2
2−c0ε2/2)t,

θ

2

}
.

This, w ∈ [0, 1], and the hypotheses on f show that if w(t− 1 + e−ε
2
2t, x) /∈ (θ, 1− θ

2
), then we

have f(x,w(t − 1 + e−ε
2
2t, x)) ≤ f(x, v(t, x)), so the right hand side of (6.17) is indeed ≤ 0.

If instead w(t− 1 + e−ε
2
2t, x) ∈ (θ, 1− θ

2
), then we conclude the same because the right hand

side can be bounded above by

Keε
2
2t−ε2(x1−r) − ε22e−ε

2
2tm ≤ ε22me

(ε22−c0ε2/2)t − ε22me−ε
2
2t ≤ 0.

We cannot, however, conclude this when the opposite of (6.18) holds and v(t, x) < 1− θ.
Thus we have obtained that v is a sub-solution of (1.1) on the set of (t, x) ∈ (0,∞)×Rd such
that either (6.18) holds or v(t, x) ≥ 1− θ. This will turn out to be sufficient for our purposes
because typical solutions u spread with speed > c0/2. Hence for appropriate u we will have
u(t, x) ≥ 1− θ when the opposite of (6.18) holds, and we will still be able to conclude u ≥ v.
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7. Proof of Lemma 4.2 in the case d = 3 (case u+ ≡ 1)

Recall the setup from the beginning of Section 4. In particular, all constants depend on
f0, K, ζ, η (but not on θ, h unless explicitly noted). Let us also assume, without loss, that
t1 = 0 and y = 0, and denote Y h

0 = Y , Z0 = Z. Thus (4.12) becomes Z(τ) ≤ Y (0). Finally,
recall that αf (x) = αf (x; ζ) and ψ corresponds to ζ ′ in Lemma 3.5.

Let κ ∈ (0, 1
2
) be such that if u(t, x̃) ∈ [αf (x̃), 1− ε0] for some (t, x̃) ∈ [1

2
,∞)× R3, then

u(t, x) ≥ η

2K
and f(x, u(t, x)) ≥ κ for any x ∈ B√3κ(x̃). (7.1)

Note that κ exists and is independent of f, u due to infx∈R3 αf (x) ≥ η/K, parabolic regularity,
and f ∈ F (f0, K, 0, ζ, η). Let also Q ≥ K be such that if C := [0, κ)3 and w̃ ≥ 0 solves

w̃t = ∆w̃ +
[
ζ ′ +Qχ[1/2,1](t)χC(x)

]
w̃

on (1
2
,∞) × R3 with w̃(1

2
, ·) ≥ η

4K
χC(·), then w̃(t, ·) ≥ χC(·) for any t ≥ 1 (which exists

because ζ ′ > 0).
Assume now that v ∈ [0, 1] solves (3.6), and that C ′1, C ′2, . . . are all (finitely or infinitely

many) disjoint cubes such that C ′n is a κZd-translation of C (i.e., by an integer multiple of κ
in each coordinate) and v(x′n) ∈ (αf (x

′
n), 1− ε0] for some x′n ∈ C̄ ′n. Since (7.1) applies to v in

place of u(t, ·), its second claim and (3.7) show for each x0 ∈ Rd,∑
n≥1

(1 + |x′n − x0|)−1 ≤ κ−4. (7.2)

Let T = TY > 0, R ≥ T , and τ = τY ≥ T + 1, all to be chosen later (but independent
of θ, h, f, u). Also let C1, . . . , CN be as above but such that u(T, x) > αf (x; ζ ′) for some
x ∈ Cn ∩ BY (0)(0). Let tn ∈ [0, T ) be the last time such that u(t, x) ≤ αf (x; ζ ′) for all
(t, x) ∈ [0, tn] × [Cn ∩ BY (0)(0)], let In := [tn, tn + 1], and let xn ∈ Cn ∩ BY (0)(0) be any
point such that u(T, xn) ≥ αf (xn; ζ ′) ((tn, xn) will be fixed from now on). Then ut ≥ 0 and
Z(τ) ≤ Y (0) show that

u(t, xn) ∈ [αf (xn; ζ ′), 1− ε0] for n = 1, . . . , N and t ∈ [T, τ ]. (7.3)

We now claim that if τ is large enough (depending only on T,R in addition to f0, K, ζ, η),
then we must have ∑

|xn−x0|≤2R+2

(1 + |xn − x0|)−1 < 2κ−4 (7.4)

for each x0 ∈ R3. This holds due to the same argument as in the case d ≤ 2 of this
lemma. Indeed, if such τ did not exist, we take a sequence of counter-examples (fτ , uτ , x

τ
0)

to (7.4) for τ = T + 1, T + 2, . . . and shift each in space by (the negative of) the vector
whose each coordinate is the largest multiple of κ smaller than the same coordinate of xτ0.
Parabolic regularity then shows that there is a subsequence along which these shifted solutions
converge locally uniformly to a solution of (1.1) (with some f ∈ F (f0, K, 0, ζ, η)), whose
t → ∞ limit v ∈ [0, 1] satisfies (3.6). Moreover, by taking a further subsequence (along
which those shifted Cτ1 , . . . , CτNτ for which |xτn − xτ0| ≤ 2R + 2 are all the same, and the
corresponding shifted xτn and as well as the shifted xτ0 converge), one obtains existence of
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x′0 ∈ C̄ and of κZd-translations C ′1, . . . , C ′N ′ ⊆ B2R+4(0) of C and x′n ∈ C̄ ′n ∩ B2R+3(0), such
that v(x′n) ∈ (αf (x

′
n), 1−ε0] (because (7.3) holds for each (uτ , fτ , x

τ
n), and fτ (x

τ
n, αfτ (x

τ
n; ζ ′)) =

ζ ′αfτ (x
τ
n; ζ ′) ≥ ζαfτ (x

τ
n; ζ ′) + (ζ ′ − ζ) η

K
) and

N ′∑
n=1

(1 + |x′n − x′0|)−1 ≥ 2κ−4.

This obviously contradicts (7.2), so there must be τ ≥ T + 1 such that (7.4) holds.
We now reorder the (Cn, tn, xn) so that t1 ≤ · · · ≤ tN . Define

A(t, x) := Q
N∑
n=1

χIn(t)χCn(x)

and let w solve
wt = ∆w + [ζ ′ + A(t, x)](w − h) (7.5)

on (0,∞)×R3, with w(0, x) = h+ψ(Y (0))−1ψ(|x|) (so that w(0, ·) ≥ u(0, ·) by the definition
of Y (0)). We will now show that w ≥ u on [0, T ]× R3.

Since the time-independent function h+ψ(Y (0))−1ψ(|x|) is a sub-solution of (7.5), we have
w(t, x) ≥ 1 ≥ u(t, x) for (t, x) ∈ [0, T ]× (R3 \BY (0)(0)). Also, w ≥ h and (4.2) show

[ζ ′ + A(t, x)](w(t, x)− h) ≥ f(x,w(t, x))

for (t, x) ∈ [0, T ] × (BY (0)(0) \
⋃N
n=1 Cn), as well as for any n and any (t, x) ∈ [0, tn] × Cn.

The same is true for (t, x) ∈ In × Cn because f ∈ F (f0, K, θ, ζ, η), h ≤ θ, and Q ≥ K.
Since w(0, ·) ≥ u(0, ·) and u ≤ 1 solves (1.1), the comparison principle yields w ≥ u on
[0, t1 + 1]× R3.

From Z(τ) ≤ Y (0), the definition of t1 ∈ [0, τ − 1], and the first claim in (7.1) we have
u(t1 + 1

2
, ·) ≥ η

2K
χC1(·). Since w(t1 + 1

2
, ·) ≥ u(t1 + 1

2
, ·) and h ≤ η

4K
, the function w̃(t, x) :=

w(t−t1, x)−h satisfies w̃(1
2
, ·) ≥ η

4K
χC1(·). Our choice of Q then shows w(t, x) ≥ 1 (≥ u(t, x))

for (t, x) ∈ [t1 + 1, T ]× C1, so the comparison principle now yields w ≥ u on [0, t2 + 1]× R3.
Using the argument from the previous paragraph n−1 more times (with t2, . . . , tn in place

of t1) ultimately indeed gives w ≥ u on [0, T ]× R3. It therefore suffices to show

w(T, ·)− h ≤ ψ(Y (0)− cY T )−1ψ(| · |) (7.6)

to conclude the proof. This will be achieved by using (7.4), for appropriately chosen T,R.
Let

a(t, x) := e−2ζ
′tψ(Y (0))ψ(|x|)−1(w(t, x)− h),

so that we have a(0, x) ≡ 1 and

at = ∆a+
2xψ′(|x|)
|x|ψ(|x|)

· ∇a+ A(t, x)a.

Thus (7.6) will follow if we prove

‖a(T, ·)‖L∞(R3) ≤
e−2ζ

′Tψ(Y (0))

ψ(Y (0)− cY T )
(7.7)
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Let

δ := 2ζ ′
cY − 2

√
ζ ′

cY + 2
√
ζ ′
> 0.

Since d
dr

[lnψ(r)] ≥ 4ζ ′(cY +2
√
ζ ′)−1 = (2ζ ′+δ)c−1Y for r ≥ rY and we assume Y (0)−cY T ≥ rY ,

it follows that ψ(Y (0))ψ(Y (0)− cY T )−1 ≥ e(2ζ
′+δ)T . Hence it suffices to prove

‖a(T, ·)‖L∞(R3) ≤ eδT . (7.8)

We now choose R ≥ T to be such that if Bt is the standard Brownian motion in R3 (defined
on some probability space (Ω,F ,P)), then

P

(
sup
t∈[0,T ]

|Bt| ≥ R− 2‖ψ′ψ−1‖∞T

)
≤ 1

3
e−QT (7.9)

(so R depends on T in addition to f0, K, ζ, η). For any |x| ≤ Y (0), we let Xx
t be the stochastic

process given by Xx
0 = x and

dXx
t = b(Xx

t )dt+ dBt :=
2Xx

t ψ
′(|Xx

t |)
|Xx

t |ψ(|Xx
t |)

dt+ dBt.

Then the well-known Feynman-Kac formula gives

a(T, x) = E
(
e
∫ T
0 A(T−t,Xx

t )dt
)

(7.10)

We will now show that this is ≤ eδT for x = 0 (the general case is identical). Denote
X0
t = Xt and note that |b| ≤ 2‖ψ′ψ−1‖∞ yields

P

(
sup
t∈[0,T ]

|Xt| ≥ R

)
≤ P

(
sup
t∈[0,T ]

|Bt| ≥ R− 2‖ψ′ψ−1‖∞T

)
≤ 1

3
e−QT . (7.11)

Since A ≤ Q, this means that the contribution to (7.10) from those paths which leave
BR(x = 0) before time T is at most 1

3
e−QT eQT = 1

3
.

Next reorder again the (Cn, tn, xn), now so that Cn ∩BR(0) 6= ∅ precisely when n ≤ N ′ (for
some N ′). Since (7.4) holds for any x0 ∈ R3, we have

N ′∑
n=1

(1 + |xn − x0|)−1 < 2κ−4 (7.12)

for any x0 ∈ BR+1(0). Then xn ∈ BR+1(0) implies that (7.12) holds for any x0 ∈ R3.
Consider now the paths which stay in BR(0) until time T . These have non-zero A(T−t,Xt)

only at those times t ∈ [0, T ] for which Xt ∈ Cn for some n ≤ N ′, and also T − t ∈ In. Since
|In| = 1, the contribution to (7.10) from those of these paths which hit fewer than δ(2Q)−1T
of the cubes C1, . . . , CN ′ before time T is at most exp(Qδ(2Q)−1T ) ≤ 1

3
eδT , provided we choose

T ≥ δ−1 ln 9.
Finally, the contribution to (7.10) from those paths which stay in BR(0) until time T and

hit at least δ(2Q)−1T of the cubes C1, . . . , CN ′ before time T is at most e−2QT eQT ≤ 1
3

by
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A ≤ Q and Lemma 7.1 below, provided we let p := δ(2Q)−1, P := 2 max{κ−4, Q, ‖ψ′/ψ‖∞},
and choose T large enough (which then depends on f0, K, ζ, η).

Thus a(T, x = 0) ≤ eδT , and the general case |x| ≤ Y (0) is identical. Hence (7.8) follows
for any such T and the proof will be finished once we prove the following lemma.

Lemma 7.1. If p, P > 0, then for any large enough T > 0 (depending only on d, p, P ) the
following holds. If N ≤ ∞, the points xn ∈ Rd satisfy

N∑
n=1

(1 + |xn − x|)−1 ≤ P (7.13)

for any x ∈ Rd, and the process Xt satisfies X0 = 0 and dXt = b(Xt)dt+ dBt with ‖b‖∞ ≤ P
and Bt the standard Brownian motion in Rd, then

P (Xt hits at least pT of the balls B1(xn) before time T ) ≤ e−PT . (7.14)

Remark. The point here is that if Xt hits at least pT of these balls, the sum of the dpT e
displacements it undergoes in-between hits will be bounded below by a quantity super-linear
in T because of (7.13). The same will then hold for Bt because b is bounded, but the
probability of this decreases super-exponentially in T due to the nature of the Gaussian.

Proof. Define the stopping times t0 := 0,

t′j := inf{t ≥ 0 |Xs hits at least j of the balls B1(xn) before time t},

and tj := min{t′j, T} for j = 1, . . . , dpT e. Let hj :=
∑j

k=1 |Xtk −Xtk−1
| and let

jt := max
{
j ≤ dpT e

∣∣ tj < t
}

be the smaller of dpT e and the number of the balls hit by Xs before time t ∈ (0, T ] (if
t > T , then jt = dpT e). Of course, these are all measurable functions of ω ∈ Ω. Finally, let
Ω′ := {ω ∈ Ω | jT (ω) = dpT e} be the set of those ω for which at least dpT e balls are hit by
Xs(ω) before time T . Thus we need to show P(Ω′) ≤ e−PT .

We now claim that there is γ(T ) → ∞ as T → ∞ (also depending on p, P but nothing
else) such that (cf. the Remark above)

hdpT e ≥ γ(T )T for any ω ∈ Ω′. (7.15)

Indeed, let ω ∈ Ω′ and H = H(ω) := hdpT e(ω). For any x ∈ Rd we have by (7.13),

dpT e∑
j=1

(
2 +

∣∣Xtj − x
∣∣)−1 ≤ P.

If we take x := rXtk + (1− r)Xtk−1
for some k = 1, . . . , dpT e and r ∈ [0, 1), then this gives

dpT e∑
j=1

(2 + |rhk + (1− r)hk−1 − hj|)−1 ≤ P. (7.16)
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For each q ∈ [0, H) we let (rq, kq) ∈ [0, 1) × {1, . . . , dpT e} be the unique couple such that
q = rqhkq + (1− rq)hkq−1. Integrating (7.16) over q with (r, k) = (rq, kq) yields

dpT e∑
j=1

∫ H

0

(2 + |q − hj|)−1dq ≤ PH.

Since hj ∈ [0, H], we obtain

dpT e ln
2 +H

2
≤ PH,

yielding (7.15) with γ(T ) := p
P

lnT for T ≥ e2P/p. Then |b| ≤ P implies also

dpT e∑
k=1

|Btk −Btk−1
| ≥ (γ(T )− P )T for any ω ∈ Ω′. (7.17)

Let now {e(1), . . . , e(d)} be the standard basis in Rd and let

E := {e ∈ Rd | e · e(l) ∈ {1,−1} for each l = 1, . . . , d}
be the set of the 2d reflections of (1, . . . , 1) across subspaces generated by all 2d subsets of
the standard basis. Notice that E is a group if endowed with coordinate-wise multiplication.
For any ê = (e0, . . . , edpT e) ∈ EdpT e+1, define

B ê
t :=

jt∑
j=1

(
Btj −Btj−1

) j−1∏
k=0

ek +
(
Bt −Btjt

) jt∏
k=0

ek,

with all multiplications coordinate-wise. That is, B ê
t is obtained from Bt after dpT e + 1

reflections corresponding to e0, . . . , edpT e at stopping times t0 = 0, t1, . . . , tdpT e. (Note that
what gets reflected according to ej is the displacement Bt−Btj for any t > tj. So in particular,
Bt −Btjt

gets reflected jt + 1 times — according to e0, e1, . . . , ejt .)

Since tj are stopping times, each B ê
t is also a standard Brownian motion. For any ω ∈ Ω,

there is ê ∈ EdpT e+1 such that for j = 1, . . . , dpT e (and with · the usual dot product in Rd),[
(Btj −Btj−1

)

j−1∏
k=0

ek

]
· (1, . . . , 1) ≥ |Btj −Btj−1|.

Indeed, one only needs to choose ej successively so that (Btj − Btj−1)
∏j−1

k=0 ek has all d

coordinates non-negative. So by (7.17), for each ω ∈ Ω′, there is ê ∈ EdpT e+1 such that

B ê
tdpTe
· (1, . . . , 1) ≥ (γ(T )− P )T

Since tdpT e ≤ T , we obtain

P(Ω′) ≤ 2d(dpT e+1)P (Bt · (1, . . . , 1) ≥ (γ(T )− P )T for some t ≤ T ) .

Given any C > 0, the last probability is less than e−CT for all large enough T because
limT→∞ γ(T ) = ∞. Taking C := 2dp ln 2 + P yields P(Ω′) ≤ e−PT for all large enough T ,
finishing the proof of Lemma 7.1. �
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8. Proofs of Theorems 2.7 and 2.9

These proofs follow the same lines as those of Theorems 2.4(i) and 2.5. The only differences
in the proof of Theorem 2.7 will be in the proofs of Lemma 3.1 and Lemma 4.2, where (2.23)
will play a central role. In what follows, let us consider the setting of Theorem 2.7 (in
particular, F is fixed) but for now also only (f, u+) ∈ F and θ ≥ 0. All constants will now
depend on F instead of f0, K, ζ, η (but not on θ from (H) unless explicitly noted).

Before we start, let us note that since infx∈Rd u
+(x) > θ0 and f(x, u) ≥ f0(u) > 0 for

u ∈ (θ0, θ1), it follows from elliptic regularity and the maximum principle that in fact
infx∈Rd u

+(x) ≥ θ1.

Lemma 8.1. There is ε0 = ε0(F) > 0 such that for each c < c0 and ε > 0 there is
τ = τ(F , c, ε) such that the following holds. If u ∈ [0, u+] solves (1.1), (1.2) with (f, u+) ∈ F ,
and u(t1, x) ≥ u+(x)− ε0 for some (t1, x) ∈ [t0 + 1,∞)× Rd, then for each t ≥ t1 + τ ,

sup
|y−x|≤c(t−t1)

[
u+(x)− u(t, y)

]
≤ ε. (8.1)

The same result holds if the hypothesis u(t1, x) ≥ u+(x)− ε0 is replaced by

u(t1, ·) ≥
θ1 + θ0

2
χBR(x)(·) (8.2)

for some (t1, x) ∈ [t0,∞)× Rd and a large enough R = R(f0) > 0.

Proof. Without loss we can assume t0 = 0 and x = 0. As in the argument in the proof of
Lemma 3.1, one shows that u(t1, x) ≥ u+(x) − ε0 (with t1 ≥ 1 and u+ ≥ θ1) yields (8.2),
provided ε0 > 0 is sufficiently small. So we only need to prove the second claim.

Let us therefore assume (8.2). The result from [2] used in Lemma 3.1 also applies to
bistable f0, and together with the comparison principle gives for any c′ < c0 and ε′ > 0
existence of τ ′ such that,

inf
|y|≤c′t

u(t, y) ≥ θ1 − ε′ (8.3)

when t ≥ τ ′. To upgrade this to (8.1), we will use (2.23) along with supx∈Rd αf (x) < θ1. The
latter holds because otherwise f0(u) ≤ ζu for all u ∈ [0, θ1], which contradicts c0 > 2

√
ζ.

If (8.1) does not hold for some c < c0 and ε > 0, we let un be a counterexample with
tn (→ ∞ as n → ∞) and |yn| ≤ ctn, corresponding to some (fn, u

+
n ) ∈ F . We can assume

(un)t ≥ 0, because (8.3) with c′ ∈ (c, c0) and a small enough ε′ ∈ (0, ε) lets us find a time-
increasing solution wn of (1.1) between 0 and un, defined for t ≥ t′ with some t′ ≥ τ ′,
which still spreads with speed ≥ c′ in the sense of (8.3). Indeed, similarly to (6.3), we let
wn(t′, x) := W (|x|), where

W (s) :=


θ1 − ε′ s ≤ R′,

U(s−R′) s ∈ (R′, R′ + s0],

0 s > R′ + s0

(8.4)
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and U, s0 are obtained as for (6.3) but with the current f0 and U(0) = θ1 − ε′. Here we

need ε′ > 0 to be small enough (such that
∫ θ1−ε′
0

f0(u)du > 0) and R′ larger than the right-
hand side of (6.6) (so that W (|x|) satisfies (6.1)). So each wn is time-increasing, and also
satisfies (8.3) for large t if ε′ ≤ 1

2
(θ1 − θ0) and R′ ≥ R, with R from (8.2). Then we only

need t′ ≥ max{τ ′, (R′ + s0)/c
′} to get wn ≤ un for all n (note that ε′, c′, τ ′, U, s0, R

′, t′ are
independent of n).

Let therefore (un)t ≥ 0 be such counterexamples, with tn → ∞ and |yn| ≤ ctn such that
un(tn, yn) ≤ u+n (yn)−ε. After shifting un by (− c′+c

2c′
tn,−yn) (and fn, u

+
n by yn) and passing to

a subsequence, we recover an entire time-increasing solution u of (1.1) with new (f, u+) ∈ F ,
such that u ∈ [θ1, u

+] (due to (8.3) for each un and all ε′ > 0) and limt→∞ u(t, 0) ≤ u+(0)−ε.
As before, the function p(x) := limt→∞ u(t, x) is an equilibrium solution of (1.1) with p(0) ≤
u+(0)− ε. Since p ∈ [θ1, u

+], the strong maximum principle yields p < u+, and we also have
p ≥ θ1 > αf on Rd. So the sum in (2.23) equals ∞, contradicting (f, u+) ∈ F . �

Proof of Theorem 2.7. This is essentially identical to the proofs of Theorem 2.4(i) and The-
orem 2.5 for d = 3, but with u ∈ [0, u+] instead of u ∈ [0, 1] and using Lemma 8.1 instead of
Lemma 3.1. We will again only assume (f, u+) ∈ F and θ ≥ 0 in most of the proof.

Lemmas 3.2 and 3.3 are unchanged, with the sets St0,ε,`, St0,L, SL containing triples (f, u+, u)
and restricted to (f, u+) ∈ F and u ∈ [0, u+], and with 1− ε replaced by u+(x)− ε in (3.5).
In Section 4 we take

Zy(t) := inf
u(t,x)≥u+(x)−ε0

|x− y|

and keep Y h
y (t) as before because u+ ≤ 1. Lemma 4.1 is unchanged and Lemma 4.2 is proved

as in the case d = 3. We cannot use Lemma 3.4 here but (2.23) will do the job. Indeed, we
let κ ∈ (0, d−1/2) be such that if u(t, x̃) ≥ η for some (t, x̃) ∈ [1

2
,∞)× Rd, then

u(t, x) ≥ η

2K
for any x ∈ B√dκ(x̃), (8.5)

which replaces (7.1). We then still conclude (7.2) using (2.23), although with the right hand
side being dκ−1edη−1 instead of κ−4. The rest of the proof is unchanged, as is Theorem 4.3
and Corollary 4.4, except for 1 − ε being replaced by u+(x) − ε in (4.21). Section 5 is also
unchanged, using only the arguments in Case d = 3. This proves Theorem 2.7(ii) for u.

The proofs of the remarks at the beginning of Section 6 remain the same, with W from
(8.4) instead of (6.3) and R′ := R2. Theorem 6.1 is also unchanged (note that here we need
θ > 0 because we employ Theorem 2.11(ii)) and so is the proof of Theorem 2.5(ii). This
proves Theorem 2.7(ii) for v.

Finally, since we have (2.20), the argument after Theorem 6.1 which proves Theorem 2.4(i)
also remains the same, with each “1−” is replaced by “u+(x)−”. �

Proof of Theorem 2.9. Let us define f0(u) = 0 for u < 0, and for γ ≤ 0 let cγ be the
front/spreading speed for f0 but corresponding to fronts connecting γ and θ1 resp. to suf-
ficiently large u0 ∈ [γ, θ1] converging to γ as |x| → ∞. It is well known (using phase-plane
analysis) that cγ ∈ (0, c0) for any γ < 0 as well as limγ→0− cγ = c0.
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(i) To prove this we will need to construct an appropriate (non-positive) sub-solution,
in addition to the super-solution constructed previously. We will use here the remark at
the end of Section 6. Let us first assume (2.26), and let γ := infx∈Rd u0(x) ≤ 0 (then
γ = inf(t,x)∈[t0,∞)Rd u(t, x) by (2.20)). Without loss, we also assume t0 = 0, e = e1, and
ε2 ≤ cγ/4. The latter can be done because (2.26) continues to hold if we replace ε2 by
min{ε2, cγ/4} and R2 by R2 + 4c−1γ ln+ ‖u0‖∞.

First, we claim that

lim sup
t→∞

sup
x∈Rd

[u(t, x)− u+(x)] ≤ 0 and lim inf
t→∞

inf
x∈Rd

u(t, x) ≥ 0, (8.6)

where the rate of these decays depends on the same parameters as Tε in (C) does, except of
ε (by “rate” we mean a function T̃ : (0,∞)→ (0,∞) such that supx∈Rd [u(t, x)− u+(x)] ≤ δ

and infx∈Rd u(t, x) ≥ −δ for all t ≥ T̃ (δ)).
For the first claim in (8.6), let v(t, x) := u(t, x)− u+(x). Then vt ≤ ∆v + g(v), with

g(s) := sup
(f,u+,x)∈F×Rd

[f(x, u+(x) + s)− f(x, u+(x))].

We have g(s) < 0 for all s > 0 because otherwise translation invariance of F and its clo-
sure under locally uniform convergence would yield (f, u+) ∈ F with f(x, u+(x) + s) =
f(x, u+(x)) for some s > 0, contradicting the extra hypothesis in the case of (2.26). Ob-
viously supx∈Rd v(t, x) ≤ κ(t), where κ(0) := supx∈Rd v(0, x) < ∞ and κ′ = g(κ). Thus
limt→∞ κ(t) = 0, and the first claim in (8.6) follows. (If we only have g ≤ 0 but assume
lim supx1→−∞ v(0, x) ≤ 0, the claim is immediate from this and (2.26).)

We now turn to the second claim in (8.6). The result from [2] (see the proof of Lemma 8.1)
for (1.1) with u0 ≥ (θ0 + ε1 + |γ|)χ{x |x1<R1} − |γ| shows

inf
x1≤R1+c′t

u(t, x) ≥ θ1 − ε′ (8.7)

for any c′ < cγ, ε
′ > 0, and t ≥ τ ′ (with τ ′ depending only on f0, γ, ε1, c

′, ε′). The
comparison principle and (2.20) yield u(t, x) ≥ −e−ε2(x1−ε2t−R2) because the latter solves
the heat equation. But this, (8.7) with c′ := cγ/2 and ε′ := θ1, and ε2 ≤ cγ/4 show
infx∈Rd u(t, x) ≥ −e−ε2(cγt/4+R1−R2) for t ≥ τ ′. The second claim in (8.6) follows.

(8.6) shows that for any ε > 0 and large enough t, the sets Ωu,ε(t) and Ωu,1−ε(t) from (2.21)
and (2.22) are the same as those in Definition 2.8. Hence we will use (2.21) and (2.22).

We next claim that because of (8.6) and the parabolic Harnack inequality, it suffices to
prove the result with Lu,ε(t) from (1.6) instead of (2.24). First, there is (K, ‖u‖∞)-dependent
M ≥ 1 such that supt≥t0+1 ‖ut‖∞ ≤ M for any solution of (1.1) on (t0,∞) × Rd with f

Lipschitz with constant K and satisfying f(·, 0) ≡ 0. Given any ε ∈ (0, 1
2
), consider some

small ε′ > 0 and let v := ε′ + u+ − u and T ′ < ∞ be such that infx∈Rd v(t, x) ≥ 0 for all
t ≥ T ′ (which exists by (8.6)). Then we have vt −∆v − λ(t, x)v ≥ 0 for t ≥ T ′, with

λ(t, x) := v(t, x)−1 min{f(x, u+(x))− f(x, u(t, x)), 0}

which satisfies λ(t, x) ∈ [−K, 0] due to (2.20). So by the Harnack inequality, there is
C ≥ 1 (depending on ε,K) such that if v(t, x) ≤ 2ε′ for (t, x) ∈ [T ′ + 1,∞) × Rd, then
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sup|y−x|≤1/ε v(t − ε
2M
, y) ≤ Cε′. If we now let ε′ := ε

2C
, then this means u(t, y) ≥ u+(y) − ε

for all y ∈ B1/ε(x) whenever u(t, x) ≥ u+(x) − ε′ and t ≥ T ′ + 1. Therefore `ε′ for Lu,ε′(t)
from (1.6) works as `ε for Lu,ε(t) from (2.24), provided we can obtain (C) for the former.

So we can consider Lu,ε(t) from (1.6), with Ωu,ε(t) and Ωu,1−ε(t) from (2.21) and (2.22),
which is what was done in the proofs of Theorems 2.4(i) and 2.7(i).

Next, notice that (8.7) and u ≥ γ can be upgraded to

sup
x1≤R1+ct

[u+(x)− u(t, x)] ≤ ε (8.8)

for any c < cγ, ε > 0, and t ≥ τ̃ (with τ̃ depending only on F , c, ε, γ, ε1). Indeed, this is
done using (8.7) in the same way (8.3) is used to prove (8.1), but with U(s0) = −γ in the

definition of W (we still have
∫ θ1−ε′
−γ f0(u)du > 0). In fact, (8.7) and then (8.8) hold for any

c < c0 because of the second claim in (8.6) and limγ→0− cγ = c0.
Let us assume, without loss, that θ > 0 is small enough so that θ ≤ 1

2
(θ1 − θ0) and∫ θ1−θ

0
f0(u)du > 0. We now use (8.8) with c := cγ/2, ε := θ, and the corresponding τ̃ ,

together with u(t, x) ≥ −e−ε2(x1−ε2t−R2) (shown above) and ε2 ≤ cγ/4, to obtain for t ≥ τ̃ ,

u(t, x) ≥ (u+(x)− θ)χ{x |x1≤R1+cγt/2}(x)− e−ε2(x1−R2−cγt/4)χ{x |x1>R1+cγt/2}(x).

Of course, (2.26) and f(u) ≤ Ku for u ≥ 0 also give

u(t, x) ≤ e(ε
2
2+K)t−ε2(x1−R2).

Now consider W from (8.4), with ε′ := θ and R′ := R2. Consider also w solving (1.1) with
w(0, x) := W (x1). As in the remark at the end of Section 6, we obtain

m := inf

{
wt(t, x)

∣∣∣∣ (f, u+) ∈ Fθ, t ≥ 0, and w(t, x) ∈
[
θ

2
, u+(x)− θ

2

]}
> 0. (8.9)

With s0 from (8.4), we let

r := R2 + s0 −
1

ε2
log max

{
K

ε22m
,
2

θ

}
,

and shift u by (−T,−R), and f, u+ by −R in space, where

T := max
{
τ̃ , 4cγ

−1 (2R2 −R1 + s0 − r)
}
,

R :=
cγT

4
+R2 − r.

Since 1
2
cγT ≥ R2 − R1 + s0 + R, the above estimates on the original u(t, x) for t ≥ T (≥ τ̃)

now give for the shifted u, u+ and t ≥ 0,

u(t, x) ≥ (u+(x)− θ)χ{x |x1≤R2+s0+cγt/2}(x)− e−ε2(x1−r−cγt/4)χ{x |x1>R2+s0+cγt/2}(x), (8.10)

u(0, x) ≤ e−ε2(x1−R2+R−ε2T−KT/ε2). (8.11)

The crucial point here is that u(t, x) ≥ u+(x)− θ when

x1 ≤
cγt

2
+

1

ε2
log max

{
K

ε22m
,
2

θ

}
+ r. (8.12)
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Hence v from (6.16), which by the argument from the remark at the end of Section 6 is a
subsolution of (1.1) on the set of (t, x) ∈ (0,∞)×Rd such that either the opposite of (8.12)
holds or v(t, x) ≥ u+(x)− θ, will stay below u as long as v(0, ·) ≤ u(0, ·). But this holds due
to (8.10) for t = 0 because w(0, ·) ≤ θ1− θ ≤ u+(·)− θ and w(0, ·) vanishes for x1 ≥ R2 + s0.

Thus (6.16) shows that the first inequality in (6.7) holds with τ = 1 and

ν(t) := max

{
sup

x1≤r+cγt/2
[u+(x)− u(t, x)], e(ε

2
2−cγε2/2)t

}

because w ≤ u+ and wt ≥ 0. Moreover, limt→∞ ν(t) = 0 due to 0 < ε2 < cγ/2 and (8.8) for
some c > cγ/2 and any ε > 0.

On the other hand, as in Section 6, we also have a super-solution of (1.1) on (0,∞)× Rd

from (6.11), with some large τ and R2 replaced by R2 − R + ε2T +KT/ε2. This then stays
above u due to (8.11). As in Section 6, we obtain the second inequality in (6.7) with some
ν(t)→ 0 as t→∞. The (H’) version of Theorem 6.1 now finishes the proof.

The proof in the case (2.25) is similar, with x1 replaced by |x − x0| and sufficiently large
R1 to guarantee (8.7) with x1 replaced by |x−x0|. Notice that the first claim in (8.6) follows
from (2.25), even though now we only have g ≤ 0.

(ii) Similarly to (i), the extra hypotheses in (ii) imply both claims in (8.6). So again we
can consider Lu,ε(t) from (1.6), with Ωu,ε(t) and Ωu,1−ε(t) from (2.21) and (2.22). Moreover
(2.16) shows ut ≥ 0 so we must have u ≤ u+.

Assume again t0 = 0 without loss and notice that the hypotheses continue to hold if we
replace u0 by u(t, ·) for any t ≥ 0. Indeed, for all small enough ε > 0 and all y ∈ Rd we have

Zy(0) ≤ Y
ε/2
y (0) + Lu,ε/2,1−ε0(0) as in the case d = 3 of the proof of Theorem 2.5(i). Since

ut ≥ 0, the (H’) version of Lemma 4.1(i) now gives

Zy(t) ≤ Zy(0) ≤ Y ε/2
y (0) + Lu,ε/2,1−ε0(0) ≤ Y ε/2

y (t) + c′Y t+ rY + Lu,ε/2,1−ε0(0).

If u(t, y) ≥ ε, then Y
ε/2
y (t) ≤ ψ−1( ε

2
), so this yields

Lu,ε,1−ε0(t) ≤ ψ−1( ε
2
) + c′Y t+ rY + Lu,ε/2,1−ε0(0) <∞.

This and (8.6) mean that we can assume without loss that γ := min{infx∈Rd u0(x), 0} =
min{inf(t,x)∈[0,∞)Rd u(t, x), 0} is such that cγ > cZ from (4.6). But then Lemma 8.1 shows
that the (H’) version of Lemma 4.1(iii) continues to hold because now u ∈ [γ, u+]. The
rest of the proof of Theorem 2.5 (or rather Theorem 2.7(ii)) then carries over to the case
u ∈ [γ, u+], with c0 replaced by cγ and the obvious (minimal) changes (notice also that the
second claim in (8.6), which holds for any (f, u+) ∈ F and bounded u0 satisfying (2.16),
precludes existence of equilibrium solutions p of (1.1) with γ < p < u+ and infx∈Rd p(x) < 0).
Since we can take γ arbitrarily close to 0, by replacing u0 with u(t, ·) for a large enough t,
we finally also obtain global mean speed in [c0, c1]. The proof is thus finished. �
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9. Proof of Theorem 2.11

Let K ≥ 1 be a Lipschitz constant for f and pick a non-increasing and continuous function
L : (0, 1

2
) → (0,∞) such that (supt∈R Lu,ε(t) =)Lu,ε ≤ L(ε) for all ε ∈ (0, 1

2
). We can do so

because Lu,ε is finite and non-increasing in ε.
(i) Let m0 := inf(t,x)∈Rd+1 u(t, x) and m1 := sup(t,x)∈Rd+1 [u(t, x) − u+(x)]. It is easy to see

that Lemma 3.3(i,ii) extends to the case when St0,ε,` = St0,ε,`(K,m0,m1) is defined to be the
set of all triples (f, u+, u) such that f is Lipschitz with constant K, the functions u− ≡ 0
and u+ satisfy (2.18) and are equilibrium solutions of (1.1), and u with m0 ≤ u ≤ u+ + m1

solves (1.1) on (t0,∞) × Rd and satisfies Lu,ε′(t) ≤ ` for all ε′ ∈ (ε, 1
2
) and all t > t0 (with

Lu,ε(t) from Definition 2.8).
Assume first that m1 > 0. Take (tn, xn) such that u(tn, xn) − u+(xn) → m1 and define

fn(x, u) := f(x − xn, u), u+n (x) := u+(x − xn), and un(t, x) := u(t − tn, x − xn). Since
(fn, u

+
n , un) belongs to the corresponding S−∞,L = S−∞,L(K,m0,m1), we obtain as in the

proof of Lemma 3.3 some new (f, u+, u) ∈ S−∞,L (and thus also u 6≡ u+ + m1) such that
u ≤ u+ +m1 and u(0, 0) = u+(0)+m1. The function u+ +m1 is a super-solution of (1.1) due
to (2.20), so the strong maximum principle yields a contradiction with u 6≡ u+ + m1. Thus
m1 ≤ 0 and the strong maximum principle also shows u < u+.

The case m0 < 0 is identical, this time using that the constant m0 is a sub-solution of (1.1)
due to (2.20). We obtain m0 ≥ 0 and then also u > 0.

(ii) By the discussion following Definition 2.8 (see also the proof of Theorem 2.9(i) above),
(i) shows that it is equivalent to use (1.6) instead of (2.24) in what follows. We will do so
in (ii) and (iii), including in the definition of St0,ε,` = St0,ε,`(K, 0, 0) from (i) (and thus also
in St0,L, SL, with the condition u 6≡ 0, u+ for SL). In addition, (i) and u− ≡ 0 show that we
have (2.21) and (2.22).

Since u propagates with a positive global mean speed, (2.6) shows that u is a transition
solution connecting u− ≡ 0 and u+. Indeed, u 6≡ u+ gives Ωu,1−ε(0) 6= Rd for all small ε > 0.
Thus the first inclusion in (2.6), with t → −∞ and τ := −t, shows the t → −∞ limit in
(2.27). Also, u 6≡ 0 gives Ωu,ε(0) 6= ∅ for all small ε > 0. Thus the first inclusion in (2.6),
with t = 0 and τ →∞, shows the t→∞ limit in (2.27).

Assume now that θ > 0 is as in (ii), take ε0 := θ/2 > 0, and let

us(t, x) := u(t+ s, x)

be a time shift of u. It is then sufficient to show that us ≥ u for any s ≥ 0. Indeed, we then
obtain ut ≥ 0, and the strict inequality follows from the strong maximum principle for ut
(which satisfies a linear equation and is not identically 0 because u is a transition solution).

Lemma 9.1. There is s0 such that us ≥ u whenever s ≥ s0.

Proof. Since u propagates with a positive global mean speed (with some c > 0 and τε,δ <∞
in Definition 2.2), we have Ωu,ε0(t) ⊆ Ωu,1−ε0(t + s) for all t ∈ R and s ≥ s0 := τε0,c/2. Thus
for s ≥ s0 we have us + ε0 ≥ u as well as

us(t, x) ≥ u(t, x) whenever u(t, x) ∈ [ε0, u
+(x)− ε0]. (9.1)
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Next take any s ≥ s0 and let ε ≥ 0 be the smallest number such that us+ε ≥ u. Obviously,
ε exists and ε ≤ ε0. We need to show that ε = 0, so assume that ε > 0 and let (tn, xn) satisfy

lim
n→∞

[us(tn, xn) + ε− u(tn, xn)] = 0.

Then (9.1) shows that u(tn, xn) /∈ [ε0, u
+(xn) − ε0] for large enough n, so either u(tn, xn) ∈

[ε, ε0] or u(tn, xn) ∈ [u+(xn) − ε0, u+(xn)]. Apply the u+ 6≡ 1 version of Lemma 3.3(ii) with
tn(ε) = −∞, fn(x, u) := f(x− xn, u), u+n (x) := u+(x− xn), and un(t, x) := u(t− tn, x− xn).

We obtain (f̃ , ũ+, ũ) ∈ S−∞,L(K, 0, 0) such that ũ ∈ [0, ũ+], ũs + ε ≥ ũ,

ũs(t, x) ≥ ũ(t, x) whenever ũ(t, x) ∈ [ε0, ũ
+(x)− ε0] (9.2)

by (9.1), and
ũs(0, 0) + ε = ũ(0, 0) (∈ [ε, ε0] ∪ [ũ+(0)− ε0, ũ+(0)]).

Moreover, f̃ is non-increasing in u on [0, θ] and on [ũ+(x)− θ, ũ+(x)] because f, u+ have the
same property.

Let now v := ũs + ε− ũ ≥ 0, so that vt = ∆v + f̃(x, ũs)− f̃(x, ũ). We then have

vt ≥ ∆v −Kv.
Indeed, this obviously holds when ũs(t, x) ≥ ũ(t, x). When ũs(t, x) < ũ(t, x), then (9.2) and

ε ≤ ε0 show ũs(t, x), ũ(t, x) ∈ [0, ε0] ∪ [ũ+(0) − 2ε0, ũ
+(0)], so f̃(x, ũs(t, x)) ≥ f̃(x, ũ(t, x))

by 2ε0 = θ. Now we obtain v ≡ 0 on (−∞, 0] × R by v ≥ 0, v(0, 0) = 0, and the strong
maximum principle. But then ũ−sn ≡ ũ+nε on (−∞, 0]×R for n ∈ N, a contradiction with
boundedness of ũ. Thus ε = 0 for any s ≥ s0 and the proof is finished. �

Lemma 9.2. We have us ≥ u for any s ≥ 0.

Proof. Let s1 ≥ 0 be the smallest number such that us ≥ u for any s ≥ s1 (which obviously
exists), and assume that s1 > 0. We first claim that

m := min

{
ε0, inf

u(t,x)∈[ε0,u+(x)−ε0]
[us1(t, x)− u(t, x)]

}
> 0. (9.3)

Indeed, if m = 0, then let (tn, xn) be such that u(tn, xn) ∈ [ε0, u
+(xn)− ε0] and

lim
n→∞

[us1(tn, xn)− u(tn, xn)] = 0.

The u+ 6≡ 1 version of Lemma 3.3(ii) with tn(ε) := −∞, fn(x, u) := f(x − xn, u), u+n (x) :=

u+(x − xn), and un(t, x) := u(t − tn, x − xn), again yields (f̃ , ũ+, ũ) ∈ S−∞,L(K, 0, 0) such
that

ũs1 ≥ ũ and ũs1(0, 0) = ũ(0, 0) ∈ [ε0, ũ
+(0)− ε0].

This contradicts the strong maximum principle for v := ũs1 − ũ ≥ 0, which satisfies a linear
equation vt = ∆v+λ(t, x)v with ‖λ‖∞ ≤ K, because v(0, 0) = 0 and v 6≡ 0. The latter holds
because otherwise ũ would be time-periodic, contradicting (2.27) for ũ (which propagates with
a positive global mean speed because the same is true for un, with n-independent constants
in Definition 2.2, so (2.27) holds for ũ by the first claim in (ii)).

So m > 0 and since ut is uniformly bounded by parabolic regularity, there is s2 ∈ (0, s1)
such that us ≥ us1 −m for any s ∈ [s2, s1]. Thus (9.1) as well as us + ε0 ≥ u hold for any
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s ∈ [s2, s1]. Fix any such s and let ε ∈ [0, ε0] be the smallest number such that us + ε ≥ u.
The argument in the proof of Lemma 9.1 now shows that ε = 0. But since s ∈ [s2, s1] was
arbitrary, this means that we can decrease s1 to s2, a contradiction. It follows that s1 = 0. �

This finishes the proof of (ii).
(iii) From bounded width of u and Lemma 8.1 it follows that u propagates with a positive

global mean speed. Thus (ii) yields ut > 0, and then the (H’) version of Corollary 4.4(ii)
from the proof of Theorem 2.7 gives the result. Note that we did not use Theorem 2.11 in
the proof of Corollary 4.4.

10. Proof of Theorem 2.4(ii)

We will prove this by constructing an example of an ignition f which prevents most so-
lutions from having a bounded width (an almost identical construction can be made with a
monostable f). The idea is to find f such that there is an equilibrium solution p ∈ (0, 1)
of (1.1), independent of x1, with the transition 0 → p propagating faster in the direction
e1 = (1, 0, . . . , 0) than the transition p → 1. Then as t → ∞, the solution u will be close to
p on a slab It ×Rd−1 (to the left of which u ∼ 1 and to the right of which u ∼ 0), with It an
interval of linearly growing length.

Let p̃ : Rd−1 → (0, 1) be C∞, radially symmetric, radially decreasing, with

p̃(x̃) = 3d−4|x̃|3−d for |x̃| ≥ 3, ∆p̃ < 0 on B3(0), and p̃(B1(0)) ⊆ (2
3
, 3
4
).

Let f0 : [0, 1] → [0,∞) be a C∞ ignition reaction with f0(p̃(x̃)) = −∆p̃(x̃) for x̃ ∈ Rd−1 (so
ignition temperature is θ0 := 1

3
) and decreasing on [3

4
, 1]. Then p(x) := p(x2, . . . , xd) ∈ (0, 3

4
)

satisfies on Rd,

∆p+ f0(p) = 0.

Consider f that satisfies (H) with this f0, some K ≥ 1 and θ := 1
4
, as well as f(x, u) = f0(u)

for all x ∈ Rd and u ∈ [0, 1
2
] ∪ [p(x), 1], and f(x, u) ≥ f0(u) for all x ∈ Rd and u ∈ (1

2
, p(x))

(provided this interval is non-empty). Then obviously f(x, u) = 0 for (x, u) ∈ Rd × [0, θ0].

Lemma 10.1. Let f be as above and c := max{2
√
‖f ′0‖∞, 1} > 0. If u solves (1.1), (1.2)

with t0 = 0 and u0(x) ≤ p(x) + e−c(x1−z)/2 for all x ∈ Rd and some z ∈ R, then

u(t, x) ≤ p(x) + e−c(x1−z−ct)/2. (10.1)

Proof. Let v be the right-hand side of (10.1). Then

vt −∆v − f(x, v) = f0(p(x))− f0(v) +
c2

4
e−c(x1−z−ct)/2 ≥ 0

by c2/4 ≥ ‖f ′0‖∞. So v is a super-solution for (1.1) with v(0, ·) ≥ u0, and we are done. �

That is, transition p→ 1 is propagating in the direction e1 with speed at most c, which is
independent of K, f . We now make f sufficiently large for u ∈ (1

2
, p(x)) so that the transition

0→ p will be propagating faster than speed c.
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Let fM be as f above, with fM(x, u) := f0(u) +M(u− 1
2
)(p(x)− u) for u ∈ (1

2
, p(x)). Let

t0 := 0 and fix a radially symmetric and radially non-increasing v0 such that

2

3
χB1/2(0) ≤ v0 ≤

2

3
χB1(0) (≤ p) (10.2)

and ∆v0(x) + fM0(x, v0(x)) ≥ 0 for some M0 � 1. Then the solution vM of (1.1), with fM

instead of f and vM(0, ·) = v0(·), is non-decreasing in both t > 0 and M ≥M0. Therefore

w(t, x) := lim
M→∞

vM(t, x) (≤ p(x))

satisfies wt ≥ 0.
We claim that w(t, x) /∈ (1

2
, p(x)) for any (t, x) ∈ (0,∞)×Rd. Otherwise there is M1 ≥M0

such that vM1(t, x) ∈ (1
2
, p(x)), and then there is ε > 0 such that vM1(t− ε, y) ∈ (1

2
, p(y)) for

all y ∈ Bε(x). Since vM(t− ε, ·) ≥ vM1(t− ε, ·) for all M ≥M1, it follows from the definition
of fM that w(s, y) ≥ p(y) for all s > t − ε and y ∈ Bε(x). This is a contradiction with the
hypothesis w(t, x) ∈ (1

2
, p(x)). This, (10.2), and vMt ≥ 0 thus show

w(t, x) = p(x) for (t, x) ∈ (0,∞)×B1/2(0). (10.3)

Pick some 0 < τ � 1. It is easy to show using the properties of the Gaussian that if τ is
sufficiently small, then any super-solution of the heat equation on D := Rd\B1/2−τ2/3(0) with

initial condition u(τ, x) ≥ 0 for x ∈ D and boundary condition u(t, x) ≥ 3
5

on (τ,∞) × ∂D
satisfies u(2τ, x) > 1

2
for all x ∈ B1/2+τ2/3(0). (10.3) shows that there is M such that vM

satisfies these conditions, and it follows that

w(t, x) = p(x) for (t, x) ∈ (2τ,∞)×B1/2+τ2/3(0). (10.4)

We can repeat this argument with (10.4) as a starting point instead of (10.3) and eventually
obtain for all integers n ≥ τ−2/3,

w(t, x) = p(x) for (t, x) ∈ (2nτ,∞)× Anτ2/3−1/2, (10.5)

where Aa :=
⋃
b∈[−a,a]B1(b, 0, . . . , 0) ⊆ Rd (we need Anτ2/3−1/2 instead of Bnτ2/3+1/2(0) because

p(x) > 1
2

holds only when |(x2, . . . , xd)| < C, for some C > 1) . One can in fact show that
w(t, ·) = p(·) for all t > 0 but we will not need this. If we now choose τ > 0 so that there
exists an integer n ∈ ((2c+ 1)τ−2/3, (2τ)−1), then (10.5) yields

vM(1, ·) ≥ 2

3
χA2c(·),

for some M ≥M0. Iterating this, we obtain for m ∈ N,

vM(m, ·) ≥ 2

3
χA2cm(·). (10.6)

So let us take f := fM and any u0 as in Theorem 2.4(ii) (without loss let t0 = 0). It follows
from c ≥ 1, p ≤ 3

4
, and Lemma 10.1 with z = 0 that

sup
t>0, x1>ct+4

u(t, x) ≤ 9

10
. (10.7)
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If u→ 1 locally uniformly on Rd as t→∞, then u(t1, ·) ≥ 2
3
χB1/2(0)(·) for some t1 > 0, and

so u(t1 +m, 2cm) ≥ 2
3

for m ∈ N by (10.6). It follows from this and (10.7) that all claims in

(C) are false for u. This also holds when u 6→ 1 locally uniformly on Rd as t →∞, because
then Lemma 3.1 shows sup(t,x)∈(1,∞)×Rd u(t, x) < 1 (and u 6→ 0 uniformly by the hypothesis).

11. Proof of Theorem 2.12

(i) Having Remark 2 after Theorem 2.7, this is now rather standard. Let U, s0, and small
ε′ > 0 be as in (8.4), with R′ large enough so that w0(x) := W (|x|) satisfies (6.1) and the
solution w of (1.1) with f0 in place of f and w(0, x) := w0(x) spreads in the sense w → θ1
locally uniformly as t → ∞ [2]. If now un ∈ [0, u+] is the solution of (1.1) on (0,∞) × Rd

with un(0, x) = w0(x− ne1), then (un)t ≥ 0; and the proof of Lemma 8.1, along with f ≥ f0
and the comparison principle, shows that un → u+ locally uniformly as t→∞.

If tn is the first time such that un(tn, 0) = θ0, shift un in time by −tn so that now it solves
(1.1) on (−tn,∞) × Rd and un(0, 0) = θ0. Obviously limn→∞ tn = ∞ because u ≤ u+ ≤ 1,
f(x, u) ≤ Ku, and the comparison principle yield on (−tn,∞)× Rd,

un(t, x) ≤ e−
√
K(x1+n−s0−R′−2

√
K(t+tn)).

So by parabolic regularity, there is a sub-sequence along which un and their spatio-temporal
first and spatial second derivatives converge locally uniformly to some solution u of (1.1) on
R × Rd. Obviously 0 ≤ u ≤ u+ and ut ≥ 0 (then all three inequalities are strict due to the
strong maximum principle), and since all the un satisfy the Remark after Theorem 2.7 with
the same `ε, Tε (and −tn in place of t0), u has a bounded width. Theorem 2.11(ii) now shows
that u is a transition solution because bounded width and Lemma 8.1 yield a positive global
mean speed of u, finishing the proof.

(ii) We will only sketch the proof, since the mechanics of the workings of the counter-
example which we construct are more important than the detailed proof. The latter would
only add tedious technical details, obscuring the main ideas. Let us also only consider the
case d = 2 because the general case is identical, with annuli below replaced by shells.

To find f such that there is no transition solution with doubly-bounded width for (1.1)
(and thus also no transition front), it is sufficient to take some ignition f0 and let f be equal to
βf0(u) outside the union of the discs Bn := Bn(n3e1) (for some β � 1), and f(x, u) = f0(u)
inside each Bn−1(n

3e1) (with a smooth transition between the two on Bn(n3e1)\Bn−1(n
3e1)).

If u is a transition solution for (1.1) with a bounded width, let tn be the first time when
supx∈Bn u(tn, x) = 1

10
(i.e., when the reaction zone of u “reaches” Bn). Since β � 1, the

reaction will spread all over An := B2n(n3e1) \ Bn(n3e1) before it spreads to Bn/2(xn), as
described in the introduction (see below for more details). So at the (later) time sn when
infx∈Bn u(sn, x) = 1

2
, we will also have infx∈An u(sn, x) ≥ 1

2
. It follows that Lu,ε ≥ n for all n

and ε ∈ (1
2
, 1). Hence u does not have a doubly-bounded width.

We will need to use a more involved construction to obtain infx∈R2 u(t, x) > 0 for any
t ∈ R and any u from (ii). Let f0(u) = (2u − 1)(1 − u)χ[1/2,1](u) and let R be such that if
ut = ∆u + f0(u) on (0,∞) × R2 and u(0, ·) ≥ 3

4
χBR(0)(·), then u → 1 locally uniformly as
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t→∞. By Lemma 3.1, such u also satisfies

lim
t→∞

inf
|x|≤ct

u(t, x) = 1 (11.1)

for any c < c0, with c0 > 0 the spreading speed for f0 (and we have c0 ≤ 2
√
‖f0(u)/u‖∞ ≤ 2).

Let β > 1 be such that if ut = ∆u+βf0(u) on (0,∞)×R× [−2, 2] with Dirichlet boundary
conditions and u(0, ·) ≥ 3

4
χB1(0)(·), then

lim
t→∞

inf
x∈[−100t,100t]×[−1,1]

u(t, x) ≥ 4

5
. (11.2)

That is, the reaction with strength β spreads along a strip with a cold boundary at speed at
least 100. It is not difficult to show that this holds for large enough β.

Next let f(x, u) = a(|x|)f0(u), where a : [0,∞) → [1, β] is smooth, Lipschitz with the
constant β, with a(r) = β if |r − 2n| ≤ 3 for some n ≥ 3, and with a(r) = 1 if |r − 2n| ≥ 4
for each n ≥ 3. That is, the reaction is large on a sequence of annuli with uniformly
bounded widths and exponentially growing radii, and small elsewhere. We obviously have
f ∈ F (f0, β,

1
4
, ζ, η) for any ζ, η > 0 because αf (·; ζ) > θ0 for any ζ > 0.

Then pick ε0 ∈ (0, 1
2
) such that if u ∈ [0, 1] solves (1.1), (1.2), then infy∈BR(x) u(t, x) ≥ 3

4
whenever t ≥ t0 + 1 and u(t, x) ≥ 1− ε0 (which exists by parabolic regularity) and also such
that the unique traveling front for ut = uxx + f0(u) connecting ε0 and 1 has speed cε0 < 1.1c0
(which is possible because limε→0 cε = c0).

Assume now that u 6≡ 0, 1 is a bounded entire solution for (1.1) with bounded width. By
Theorem 2.11(i) we have u ∈ (0, 1), so Lemma 3.1 yields a positive global mean speed of u.
Then Theorem 2.11(ii) shows that u is a transition solution with ut > 0.

Let t0 be the first time such that u(t0, 0) = 1
2

and for any large n, let tn be the first
time such that supx∈B2n (0)

u(tn, x) = ε0. Then the maximum principle shows that there is
xn ∈ ∂B2n(0) with u(tn, xn) = ε0. Since Lu,ε0 <∞, our choice of ε0 and R shows that there
is T > 0 such that infx∈B1(xn) u(tn + T, x) ≥ 3

4
for each n. It then follows from (11.2) and

100 > 20π that

inf
x∈B2n+1(0)\B2n−1(0)

u

(
tn + T +

2n

20
, x

)
≥ 3

4
(11.3)

for all large n. From this and (11.1) it follows that for all large n,

inf
x∈B2n (0)\B2n−1 (0)

u

(
tn + T +

2n

20
+

2n−1

0.9c0
, x

)
≥ 3

4
. (11.4)

At the same time, supx∈B2n (0)
u(tn, x) = ε0 and cε0 < 1.1c0 show that u(t, 0) < 1

2
for

t ≤ tn + 2n(1.1c0)
−1 if n is large, because the reaction can propagate radially no faster than

at speed cε0 on any wide annulus where a(|x|) = 1, provided u ≤ ε0 initially (this is similar
to the upper bound on the propagation speed in Lemma 3.2, and also uses the fact that the
annuli on which a(|x|) > 1 have widths ≤ 4, so they shorten the time to reach the origin only
by an amount proportional to n). So tn + 2n(1.1c0)

−1 ≤ t0 for all large n, and if we let

sn := tn + T +
2n

20
+

2n−1

0.9c0

(
≤ tn +

2n

1.1c0
if n is large because c0 ≤ 2

)
,
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then we obtain sn ≤ t0 for all large n. But then (11.4) and ut > 0 show for all large n,

inf
x∈B2n (0)\B2n−1 (0)

u(t0, x) ≥ 3

4
.

The result now follows from Lemma 3.1.

Remark. It is an interesting question whether for the reaction in (ii), all entire solutions
u ∈ (0, 1) satisfy limt→∞ infx∈R2 u(t, x) = 1.

A rough sketch of the proof that the claim involving (1.8) is false. We construct here an ex-
ample involving front-like solutions in R2 (essentially the same idea works for spark-like
solutions as well as for all dimensions d ≥ 2). The full proof of it working as claimed would
be quite technical, but the following clearly illustrates the main idea.

For some rapidly growing bn →∞, define

A :=
⋃
n≥1

An :=
⋃
n≥1

[
{x | 0 ≤ x1 ≤ bn and |x2| = bn} ∪ {x |x1 = bn and |x2| ≤ bn}

]
⊆ R2.

We then let f(x, u) = a(d(x,A))f0(u), where f0 is the ignition reaction from part (ii) of the
above proof and a : [0,∞) → [1, β] is smooth, with a(s) = β for s ≤ 1 and a(x) = 1 for
s ≥ 2. Here β � 1 will be chosen later.

We also let s0 � 1 and w : R → [0, 1] be smooth and such that w(s) = 0 for s ≥ 1 and
w(s) = 1 for s ≤ 0. We then define v0(x) := w(x1) and let u0(x) ∈ [w(x1), w(x1 − 2s0)]
be smooth and such that u0(x) = w(x1) for x2 ≤ −1 and u0(x) = w(x1 − 2s0) for x2 ≥ 1.
Finally, let u, v solve (1.1) on (0,∞)×R2 with u(0, ·) = u0 and v(0, ·) = v0, and let tn be the
first time such that u(tn, bn, 0) = 1

2
.

It is obvious that u, v satisfy the hypothesis of the claim involving (1.8) because u0 ≥ v0
and also u0 ≤ v(T, ·) for some T . So if (1.8) holds, we must have

lim
n→∞

[u(tn, bn, r)− u(tn, bn,−r)] = 0 for any r ∈ R (11.5)

because v is obviously even in x2. However, if we take β � 1 and sufficiently rapidly
growing bn, then the reaction zone of u spreads towards (bn, 0) along the two “arms” of An
much faster than through anywhere else, and that propagation is virtually unaffected by the
other “arms”. This and the definition of u0 means that the reaction zone moving towards
(bn, 0) along the upper arm of An is distance ∼ 2s0 ahead of the one arriving along the
lower arm. This means that if s0 is chosen sufficiently large, depending on β (but not on
bn), then lim infn→∞ u(tn, bn, s0) ≥ 3

4
and lim supn→∞ u(tn, bn,−s0) ≤ 1

4
. But this means

lim infn→∞[u(tn, bn, s0)− u(tn, bn,−s0)] > 0, a contradiction with (11.5). �

Remarks. 1. This example can easily be adjusted to v being a transition solution with a
bounded width such that v(t, x) = V (x1 − c0t) for t � −1, where c0 is the front/spreading
speed and V the traveling front profile for f0.

2. If u, v are not required to be front-like (or spark-like), conuter-examples to (1.8) can be
constructed even for homogeneous reactions and dimensions d ≥ 2.
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