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Abstract. We obtain the first quantitative stochastic homogenization result for reaction-
diffusion equations, for ignition reactions in dimensions d ≤ 3 that either have finite ranges
of dependence or are close enough to such reactions, and for solutions with initial data
that approximate characteristic functions of general convex sets. We show algebraic rate
of convergence of these solutions to their homogenized limits, which are (discontinuous)
viscosity solutions of certain related Hamilton-Jacobi equations.

1. Introduction

A basic model of combustion processes in random media is the reaction-diffusion equation

ut = ∆u+ f(x, u, ω) (1.1)

with (t, x) ∈ (0,∞)×Rd and ω an element of some probability space (Ω,F ,P). Its solutions
u represent normalized temperature of the combusting medium, taking values between 0
and 1, and the reaction function f is of the ignition type, satisfying f(·, u, ·) ≡ 0 whenever
u ∈ [0, θ1] ∪ {1}, for some θ1 ∈ (0, 1).

This model, with homogeneous reactions f(x, u, ω) = f(u) goes back to pioneering works
by Kolmogorov, Petrovskii, and Piskunov [8], and Fisher [7]. In this case it is well known
that solutions to (1.1) propagate ballistically in all directions at a constant speed c∗ in the
sense that a solution with initial data close to the characteristic function of some (not too
small) set A ⊆ Rd is in a sense close to the characteristic function of the set A+ c∗tB1(0) at
any large time t > 0. We refer to [3, 4] for various results in the homogeneous reaction case,
and to the reviews [5, 16, 18] for other related developments and references.

The setting of heterogeneous reactions is much more complicated as one cannot expect
the same propagation speed in all directions — or indeed any propagation speed at all —
for general f . However, when an environment is random, and sufficiently so (e.g., when f
is i.i.d. in space in some sense or, more generally, stationary ergodic), large space-time scale
dynamics of physical processes occurring inside it frequently appear as if the environment were
homogeneous (albeit non-isotropic). This phenomenon, called homogenization, is a result of
large-scale averaging of the random heterogeneities in the medium, and in the setting of (1.1)
would also mean existence of direction-dependent asymptotic propagation speeds of solutions.

While existence of homogenization has long been known in various settings, in particular
for (first-order as well as “viscous” second-order) Hamilton-Jacobi equations (the literature
is vast; the reader can consult [2, 9–13, 15, 17] and references therein), until recently it has
been proved for reaction-diffusion equations only in one spatial dimension d = 1, even in
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the simplest heterogeneous setting of spatially periodic reactions f . The main reason for
this is that in the case of reaction-diffusion equations, the (homogenized) large-space-time
limits of solutions to (1.1) are in fact expected to be (discontinuous) characteristic functions of
time-expanding regions, which are also (viscosity) solutions to a very different PDE, the (first-
order) Hamilton-Jacobi equation (1.4) below with some f -dependent “speed” c∗ : Sd−1 →
(0,∞). When this fact is coupled with complications caused by potentially very non-trivial
geometries of the boundaries of these regions in dimensions d ≥ 2, it is not surprising that
the question of homogenization in this setting becomes substantially more challenging.

In fact, the first proofs of stochastic homogenization for (1.1) in dimensions d ≥ 2 have only
been provided recently and only for ignition reactions (we also note that a homogenization
result for KPP reactions, satisfying f(·, 0, ·) ≡ f(·, 1, ·) ≡ 0, and 0 < f(x, u, ω) ≤ fu(x, 0, ω)u
when u ∈ (0, 1), was stated without proof in the paper [13] by Lions and Souganidis). First,
Lin and the second author obtained a number of conditional homogenization results for gen-
eral reactions, and showed that the hypotheses in these apply, in particular, to isotropic
stationary ergodic ignition reactions in dimensions d ≤ 3 [10]. We then showed that homog-
enization also holds for general stationary ignition reactions in dimensions d ≤ 3 that either
have finite ranges of dependence (which is a continuous version of an i.i.d. environment) or
are in some sense close to such reactions [19] (we refer to [10, 19, 21] for further discussion
on this, including the reason for the not-just-technical and physically relevant limitation to
d ≤ 3, which we also briefly mention after Definition 1.2 below). The hypotheses (H1)–(H4)
below in fact mirror those from [19], although for the sake of simplicity we will not consider
here the most general form of the hypotheses in [19].

We also note that when it comes to periodic reactions (i.e., f(x, u, ω) = f(x, u) and peri-
odic in x), homogenization was proved for monostable ones (as KPP but without requiring
f(x, u) ≤ fu(x, 0)u, so KPP reactions are included) by Alfaro and Giletti [1] for initial data
with smooth convex supports. This was extended to general convex supports in [10], where
homogenization was also proved for periodic ignition reactions and quite general initial data
in any dimension. We also refer to the work [14] by Majda and Souganidis for the case of
(1.1) with homogeneous KPP reactions and periodic first-order advection terms.

Given how recent the above results are, it is no surprise that until now no quantitative
estimates on the speed of convergence of solutions to (1.1) to their homogenized limits have
been obtained. The goal of this paper is to address this question for the random ignition
reactions considered in [19] (see Theorem 1.3 below). This involves the study of the large-
space-time-scale version of (1.1), that is,

(uε)t = ε∆uε + ε−1f
(
ε−1x, uε, ω

)
(1.2)

with a small ε > 0, so that solutions u to (1.1) give rise to those for (1.2) via

uε(t, x, ω) := u
(
ε−1t, ε−1x, ω

)
. (1.3)

Our main result in [19] is that if initial data for (1.2) sufficiently well approximate the
characteristic function of some open set A ⊆ Rd as ε→ 0, then the solutions uε almost surely
converge to the characteristic function of a set ΘA,c∗ ⊆ (0,∞) × Rd, in the sense of locally
uniform convergence on the complement of ∂ΘA,c∗ (i.e., where this characteristic function is
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continuous). In fact, as is shown in [10], χΘA,c∗ is a viscosity solution with initial data χA to
the deterministic homogeneous (non-isotropic) Hamilton-Jacobi equation

ūt = c∗
(
− ∇ū
|∇ū|

)
|∇ū|, (1.4)

where c∗(e) > 0 is a (deterministic asymptotic) front speed for (1.1) in direction e ∈ Sd−1,
which exists for each e and the function c∗ : Sd−1 → (0,∞) is Lipschitz [19].

One can therefore view (1.4) as the homogenization limit of (1.2). We then show in
Theorem 1.3 below that when the initial set A is bounded and convex, then convergence to
this limit is algebraic in ε (with some power σ > 0), with a probability that exponentially
converges to 1 as ε→ 0. Specifically, we refer here to convergence of the θ-super-level set

Γuε,θ(t, ω) :=
{
x ∈ Rd |uε(t, x, ω) ≥ θ

}
of uε(·, t, ω) to ΘA,c∗(t) := {x ∈ Rd | (t, x) ∈ ΘA,c∗}, for each fixed θ ∈ (0, 1) and uniformly
on bounded time intervals. We also note that in this convex A case, the set ΘA,c∗(t) is also
convex and was in fact shown in [10, Theorem 1.4(iii)] to have the relatively simple form

ΘA,c∗(t) =
⋂

e∈Sd−1

{
x ∈ Rd

∣∣∣∣x · e < sup
y∈A

y · e+ c∗(e)t

}
. (1.5)

Theorem 1.3 is hence a quantitative stochastic homogenization result for (1.1), which is
to the best of our knowledge the first one for reaction-diffusion equations. The basis of our
analysis are results from our paper [19], primarily those in Proposition 2.7 below. These
are quantitative estimates on the fluctuations of arrival times at any point in Rd of special
solutions to (1.1) with half-space-like initial data, and were obtained via a method inspired
by related pioneering results of Armstrong and Cardaliaguet [2] for Hamilton-Jacobi equa-
tions with non-convex finite-range-of-dependence Hamiltonians. We note that in the case
of Hamilton-Jacobi homogenization, the limiting PDE is again a Hamilton-Jacobi equation;
this differs from our reaction-diffusion case, where the homogenization limit of (1.2) is (1.4)
(see [10] for further discussion concerning this relationship).

We note that while we could prove our results in more generality, in particular, include
in Theorem 1.3 also reactions that are less well approximated by those with finite ranges of
dependence (see in particular hypothesis (H4’) and Example 1.6 in [19]), we chose not to do
so here for the sake of clarity.

Let us now move to the precise statements of our hypotheses, which are from [19], and to
our main result. We start with the definition of stationary reactions.

Definition 1.1. Let (Ω,F ,P) be a probability space that is endowed with a group of measure-
preserving bijections {Υy : Ω→ Ω}y∈Rd such that for all y, z ∈ Rd,

Υy ◦Υz = Υy+z.

A reaction function f : Rd× [0, 1]×Ω→ [0,∞), with the random variables Xx,u := f(x, u, ·)
being F -measurable for all (x, u) ∈ Rd × [0, 1], is called stationary if for each (x, y, u, ω) ∈
R2d × [0, 1]× Ω we have

f(x, u,Υyω) = f(x+ y, u, ω).
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The range of dependence of such f is the infimum of all r ∈ R+ ∪ {∞} such that

E(U) and E(V ) are P-independent

for any U, V ⊆ Rd with d(U, V ) ≥ r, where E(U) is the σ-algebra generated by the family of
random variables {Xx,u | (x, u) ∈ U × [0, 1]} and d(·, ·) is the standard distance in Rd.

Since we are interested in ignition reactions, we assume the following hypothesis.

(H1) The reaction f is stationary, Lipschitz in both x and u with constant M ≥ 1, and
there are θ1 ∈ (0, 1

2
), m1 > 1, and α1 > 0 such that f(·, u, ·) ≡ 0 for u ∈ [0, θ1] ∪ {1},

f(·, u, ·) ≥ α1(1− u)m1 for u ∈ [1− θ1, 1), and f is non-increasing in u ∈ [1− θ1, 1).

In fact, we need to assume slightly more, since one cannot hope for general reactions
satisfying (H1) to lead to homogenization for (1.1) as described above, even for homogeneous
reactions f(x, u, ω) = f(u). Indeed, if f is allowed to vanish at some intermediate value
θ′ ∈ (θ1, 1− θ1) and is also “sufficiently larger” on (θ1, θ

′) than on (θ′, 1), solutions typically
form “plateaus” at value θ′ (or another intermediate value) whose widths grow linearly in
time, and so these plateaus will not disappear as ε → 0 and the scaling (1.3) is applied
(see [20, 21] for more details). To avoid this scenario, we make the following definition.

Definition 1.2. A reaction f satisfying (H1) is a stationary pure ignition reaction if for
each η > 0 we have

inf
(x,ω)∈Rd×Ω
θx,ω+η<1−θ1

f(x, θx,ω + η, ω) > 0,

where the ignition temperature θx,ω is defined by

θx,ω := sup{θ ≥ 0 | f(x, u, ω) = 0 for all u ∈ [0, θ]} (∈ [θ1, 1− θ1)).

As the second author showed in [21], the linearly growing plateaus scenario may occur
even for pure ignition reactions, but only in dimensions d ≥ 4 (this relates to transience of
Brownian motion in Rd−1). Therefore our main hypothesis on the reaction f is the following.

(H2) f is a stationary pure ignition reaction and d ≤ 3.

Finally, we will assume that f either has a finite range of dependence, or is close enough to
such reactions and has certain uniform decay in u near u = 1. The following two hypotheses
relate to the second alternative.

(H3) There are m3 ≥ 1 and α3 > 0 such that for all η ∈ (0, 1
2
θ1] we have

inf
(x,ω)∈Rd×Ω
u∈[1−θ1/2,1]

(f(x, u− η, ω)− f(x, u, ω)) ≥ α3η
m3 .

(H4) There are m4, n4, α4 > 0 such that for each n ≥ n4, there exists a stationary reaction
fn with range of dependence ≤ n and ‖fn − f‖∞ ≤ α4n

−m4 .
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We are now ready to state our main result. In it we denote Br(A) := A + (Br(0) ∪ {0})
and A0

r := A\Br(∂A) for A ⊆ Rd and r ≥ 0 (in particular, A0
0 is the interior of A). Note that

if A is convex, so are Br(A) and A0
r. We also let σ̃ := min

{
1

8m1
, m4

4m3+8m4

}
, where we ignore

the second term when f is assumed to have a finite range of dependence (and so (H3)–(H4)
is not assumed).

Theorem 1.3. Assume that f satisfying (H2) either has a finite range of dependence or
satisfies (H3)–(H4). There is a Lipschitz function c∗ : Sd−1 → (0,∞) such that if uε solves
(1.2) and for some open bounded convex set A ⊆ Rd and some ν > 0 we have

(1− θ1)χA0
εν
≤ uε(0, ·, ω) ≤ χBεν (A)

for each ε > 0, then the following holds with σ := 1
2

min {σ̃, ν}. For any θ ∈ (0, 1) and T0 > 0,
there are constants C0 = C0(M, θ1,m1, α1, A, θ) and ε0 > 0 such for all ε ∈ (0, ε0] we have

P
[(

ΘA,c∗(t)
)0

εσ
⊆ Γuε,θ(t, ·) ⊆ Bεσ

(
ΘA,c∗(t)

)
for all t ∈ [C0ε, T0]

]
≥ 1− exp

(
−ε−2σ

)
.

Remarks. 1. The limitation of the above estimate to times t ≥ C0ε is necessary because if
θ is close to 1, it takes time O(ε) for uε to reach the value θ. If θ < 1 − θ1, then it is not
difficult to show that Theorem 1.3 extends to include t ∈ [0, T0] in the statement because
both inclusions then hold for all (t, ω) ∈ [0, C0ε]× Ω when ε > 0 is small enough.

2. We can also determine on which parameters ε0 depends. It turns out that there is some
η∗ = η∗(M, θ1,m1, α1) > 0 such that if for some ξ > 0 we have

inf
(x,ω)∈Rd×Ω

u∈[θx,ω+η∗,1−θ1]

f(x, u, ω) ≥ ξ, (1.6)

then ε0 can be chosen to depend only on A, ν, θ, T0 plus on

M, θ1,m1, α1, ξ, and either ρ or m3, α3,m4, n4, α4, (1.7)

depending on whether we assume (H2) plus f having range of dependence at most ρ ∈ [1,∞),
or we assume (H2)–(H4). See the proof of Theorem 1.3 for details on this.

3. Lemma 2.4 below shows that if A is unbounded (but still convex), then Theorem 1.3

holds locally uniformly, that is, with
(
ΘA,c∗(t)

)0

εσ
and Γuε,θ(t, ·) replaced by their intersections

with BN(0), for any N ∈ N (C0 and ε0 then also depend on N).

4. We make here no attempt to optimize the power σ in Theorem 1.3.

1.1. Organization of the Paper and Acknowledgements. In Section 2 we collect several
important preliminary results as well as most of the notation used later. In Section 3, we
construct certain regularized approximations of the sets ΘA,c∗ , which are then used in the
proof of Theorem 1.3 in Section 4.

YPZ acknowledges partial support by an AMS-Simons Travel Grant. AZ acknowledges
partial support by NSF grant DMS-1900943 and by a Simons Fellowship.
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2. Preliminaries and Notation

Most of the results in this section are from [19], and we reproduce them here for the reader’s
convenience. Many of them hold uniformly in ω and even without assuming stationarity of
the reaction, and in these we will therefore replace (H1) by the following weaker hypothesis.

(H1’) f satisfies (H1) except possibly the stationarity hypothesis.

We collect the needed results assuming (H1’) in the following subsection.

2.1. General Ignition Reactions. Let us start with a basic lower bound which shows that
general solutions to (1.1) propagate with speed no less than some c0 > 0 (see [21]). Consider
the largest M -Lipschitz function F0 : [0, 1]→ [0,∞) such that F0(u) ≤ α1(1−u)m1χ[1−θ1,1](u)
for all u ∈ [0, 1], which of course guarantees that f(x, ·, ω) ≥ F0 for all ω ∈ Ω when f satisfies
(H1’). Then F0 is a homogeneous pure ignition reaction, and we let c0 > 0 be its traveling
front speed (i.e., such that the PDE ut = uxx+F0(u) in one spatial dimension has a traveling
front solution u(t, x) = U(x− c0t), with U(−∞) = 1 and U(∞) = 0).

Lemma 2.1. There exists θ2 = θ2(M, θ1,m1, α1) < 1 such that for each c < c0 and θ < 1,
there is κ0 = κ0(M, θ1,m1, α1, c, θ) ≥ 1 such that the following holds. If u : (0,∞) × Rd →
[0, 1] is a solution to (1.1) with f satisfying (H1’) and with some ω ∈ Ω, and if u(t0, y) ≥ θ2

for some t0 ≥ 1 and y ∈ Rd, then for all t ≥ t0 + κ0,

inf
|x−y|≤c(t−t0)

u(t, x) ≥ θ.

If also ut ≥ 0, then this clearly holds with any t0 ≥ 0 (and κ0 increased by 1).

Let

θ∗ :=
min{1− θ2, θ1}

4
. (2.1)

The next few results are from [19], and stated there with θ2 = θ2(M, 1
2
θ1,m1, α1(1− 1

8
θ1)m1−1)

in the definition of θ∗; however, the remark after [19, Lemma 2.1] explains that they also
hold with (2.1) and θ2 = θ2(M, θ1,m1, α1) (moreover, this distinction will be of no conse-
quence here). The first of these is [19, Lemma 2.8], which provides an upper bound on
κ0(M, θ1,m1, α1,

c0
4
, θ) from Lemma 2.1 as θ → 1.

Lemma 2.2. Let u : [0,∞) × Rd → [0, 1] solve (1.1) with f satisfying (H1’) and some
ω ∈ Ω. There is D1 = D1(M, θ1,m1, α1) such that if u(t0, y) ≥ 1 − θ∗ for some t0 ≥ 1 and
y ∈ Rd, then for any θ ∈ [1− θ∗, 1) and t ≥ t0 +D1(1− θ)1−m1 we have

inf
|x−y|≤c0(t−t0)/4

u(t, x) ≥ θ.

Throughout the rest of the paper we will primarily use Lemma 2.1 with c = c0
2

and
θ = 1− θ∗, hence we define

κ0 := κ0

(
M, θ1,m1, α1,

c0

2
, 1− θ∗

)
.

The next result is [19, Lemma 2.2], which constructs smooth initial data u0,S that approx-
imate (1− θ∗)χS and the corresponding solutions satisfy ut ≥ 0.
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Lemma 2.3. There is R0 = R0(M, θ1,m1, α1) ≥ 1 such that for any f satisfying (H1’) and
S ⊆ Rd, there is a smooth function u0,S satisfying

∆u0,S + F0(u0,S) ≥ 0,

and
(1− θ∗)χS ≤ u0,S ≤ (1− θ∗)χBR0

(S).

The following counterpart to Lemma 2.1 (see [10, Lemma 2.2] and [19, Lemma 2.5]) yields
an upper bound on the speed of propagation of perturbations of solutions to (1.1).

Lemma 2.4. Let u1, u2 : [0,∞) × Rd → [0, 1] be, respectively, a subsolution and a superso-
lution to (1.1) with some f satisfying (H1’) and some ω ∈ Ω, and let r > 0 and y ∈ Rd. If
u1(0, ·) ≤ u2(0, ·) on Br(y), then for all (t, x) ∈ [0,∞)× Rd we have

u1(t, x) ≤ u2(t, x) + 2d e
√
M/d (|x−y|−r+2

√
Md t).

This estimate yields the following two results. The first of them is just [19, Corollary 2.6],
and in the second we let

Tu(x) := inf{t ≥ 0 |u(t, x) ≥ 1− θ∗}.

Corollary 2.5. If u : [0,∞) × Rd → [0, 1] solves (1.1) with some f satisfying (H1’) and
some ω ∈ Ω, then for any t ≥ 0 we have

{x ∈ Rd |u(t, x) ≥ 1− θ1} ⊆ Bc1t+κ1

(
{x ∈ Rd |u(0, x) ≥ θ1}

)
,

where

c1 := 2
√
Md > c0 and κ1 := 1 +

√
d/M ln

2d

1− 2θ1

.

Corollary 2.6. Let u1, u2 : [0,∞) × Rd → [0, 1] solve (1.1) with f satisfying (H1’) and
some ω ∈ Ω. There is D2 = D2(M, θ1,m1, α1) ≥ 1 such that if u1(0, ·) ≤ u2(t0, ·) on BR(0)
for some t0 ≥ 0 and R ≥ D2(1 + Tu1(0)), then

Tu1(0) ≥ Tu2(0)− t0 − κ0.

Proof. By Lemma 2.4, we have

u1(t, 0) ≤ u2(t+ t0, 0) + 2d e2Mt−
√
M/dR

for all t ≥ 0. Hence,

u2(Tu1(0) + t0, 0) ≥ u1(Tu1(0), 0)− θ∗ ≥ 1− 2θ∗

as long as

R ≥ 2
√
MdTu1(0) +

√
d/M ln

2d

θ∗
,

which will be guaranteed if we let D2 := 2
√
Md ln 2d

θ∗
. But then Lemma 2.1 yields

u2(Tu1(0) + t0 + κ0, 0) ≥ 1− θ∗

and the result follows. �
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2.2. Stationary Ignition Reactions. Identification of the front speeds c∗(e) for (1.1) with
a stationary reaction f is based on the analysis of the dynamics of special solutions starting
from approximate characteristic functions of half-spaces. Specifically, for any e ∈ Sd−1 let
H−e := {x ∈ Rd |x · e ≤ 0}, and for any y ∈ Rd let u = u(t, x, ω; e, y) be the solution to

ut = ∆u+ f(x, u, ω) on (0,∞)× Rd,

u(0, ·, ω; e, y) = u0,H−e +y on Rd,
(2.2)

where u0,H−e +y satisfies Lemma 2.3 with S := H−e + y. Then for any (x, ω) ∈ Rd × Ω let

T (x, ω; e, y) := inf{t ≥ 0 |u(t, x, ω; e, y) ≥ 1− θ∗},

which one can think of as the arrival time of the solution from (2.2) at x. Corollary 2.7 and
Propositions 3.8, 4.2, and 5.1 in [19] (see also (5.5) in [19]) now yield the following fluctuation
estimate for y = 0, which immediately extends to all y ∈ Rd by stationarity of f .

Proposition 2.7. Let f satisfying (H2) either have range of dependence at most ρ ∈ [1,∞)
or satisfy (H3)–(H4). Then there is C̄ ≥ 1 such that if in the former case we let

β := 1− 1

2m1

, (2.3)

and in the latter case we let

β := 1−min

{
1

2m1

,
m4

m3 + 2m4

}
, (2.4)

then for each e ∈ Sd−1, λ ≥ 0, and x, y ∈ Rd with (x− y) · e ≥ 1 we have

P
[∣∣T (x, · ; e, y)− E[T (x, · ; e, y)]

∣∣ ≥ λ
]
≤ 2 exp

(
−C̄−2λ2((x− y) · e)−2β

)
.

Moreover, there is T̄ (e) ∈ [ 1
c1
, 1
c0

] (depending on f) and for each δ > 0 there is Cδ ≥ 1 such
that for all l ≥ 1 we have∣∣∣∣E[T (le+ y, · ; e, y)]

l
− T̄ (e)

∣∣∣∣ ≤ Cδ l
−1+β+δ.

Finally, C̄ and Cδ can be chosen to only depend on (1.7) (and Cδ also on δ).

Note that β ∈
(

1
2
, 1
)
. Also, see the discussion at the start of Section 4 below for the last

claim. Next we state the definition of deterministic front speeds from [10].

Definition 2.8. Let f satisfy (H1) and let e ∈ Sd−1. If there is c∗(e) ∈ R and Ωe ⊆ Ω with
P(Ωe) = 1 such that for each ω ∈ Ωe and compact K ⊆ {x ∈ Rd |x · e > 0} we have

lim
t→∞

inf
x∈(c∗(e)e−K)t

u(t, x, ω; e, 0) = 1,

lim
t→∞

sup
x∈(c∗(e)e+K)t

u(t, x, ω; e, 0) = 0,

then we say that c∗(e) is a deterministic front speed in direction e for (1.1).
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Comparison principle shows that this definition is independent of the choice of u0,H−e in (2.2)
with y = 0, as long as it satisfies Lemma 2.3 (and c∗(e) is clearly unique if it exists). It was
shown in [19, Proposition 6.2] that under the hypotheses of Proposition 2.7, deterministic
front speeds for f exist for all e ∈ Sd−1, and in fact they are c∗(e) = T̄ (e)−1 ∈ [c0, c1].
Moreover, [19, Theorems 1.3 and 1.4] shows that c∗ is Lipschitz continuous on Sd−1.

If A is open convex, then we have the very useful formula (1.5). It will be convenient to
let (1.5) be in fact the definition of ΘA,c∗(t) for any continuous c∗ : Sd−1 → (0,∞) (with
open convex A), and we note that then ΘA,c∗(t) is also open convex for each t ≥ 0 (openness
follows from continuity of c∗). If now c : Sd−1 → (0,∞) is continuous and c ≤ c∗, then clearly
ΘA,c(t) ⊆ ΘA,c∗(t) for each t ≥ 0. In particular, if c0 ≤ c∗ ≤ c1 for some c0, c1 ∈ (0,∞), then
for all t ≥ 0 we have

Bc0t(A) ⊆ ΘA,c∗(t) ⊆ Bc1t(A). (2.5)

Finally, we have the semigroup property

ΘA,c∗(t+ s) = ΘΘA,c
∗

(t),c∗(s) (2.6)

for all t, s ≥ 0. The inclusion ⊇ is trivial, so let us now consider any x ∈ ΘA,c∗(t + s). Take
any e ∈ Sd−1, and then ye ∈ ∂A such that ye · e = supz∈A z · e. Then define

xe := x− s

t+ s
(x− ye) = ye +

t

t+ s
(x− ye)

and note that x ∈ ΘA,c∗(t+ s) implies for any e′ ∈ Sd−1 that

xe · e′ < ye · e′ +
t

t+ s
c∗(e′)(t+ s) = sup

z∈A
z · e′ + c∗(e′)t.

Hence xe ∈ ΘA,c∗(t), which together with (x− ye) · e < c∗(e)(t+ s) yields

x · e < xe · e+
s

t+ s
c∗(e)(t+ s) < sup

z∈ΘA,c∗ (t)

z · e+ c∗(e)s.

Since this holds for all e ∈ Sd−1, we can see that x ∈ ΘA,c∗(t+ s), and (2.6) is proved.

3. An Approximation Lemma

In this section we construct a perturbation (A′,c′) of (A,c∗) such that the sets ΘA′,c′(t)
from (1.5) satisfy an interior ball condition on a large time interval. We will use this in the
proof of Theorem 1.3 in following section.

We say that an open set U ⊆ Rd satisfies the r-interior ball condition for some r > 0 if for
any x ∈ ∂U there is y ∈ U such that Br(y) ⊆ U and x ∈ ∂Br(y). We also recall that U ⊆ Rd

is strictly convex if for all x, y ∈ U , the line segment connecting x and y lies in U0
0 ∪ {x, y}.

Lemma 3.1. Let A ⊆ Rd be an open bounded convex set, and let c∗ : Sd−1 → (0,∞) be
continuous. If c0, c1 ∈ (0,∞) are such that c0 ≤ c∗ ≤ c1 and r > 0, then for any T ≥ 2r

c0

there is open convex A′ ⊆ Rd and a continuous function c′ : Sd−1 → (0,∞) such that

(i) c′ ≤ c∗;
(ii) A′ ⊆ Br(A) and ΘA,c∗(T ) ⊆ Bc1r/c0(Θ

A′,c′(T ));
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(iii) ΘA′,c′(t) satisfies the r-interior ball condition for all t ∈ [0, T ].

Proof. Since A is convex, by Theorem 5.4 [6], the signed distance function hA of A (i.e.,
hA(x) := d(x, ∂A) if x ∈ Ac, and hA(x) := −d(x, ∂A) otherwise) is a convex function. Take
any x0 ∈ A and δ > 0 such that supx∈A δ|x− x0|2 < r. Then

A1 :=
{
x ∈ Rd

∣∣hA(x) + δ|x− x0|2 < 0
}

is open, convex, with A1 strictly convex and satisfying A1 ⊆ A ⊆ Br(A1) =: A′. Then A′,
which clearly satisfies the r-interior ball condition, also has strictly convex closure and

A ⊆ A′ ⊆ A′ ⊆ Br(A). (3.1)

Since A′ satisfies the r-interior ball condition and A′ is strictly convex, for each e ∈ Sd−1

there is a unique xe(0) ∈ ∂A′ such that the outer unit normal vector to ∂A′ at xe(0) is e, and
∂A′ =

⋃
e∈Sd−1{xe(0)}. Moreover, we have

x · e < xe(0) · e for all x ∈ A′ \ xe(0). (3.2)

Similarly, replacing A in the above argument by (ΘA,c∗(T ))0
r, we can find an open, bounded,

convex set A′′ satisfying the r-interior ball condition, having strictly convex closure, and

(ΘA,c∗(T ))0
r ⊆ A′′ ⊆ A′′ ⊆ Br((Θ

A,c∗(T ))0
r) (⊆ ΘA,c∗(T )). (3.3)

Moreover, for each e ∈ Sd−1, there is again a unique xe(T ) ∈ ∂A′′ such that the outer unit
normal at xe(T ) is e, we have ∂A′′ =

⋃
e∈Sd−1{xe(T )}, as well as

x · e < xe(T ) · e for all x ∈ A′′ \ xe(T ). (3.4)

From T ≥ 2r
c0

, c∗ ≥ c0, and (2.5) we now obtain

Br(A) ⊆ Bc0T−r(A) = (Bc0T (A))0
r ⊆ (ΘA,c∗(T ))0

r ⊆ A′′. (3.5)

Notice also that for any x ∈ ΘA,c∗(T − r
c0

), we have Br(x) ⊆ ΘA,c∗(T ) due to (2.6) and (2.5).

Therefore ΘA,c∗(T − r
c0

) ⊆ (ΘA,c∗(T ))0
r, and it follows that

ΘA,c∗(T ) ⊆ Bc1r/c0(Θ
A,c∗(T − c−1

0 r)) ⊆ Bc1r/c0((Θ
A,c∗(T ))0

r) ⊆ Bc1r/c0(A
′′). (3.6)

Now define c′ : Sd−1 → R by

c′(e) :=
(xe(T )− xe(0)) · e

T
.

Then c′ > 0 because A′ ⊆ A′′ by (3.1) and (3.5), and it is also continuous because A′ and A′′

are strictly convex. Since A′′ ⊆ ΘA,c∗(T ) and A ⊆ A′ by (3.3) and (3.1), by using (1.5) and
(3.2) we obtain

xe(0) · e+ c′(e)T = xe(T ) · e ≤ sup
y∈A

y · e+ c∗(e)T ≤ xe(0) · e+ c∗(e)T
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for each e ∈ Sd−1, so (i) holds. Moreover, from (1.5), (3.2), and (3.4) we see that

ΘA′,c′(T ) =
⋂

e∈Sd−1

{
x ∈ Rd

∣∣∣∣x · e < xe(0) · e+ c′(e)T

}
=

⋂
e∈Sd−1

{
x ∈ Rd

∣∣∣∣x · e < xe(T ) · e
}

= A′′.

This, (3.1), and (3.6) yield (ii).
It remains to show that ΘA′,c′(t) satisfies the r-interior ball condition for all t ∈ [0, T ]. For

any e ∈ Sd−1 and t ∈ [0, T ], let

xe(t) := (1− T−1t)xe(0) + T−1t xe(T ). (3.7)

Then

xe(t) · e = xe(0) · e+ c′(e)t, (3.8)

and (3.2) and (3.4) show for all e′ ∈ Sd−1 \ {e} that

xe(t) · e′ < (1− T−1t)xe′(0) · e′ + T−1t xe′(T ) · e′ = xe′(0) · e′ + c′(e′)t (= xe′(t) · e′).

Therefore xe(t) ∈ ∂ΘA′,c′(t) by (1.5), and xe(t) 6= xe′(t) for all e′ ∈ Sd−1 \ {e}.
Since ΘA′,c′(t) is bounded and convex by (1.5), it has a supporting hyperplane for each

(outer) direction e ∈ Sd−1. From xe(t) ∈ ∂ΘA′,c′(t), (3.8), and (1.5) we see that this hyper-
plane is precisely {x · e = xe(t) · e}. Since xe′(t) · e < xe(t) · e for all e′ ∈ Sd−1 \ {e} and
xe′(t) is continuous in e′ for each t ∈ [0, T ] (because it is for t = 0, T , by strict convexity of
A′, A′′), it follows that for each ε > 0, there is δ ∈ (0, 1) such that if 0 < |e′− e| < δ, then the
supporting hyperplane {x·e′ = xe′(t)·e′} contains the point xe′(t) satisfying xe′(t)·e < xe(t)·e
and |xe′(t) − xe(t)| < ε. This and xe(t) · e′ < xe′(t) · e′ show that the closest point to xe(t)

that lies in the intersection of the two hyperplanes, which is xe(t) + se′
e′−(e′·e)e
|e′−(e′·e)e| for some

se′ ∈ R, must have se′ ∈ (0, ε). But since the points from {x · e = xe(t) · e} that satisfy

x · e′ ≤ xe′(t) · e′ are precisely those with (x− xe(t)) · e
′−(e′·e)e
|e′−(e′·e)e| ≤ se′ , and this holds for all e′

with |e′ − e| < δ, we see that ∂ΘA′,c′(t) ∩ {x · e = xe(t) · e} ⊆ Bε(xe(t)). Taking ε→ 0 shows
that ∂ΘA′,c′(t) ∩ {x · e = xe(t) · e} = {xe(t)}, and so

∂ΘA′,c′(t) =
⋃

e∈Sd−1

{xe(t)}.

Now fix any t ∈ [0, T ] and x ∈ ∂ΘA′,c′(t), and let e ∈ Sd−1 be such that xe(t) = x. Since
A′ and A′′ satisfy the r-interior ball condition, there are y0, yT such that B0 := Br(y0) and
BT := Br(yT ) satisfy B0 ⊆ A′, BT ⊆ A′′, xe(0) ∈ ∂B0, and xe(T ) ∈ ∂BT . If now

Bt := Br((1− T−1t) y0 + T−1t yT ),

then (3.7) shows that x = xe(t) ∈ ∂Bt. It therefore remains to show that Bt ⊆ ΘA′,c′(t). For
any z ∈ Bt, there are z0 ∈ B0 and zT ∈ BT such that z = (1− T−1t) z0 + T−1t zT . It follows
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from (3.2) and (3.4) that for any e′ ∈ Sd−1 we have

z · e′ < (1− T−1t)xe′(0) · e′ + T−1t xe′(T ) · e′ = xe′(0) · e′ + c′(e′)t = sup
y∈A′

y · e′ + c′(e′)t,

and hence z ∈ ΘA′,c′(t) by (1.5). Thus Bt ⊆ ΘA′,c′(t), finishing the proof. �

4. Proof of Theorem 1.3

We will do the proof simultaneously for f satisfying (H2) and having finite range of
dependence (then we assume this range to be at most ρ ∈ [1,∞)), and for f satisfying
(H2)–(H4). This is because Proposition 2.7 applies in both these cases, with the definitions
(2.3) and (2.4), respectively (we will use these below). We also let c∗ be the deterministic
front speed for (1.1).

Before we start, for any solution u : [0,∞) × Rd → [0, 1] to (1.1) and any 0 < η < θ < 1,
we let the width of the transition zone of u from η to θ (at any time t ≥ 0) be (see [21])

Lu,η,θ(t, ω) := inf
{
L > 0

∣∣Γu,η(t, ω) ⊆ BL (Γu,θ(t, ω))
}
. (4.1)

It follows from Remark 2 after [19, Definition 2.3] and [19, Lemma 2.4] that if f satisfies
(H2), then there are µ∗, κ∗ > 0 such that if u solves (1.1) with some ω ∈ Ω and initial data
satisfying Lemma 2.3 for some S ⊆ Rd, then

sup
t≥0 & η∈(0,1−θ∗)

Lu,η,1−θ∗(t)

1 + | ln η|
≤ µ−1

∗ , (4.2)

inf
(t,x)∈[κ∗,∞)×Rd
u(t,x)∈[θ∗,1−θ∗]

ut(t, x) ≥ µ∗.

We will in fact only need this in the first part of this proof, for S being half-spaces (so for
the solutions from (2.2)).

Moreover, it follows from the above results in [19] that there is η∗ = η∗(M, θ1,m1, α1) > 0
such that µ∗, κ∗ can be chosen to depend only on M, θ1,m1, α1 from (H1) and ξ > 0 from
(1.6). Similarly, C̄ and Cδ in Proposition 2.7 can be chosen to depend only on (1.7) (and Cδ
also depends on δ) because they depend on the constants from (2.10) in [19] (plus ρ in the finite
range of dependence setting), which is (1.7) without ξ, ρ and also with µ∗, κ∗,m2, α2,m

′
4. But

when we assume (H2), we can simply let m2 := 1 and α2 := 0 in [19] because 1+ | ln η| ≤ η−1

for η ∈ (0, 1); and when we assume also (H4), in which case m′4 also plays a role in [19] , we
can let m′4 :=∞.

In the rest of this section, constants that include C will again depend on (1.7), while any
other dependence will be explicitly declared in the notation (e.g., C ′ε,T also depends on ε, T ).
These constants may also vary from one expression to the next.

We are now ready for the proof of Theorem 1.3, which we split into two main parts.
Without loss, we will assume that T0 ≥ 1.



QUANTITATIVE HOMOGENIZATION FOR COMBUSTION IN RANDOM MEDIA 13

4.1. Proof of the “Upper Bound”. In this part we will prove (4.19) below for all small
ε > 0. Let us pick

σ′ := min

{
1− β

4
, ν

}
= 2σ, (4.3)

and some ε0 ∈ (0, 1
2
) such that

max
{(

1 + | ln(θ − ε1/m1

0 )|
)
µ−1
∗ ε

1−2σ′

0 ,
(
(θ∗)−1 + 4C ′

)
εσ
′

0

}
≤ 1, (4.4)

with C ′ ≥ 1 to be determined later. Note that this ε0 depends only on (1.7) and ν, θ.
Fix any y ∈ ∂A and ey ∈ Sd−1 such that A ⊆ H−ey + y (such ey always exists because A is

convex, and we call it an outer normal to ∂A at y). Then let

vεy(t, x, ω) := u(t, x, ω; ey, ε
−1y),

with the right-hand side function defined in (2.2). If we now let uε(t, x, ω) := uε(εt, εx, ω),
then Lemma 2.1 and Lemma 2.2 yield

vεy(τε, ·, ω) ≥ (1− ε1/m1)χH−ey+ε−1(y+ενey) ≥ uε(0, ·, ω)− ε1/m1 (4.5)

with
τε := κ0 + 2c−1

0 εν−1 +D1ε
(1−m1)/m1

(then also τε ≤ Cεσ
′−1 for some C > 0 due to (4.3) and ν ≥ σ′).

It follows from (4.5) and the last claim in Lemma 3.7 in [19] with f2 = f1 = f (this extends
Lemma 2.9 in [19] from initial data approximating characteristic functions of balls to those
in (2.2), which instead approximate characteristic functions of half-spaces) that if we extend
f to Rd × (1,∞)× Ω by 0, then with M∗ := 1+M

µ∗
we have that

vεy((1 +M∗ε
1/m1)t+ τε, x, ω) + ε1/m1

is a supersolution to (1.1) for (t, x) ∈ (κ∗,∞)×Rd. Hence if we let τ ′ε := τε+(1+M∗ε
1/m1)κ∗

and use (vεy)t ≥ 0 (by Lemma 2.3) and (4.5), we obtain from the comparison principle that

wεy(t, x, ω) := vεy((1 +M∗ε
1/m1)t+ τ ′ε, x, ω) + ε1/m1 ≥ uε(t, x, ω),

for all (t, x) ∈ (0,∞)× Rd. Therefore,

wε,y(·, ·, ω) := wεy(ε
−1·, ε−1·, ω) ≥ uε(·, ·, ω) (4.6)

on (0,∞)× Rd. We can now use this estimate to prove (4.19).
Let us first obtain a crude ω-uniform bound. Corollary 2.5 yields

Γvεy ,1−θ∗(t, ω) ⊆ Γvεy ,1−θ1(t, ω) ⊆ H−e + ε−1y + (R0 + κ1 + c1t)ey,

and so from R0 + κ1 + c1[(1 +M∗ε
1/m1)t+ τ ′ε] ≤ C(t+ εσ

′−1) for some C > 0, we obtain

Γwε,y ,1−θ∗(t, ω) ⊆ H−e + y + C(t+ εσ
′
)ey

for all t ≥ 0. From (4.2) and (4.4) we see that supt≥0 Lvεy ,θ−ε1/m1 ,1−θ∗(t) ≤ ε2σ′−1, hence

sup
t≥0

Lwε,y ,θ,1−θ∗(t) ≤ ε sup
t≥0

Lvεy ,θ−ε1/m1 ,1−θ∗(t) ≤ ε2σ′ . (4.7)
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So in view of (4.6), for all t ≥ 0 we get

Γuε,θ(t, ω) ⊆ Γwε,y ,θ(t, ω) ⊆ H−e + y + C(t+ εσ
′
)ey. (4.8)

Since this holds for all y ∈ ∂A and all normal directions ey at y, there exists C > 0 such that
for all t ≥ 0 and ω ∈ Ω we have

Γuε,θ(t, ω) ⊆ BC(t+εσ′ )(A). (4.9)

Now fix any T ≥ εσ
′

(> ε), so we have

Γuε,θ(T, ω) ⊆ BC̃T (A), (4.10)

with C̃ := 2 max{C, c1}. Next, take any ȳ ∈ BC̃T (A)\ΘA,c∗(T ), let y be the unique projection
of ȳ onto ∂A, let ey := ȳ−y

|ȳ−y| (which is then an outer normal to ∂A at y), and define vεy, w
ε
y,

and wε,y as above. Then the definition of ΘA,c∗(·) yields

c∗(ey)T ≤ |ȳ − y| ≤ C̃T. (4.11)

Consider the arrival times

Twε (ȳ, ω) := inf{t ≥ 0 |wε,y(t, ȳ, ω) ≥ 1− θ∗},
T vε (ȳ, ω) := ε−1 inf{t ≥ 0 | vεy(t, ε−1ȳ, ω) ≥ 1− θ∗},

both of which are ≤ CT for some C > 0 by (4.11) and Lemma 2.1. Since (4.3) and (4.4)
yield ε1/m1 ≤ θ∗ (and so 1− θ∗ − ε1/m1 ≥ θ2), Lemma 2.1, σ′ < 1

m1
, and ετ ′ε ≤ Cεσ

′
imply

T vε (ȳ, ω) ≤ Twε (ȳ, ω) + Cε1/m1T + ετ ′ε + εκ0 ≤ Twε (ȳ, ω) + C(1 + T )εσ
′
. (4.12)

Next, after applying Proposition 2.7 to vεy with δ := σ′ and l := |ȳ − y| = (ȳ − y) · ey, and

using c∗(ey) = T̄ (ey)
−1 and β ≤ 1− 4σ′, we get∣∣∣∣E[T vε (ȳ, ·)]

|ȳ − y|
− 1

c∗(ey)

∣∣∣∣ ≤ C
(
ε−1|ȳ − y|

)−3σ′

(here we call the constant Cδ = Cσ′ just C). This and (4.11) yield

T − E[T vε (ȳ, ·)] ≤ C|ȳ − y|1−3σ′ε3σ′ ≤ C(1 + T )ε3σ′ . (4.13)

Using (4.11) again, it follows from Proposition 2.7 that for all λ ≥ 0,

P[|T vε (ȳ, ·)− E[T vε (ȳ, ·)]| > ελ] ≤ 2 exp
(
−C−2λ2(ε−1|ȳ − y|)−2β

)
≤ 2 exp

(
−C−2λ2T−2βε2β

)
.

(4.14)

Now take λ := CT βε−β−σ
′

with C from the last expression, and then λ ≤ CTε2σ′−1 by
β ≤ 1− 4σ′ and T ≥ εσ

′
. Hence (4.13) and (4.14) show that there is C > 0 such that

P[T vε (ȳ, ·) ≤ T − C(1 + T )ε2σ′ ] ≤ 2 exp
(
−ε−2σ′

)
.

Using (4.12) yields, with some C > 0 and Cε,T := C(1 + T )εσ
′
,

P[wε,y(T − Cε,T , ȳ, ·) ≥ 1− θ∗] = P[Twε (ȳ, ·) ≤ T − Cε,T ] ≤ 2 exp
(
−ε−2σ′

)
. (4.15)
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Let now r := ε2σ′ (∈ (ε, T ) because σ′ ∈ (0, 1
8
)), and note that (4.7) implies

Lε := r + sup
z∈∂A

sup
t≥0

Lwε,z ,θ,1−θ∗(t, ω) ≤ 2ε2σ′ . (4.16)

Next let Gε,T ⊆ BC̃T (A)\ΘA,c∗(T ) be some set containing one point from each cube in Rd

with side length rd−1/2 and all vertices in rd−1/2Zd that has a non-empty intersection with
BC̃T (A)\ΘA,c∗(T ). Note that then BC̃T (A)\ΘA,c∗(T ) ⊆ Br(Gε,T ).

Let us now consider any ȳ ∈ Gε,T . If we have wε,y(t, x, ω) ≥ θ for some x ∈ Br(ȳ) and
t ≥ 0, then (4.1) shows that there is x′ ∈ BLε(ȳ) such that wε,y(t, x

′, ω) ≥ 1 − θ∗. Applying
Lemma 2.1 to vεy then implies wε,y(t+ 2c−1

0 Lε + εκ0, ȳ, ω) ≥ 1− θ∗. Since

Cε,T + 2c−1
0 Lε + εκ0 ≤ C ′(1 + T )εσ

′
=: C ′ε,T

by (4.16) (with some C ′ ≥ 1, that will then also be the number in (4.4)), from (4.15) we get

P
[
wε(T − C ′ε,T , x, ·) ≥ θ for some x ∈ Br(ȳ)

]
≤ 2 exp

(
−ε−2σ′

)
(4.17)

(with the understanding that this probability is 0 when T − C ′ε,T < 0). Then (4.10), (4.17),

wε,y ≥ uε, (wε,y)t ≥ 0, and the fact that |Gε,T | ≤ CAT
dr−d for some CA > 0 (depending only

on the diameter of A and (1.7)) yield

P

 ⋃
t∈[0,T−C′ε,T ]

Γuε,θ(t, ·) 6⊆ ΘA,c∗(T )

 ≤ ∑
ȳ∈Gε,T

P
[
wε(T − C ′ε,T , x, ·) ≥ θ for some x ∈ Br(ȳ)

]
≤ 2CAT

dr−d exp
(
−ε−2σ′

)
.

(4.18)
From (4.4) and T0 ≥ 1 we now have C ′ε,T0 <

T0
2

. So for any t ∈ [C ′ε,T0 , T0], there is a unique
T ∈ (t, 2t) such that t = T − C ′ε,T . Then C ′ε,T ≤ 2C ′ε,T0 and so

ΘA,c∗(T ) ⊆ B3c1C′ε,T0
(ΘA,c∗(t− C ′ε,T0))

by c∗ ≤ c1. Then (4.18) yields

P
[
Γuε,θ(s, ·) 6⊆ B3c1C′ε,T0

(
ΘA,c∗(s)

)
for some s ∈ [t− C ′ε,T0 , t]

]
≤ 2d+1CAT

d
0 ε
−2dσ′ exp

(
−ε−2σ′

)
,

and so from dT0(C ′ε,T0)
−1e ≤ 2ε−σ

′
we obtain

P
[
Γuε,θ(s, ·) 6⊆ B3c1C′ε,T0

(
ΘA,c∗(s)

)
for some s ∈ [0, T0]

]
≤ 2d+2CAT

d
0 ε
−(2d+1)σ′ exp

(
−ε−2σ′

)
.

If we make ε0 > 0 smaller yet, depending on the constants mentioned after (4.4) as well as
A and T0, then for all ε ∈ (0, ε0) this shows

P
[
Γuε,θ(t, ·) ⊆ Bεσ

(
ΘA,c∗(t)

)
for all t ∈ [0, T0]

]
≥ 1− exp

(
−ε−2σ

)
. (4.19)
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4.2. Proof of the “Lower Bound”. The second part of this proof is considerably more
involved than the first. This is because a lower bound for the solution uε is needed here,
but the solutions u(·, ·, ·; e, y) with front like initial data cannot serve as global barriers from
below. We overcome this problem by using them as approximate local barriers on short time
intervals, making use of Lemma 3.1 in the process.

Our goal is now to prove a counterpart to (4.19), namely

P
[(

ΘA,c∗(t)
)0

εσ
⊆ Γuε,θ(t, ·) for all t ∈ [Cθ,Aε, T0]

]
≥ 1− exp

(
−ε−2σ

)
(4.20)

for all ε ∈ (0, ε0), with some Cθ,A and with ε0 > 0 depending on the constants mentioned
after (4.4) as well as A and T0. Of course, this will then finish the proof.

We will simplify our task a little, so we only have to study (1− θ∗)-level sets of a special
solution ũε to (1.1) with initial data ũε0 satisfying Lemma 2.3 with S = ε−1(A0

εν ) =: Aε. We
again let ũε(t, x, ω) := ũε( t

ε
, x
ε
, ω), and claim that for some τ0 = τ0(M, θ1,m1, α1, θ, A) > 0

we have

Γũε,1−θ∗(t− τ0ε, ω) ⊆ Γuε,θ (t, ω) (4.21)

for all t ≥ τ0ε. Indeed, let U : [0,∞) → [0, 1] be a solution to U ′ = F0(U) with initial
data U(0) = 1 − θ1. Since F0(u) > 0 for all u ∈ [1 − θ1, 1), there is τ1 = τ1(m1, α1) > 0
such that U(τ1) ≥ 1 − 1

2
θ∗. It follows from Lemma 2.4 with u1(t, x) := U(t), u2 := uε, and

r := 2
√
Mdτ1 +

√
d/M ln 4d

θ∗
that

uε(τ1, ·, ω) ≥ U(τ1)− 2de
√
M/d (−r+2

√
Mdτ1) ≥ 1− θ∗

on (Aε)0
r (which is non-empty if ε0 > 0 is small enough, depending on A, ν). Next let

τ2 := τ1 + 2c−1
0 r′ + 2c−1

0 R0 + κ0,

where Br′ ((A
ε)0
r) ⊇ Aε for all small enough ε > 0 (such r′ = r′(A, r) exists because A is

convex and hence ∂A is Lipschitz). Then uε(τ2, ·, ω) ≥ 1− θ∗ on BR0(A
ε) by Lemma 2.1, so

uε(τ2, ·, ω) ≥ ũε(0, ·, ω). Thus for all (t, ω) ∈ [0,∞)× Ω we obtain

Γũε,1−θ∗(t, ω) ⊆ Γuε,1−θ∗ (t+ τ2ε, ω) .

When θ ≤ 1 − θ∗, this immediately yields (4.21) with τ0 := τ2 . When θ ∈ (1 − θ∗, 1), this
and Lemma 2.2 yield (4.21) with τ0 := τ2 + 1 +D1(1− θ)1−m1 .

Let now σ′ be from (4.3). We claim that (4.20) will follow once we show that there is
C̃ > 0 such that for all T0 ≥ 1 and ε > 0 small enough (depending on the constants after
(4.4) and A, T0) we have

P
[
(ΘεAε,c∗(t))0

C̃T0εσ
′ ⊆ Γũε,1−θ∗(t, ·) for all t ∈ [0, T0]

]
≥ 1− exp

(
−ε−σ′

)
. (4.22)

Indeed, for all small ε > 0 we have(
ΘA,c∗(t)

)0

2εσ′
⊆ ΘεAε,c∗(t− τ0ε)
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for all t ≥ τ0ε due to convexity of A, (1.5), and (4.3). This and (4.21) now show that if
(ΘεAε,c∗(t))0

C̃T0εσ
′ ⊆ Γũε,1−θ∗(t, ω) for all t ∈ [0, T0], then(

ΘA,c∗(t)
)0

(2+C̃T0)εσ′
⊆ Γuε,θ(t, ω)

for all t ∈ [τ0ε, T0]. So again, if we make ε0 > 0 smaller yet, depending on the constants
mentioned after (4.4) as well as A and T0, then (4.22) will indeed imply (4.20) with Cθ,A := τ0.

So let us now prove (4.22). In the proof, we will write uε and A in place of ũε and εAε (so
(uε)t ≥ 0), and denote

σ′′ :=
1− β

2(2− β)
∈
(
σ′,

1

6

)
and rε := εσ

′′
(4.23)

(recall that β ∈ (1
2
, 1)). Let us also pick ε0 ∈ (0, 1

2
) such that

max
{

2c−1
0 εσ

′′−σ′
0 , D2(1 + κ0 + c1(1 + 4c−1

0 ))εσ
′′

0

}
≤ 1 (4.24)

(where κ0 is from Lemma 2.1 and D2 from Corollary 2.6); we will need to further decrease
ε0 later. For any u : [0,∞)× Rd × Ω→ [0, 1], let us denote by

Tu(x, ω) := inf{t ≥ 0 |u(t, x, ω) ≥ 1− θ∗}
the arrival time at x ∈ Rd.

Now we fix any ε ∈ (0, ε0] and T ∈ [εσ
′
, T0], and pick A′, c′ as in Lemma 3.1 with r = rε

(then T ≥ 2r
c0

by (4.24)). Then let Θk
ε,T := ΘA′,c′(kr2

ε) for each k ∈ N, and

tk(ω) := inf
{
t ≥ 0 |uε(t, ·, ω) ≥ (1− θ∗)χΘkε,T

}
for each ω ∈ Ω. Note that from Lemma 2.1 and Lemma 3.1(ii) we obtain

t0(·) ≤ 2c−1
0 rε + κ0ε. (4.25)

Let K := dTr−2
ε e, so that clearly ΘA′,c′(T ) ⊆ Γuε,1−θ∗(tK(ω), ω) for all ω ∈ Ω. Our goal is

now to prove (4.36) below, which is a high-probability upper bound on tk+1(·)− tk(·) for each
k = 0, 1, . . . , K − 1. Adding these will then yield a high-probability upper bound on tK(·),
and therefore also the estimate (4.37) below, which is very close to (4.22) for the single time
T instead of all t ∈ [0, T0]. We will then upgrade this to (4.22).

Fix any x0 ∈ Θk+1
ε,T \ Θk

ε,T and ω ∈ Ω. Since Θk
ε,T is convex, there is x1 ∈ ∂Θk

ε,T such that

d(x0,Θ
k
ε,T ) = |x0 − x1|, and e := x0−x1

|x0−x1| is an outer normal to ∂Θk
ε,T at x1. Then

d0 := |x0 − x1| ≤ c′(e)r2
ε ≤ c∗(e)r2

ε (4.26)

by (2.6) and Lemma 3.1(i). Since Θk
ε,T satisfies the rε-interior ball condition by Lemma

3.1(iii), e is the unique outer normal to ∂Θk
ε,T at x1 and

Brε(x1 − rεe) ⊆ Θk
ε,T ⊆ Γuε,1−θ∗(tk(ω), ω).

So if we let wεk(t, x, ω) := uε(tk + εt, x0 + εx, ω), then clearly

Bε−1rε

(
−ε−1(d0 + rε)e

)
⊆ Γwεk,1−θ∗(0, ω). (4.27)
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Let us now define d1 := c1r
2
ε + D2((1 + κ0)ε + 4c−1

0 c1r
2
ε), with D2 ≥ 1 from Corollary 2.6.

Then d1 > max{r2
ε , d0} by (4.26), and d1 < min{rε, Cr2

ε} for some C > 0 by 2σ′′ < 1 and
(4.24). We also let

d2 :=
d2

1 + d2
0 + 2d0rε

2(d0 + rε)
,

so then d1 − d2 = (d1−d0)(2rε−d1+d0)
2(d0+rε)

> 0 and d2 − d0 =
d21−d20

2(d0+rε)
> 0. Hence

0 ≤ d0 < d2 < d1 ≤ min{rε, Cr2
ε} and d2 − d0 ≤ Cr3

ε , (4.28)

with some C > 0. We then have{
x ∈ Rd

∣∣∣x · e < −ε−1d2

}
∩Bε−1d1(0) ⊆ Bε−1rε

(
−ε−1(d0 + rε)e

)
, (4.29)

which follows from (4.28) and the fact that the spherical cap on the left has axis e and the

radius of its base is
√
d2

1 − d2
2, which equals

√
r2
ε − (rε + d0 − d2)2 due to the definition of d2.

Now let
v(·, ·, ω) := u(·, ε−1x0 + ·, ω; e, ε−1(x0 − d2e))

where u is from (2.2). Then v and wεk both satisfy (1.1) with f shifted in space by x0
ε

, and

supp v(0, ·, ω) ⊆ H−e + (R0 − d2
ε

)e. This, (4.27), (4.29), and Lemma 2.1 yield

v(0, ·, ω) ≤ wεk(τ3, ·, ω)

on Bε−1d1(0), where τ3 := 2R0

c0
+κ0. Since v(0, ·, ω) ≥ (1− θ∗)χH−e −ε−1d2e

, from Lemma 2.1 we

also obtain Tv(0, ω) ≤ 2(εc0)−1d2 + κ0, so the definition of d1, (4.26), and (4.28) yield

ε−1d1 ≥ D2

(
1 + κ0 + 4(εc0)−1c1r

2
ε

)
≥ D2(1 + Tv(0, ω)),

provided ε0 > 0 is small enough (depending on (1.7)) so that d2 ≤ c∗(e)r2
ε +Cr3

ε ≤ 2c1r
2
ε . So

Corollary 2.6 with

u1 := v(·, ·, ω), u2 := wεk(·, ·, ω), t0 := τ3, and R := ε−1d1,

yields
Tv(0, ω) ≥ Twεk(0, ω)− τ3 − κ0. (4.30)

We next apply both claims in Proposition 2.7, with δ := σ′ and l := ε−1d2 (also recall that
T̄ (e) = c∗(e)−1), to obtain

P
[∣∣Tv(0, ·)− (εc∗(e))−1d2

∣∣ ≥ C
(
ε−1d2

)β+σ′
+ λ
]
≤ 2 exp

(
−C̄−2λ2

(
ε−1d2

)−2β
)

(4.31)

for some C > 0 and all λ ≥ 0. Let us then take λ := C̄(ε−1d2)βε−σ
′
. We get from (4.23) and

(4.28) that

(ε−1d2)β+σ′ ≤ (ε−1d2)βε−σ
′ ≤ Cε3σ′′−1 (4.32)

because (4.23) yields
3σ′′ + σ′ − 2σ′′β ≤ σ′′(4− 2β) ≤ 1− β.

Then (4.31) and d2 ≤ c∗(e)r2
ε + Cr3

ε show that with some C > 0 we have

P
[
Tv(0, ·) ≥ ε2σ′′−1 + Cε3σ′′−1

]
≤ 2 exp

(
−ε−2σ′

)
. (4.33)
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Hence (4.30), 3σ′′ ≤ 1, and the definition of wεk yield with some C > 0,

P
[
Tuε(x0, ·)− tk(·) ≥ ε2σ′′ + Cε3σ′′

]
≤ 2 exp

(
−ε−2σ′

)
. (4.34)

In order to upgrade this to (4.36), let Gk
ε,T ⊆ Θk+1

ε,T \Θk
ε,T be a set containing one point

from each cube in Rd with side length εd−1/2 and all vertices in εd−1/2Zd that has a non-
empty intersection with Θk+1

ε,T \Θk
ε,T (recall that d ≤ 3 is the spatial dimension). Then clearly

Θk+1
ε,T \Θk

ε,T ⊆ Bε(G
k
ε,T ). If x0 ∈ Gk

ε,T , applying Lemma 2.1 to uε = uε(ε·, ε·, ω) yields

Tuε(x0, ω) ≥ sup
x∈Bε(x0)

Tuε(x, ω)− (2c−1
0 + κ0)ε. (4.35)

This, (4.34), and the fact that |Gk
ε,T | ≤ CAT

d−1r2
εε
−d for some CA > 0 yield with some C > 0,

P
[
tk+1(·)− tk(·) ≥ ε2σ′′ + Cε3σ′′

]
= P

 sup
x∈Θk+1

ε,T \Θ
k
ε,T

Tuε(x, ·)− tk(ω) ≥ ε2σ′′ + Cε3σ′′


≤ 2CAT

d−1ε2σ′′−d exp
(
−ε−2σ′

)
. (4.36)

Next recall that K = dTε−2σ′′e, and T0 ≥ max{T, 1}. Then for C ′ := 1 + 2C + 2c−1
0 + κ0,

with C from (4.36), we have

K(ε2σ′′ + Cε3σ′′) + 2c−1
0 εσ

′′
+ κ0ε ≤ T + C ′T0ε

σ′′ .

This, (4.36), and (4.25) imply that

P
[
tK(·) ≥ T + C ′T0ε

σ′′
]
≤

K−1∑
k=0

P
[
tk+1(·)− tk(·) ≥ ε2σ′′ + Cε3σ′′

]
≤ 4CAT

d
0 ε
−d exp

(
−ε−2σ′

)
.

Now (1.5) and Lemma 3.1(ii) show that

Bc1εσ
′′/c0

(
ΘA,c∗(T − c1c

−2
0 εσ

′′
)
)
⊆ ΘA,c∗(T ) ⊆ Bc1εσ

′′/c0

(
ΘA′,c′(T )

)
.

Then convexity of A implies ΘA,c∗(T − c1c
−2
0 εσ

′′
) ⊆ ΘA′,c′(T ) (note that both these sets are

also convex), so the definition of tK(ω) yields

P
[
ΘA,c∗(T − c1c

−2
0 εσ

′′
) 6⊆ Γuε,1−θ∗(T + C ′T0ε

σ′′ , ·)
]
≤ P

[
ΘA′,c′(T ) 6⊆ Γuε,1−θ∗(T + C ′T0ε

σ′′ , ·)
]

≤ P
[
tK(·) ≥ T + C ′T0ε

σ′′
]
.

Therefore

P
[
ΘA,c∗(T − c1c

−2
0 εσ

′′
) 6⊆ Γuε,1−θ∗(T + C ′T0ε

σ′′ , ·)
]
≤ 4CAT

d
0 ε
−d exp

(
−ε−2σ′

)
. (4.37)

Now let

Tε := εσ
′
+ C ′T0ε

σ′′ and C ′′ := c1C
′ + c2

1c
−2
0 .
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If t ∈ [Tε, T0], it follows from (4.37) with T := t−C ′T0ε
σ′′ , and from (ΘA,c∗(t))0

c1s
⊆ ΘA,c∗(t−s)

for any s ∈ [0, t], that (recall also T0 ≥ 1, so C ′′T0 ≥ c1(C ′T0 + c1c
−2
0 ))

P
[(

ΘA,c∗(t)
)0

C′′T0εσ
′′ 6⊆ Γuε,1−θ∗(t, ·)

]
≤ 4CAT

d
0 ε
−d exp

(
−ε−2σ′

)
. (4.38)

On the other hand, if t ∈ [0, Tε], then from c∗ ≤ c1 and (uε)t ≥ 0 we obtain

(ΘA,c∗(t))0
c1Tε
⊆ A ⊆ Γuε,1−θ∗(t, ω). (4.39)

The last two estimates will now yield (4.22). For any t ≥ s ≥ 0 we clearly have ΘA,c∗(s) ⊆
ΘA,c∗(t), and also Γuε,1−θ∗(s, ·) ⊆ Γuε,1−θ∗(t, ·) because (uε)t ≥ 0. Then (4.39) and

C̃T0ε
σ′ ≥ max

{
c1Tε, C

′′T0ε
σ′′ + c1ε

σ′
}
,

with C̃ := C ′′ + c1, show that

P
[(

ΘA,c∗(t)
)0

C̃T0εσ
′ 6⊆ Γuε,1−θ∗(t, ·) for some t ∈ [0, T0]

]
≤ P

[(
ΘA,c∗(t)

)0

C′′T0εσ
′′+c1εσ

′ 6⊆ Γuε,1−θ∗(t, ·) for some t ∈ [Tε, T0]
]

≤
dT0ε−σ

′e−1∑
j=dTεε−σ′e−1

P
[(

ΘA,c∗((j + 1)εσ
′
)
)0

C′′T0εσ
′′+c1εσ

′
6⊆ Γuε,1−θ∗(jε

σ′ , ·)
]
.

Again using (ΘA,c∗(t))0
c1s
⊆ ΘA,c∗(t− s) for t ≥ s ≥ 0, and then (4.38), we can continue this

estimate via

≤
dT0ε−σ

′e−1∑
j=dTεε−σ′e−1

P
[(

ΘA,c∗(jεσ
′
)
)0

C′′T0εσ
′′
6⊆ Γuε,1−θ∗(jε

σ′ , ·)
]

≤ 4CAT
d+1
0 ε−d−σ

′
exp

(
−ε−2σ′

)
.

Recalling that we wrote uε and A in place of ũε and εAε, this yields (4.22) after we let ε0 > 0
be small enough (it will then depend on the constants mentioned after (4.4) as well as A and
T0). The proof is thus finished.

References

[1] M. Alfaro and T. Giletti, Asymptotic analysis of a monostable equation in periodic media, Tamkang J.
Math. 47 (2016), no. 1, 1–26.

[2] S. Armstrong and P. Cardaliaguet, Stochastic homogenization of quasilinear Hamilton-Jacobi equations
and geometric motions, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 4, 797–864.

[3] D. J. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve
pulse propagation, Partial Differential Equations and Related Topics, Lecture Notes in Mathematics 446,
5–49, Springer Verlag, 1975.

[4] D. J. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,
Advances in Math. 30 (1978), no. 1, 33–76.



QUANTITATIVE HOMOGENIZATION FOR COMBUSTION IN RANDOM MEDIA 21

[5] H. Berestycki, The influence of advection on the propagation of fronts in reaction-diffusion equations,
Nonlinear PDEs in Condensed Matter and Reactive Flows, NATO Science Series C, 569, H. Berestycki
and Y. Pomeau eds, Kluwer, Doordrecht, 2003.

[6] M. C. Delfour and J.-P. Zolésio, Shape analysis via oriented distance functions, J. Funct. Anal. 123
(1994), no. 1, 129–201.

[7] R. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), no. 4, 355–369.

[8] A. N. Kolmogorov, I. G. Petrovskii, and N.S. Piskunov, Étude de l’équation de la diffusion avec croissance
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