SPARSE POTENTIALS WITH FRACTIONAL HAUSDORFF DIMENSION
ANDREJ ZLATOS

ABSTRACT. We construct non-random bounded discrete half-line Schrédinger operators
which have purely singular continuous spectral measures with fractional Hausdorff dimen-
sion (in some interval of energies). To do this we use suitable sparse potentials. Our results
also apply to whole line operators, as well as to certain random operators. In the latter case
we prove and compute an exact dimension of the spectral measures.

1. INTRODUCTION

In the present paper, we consider discrete half-line Schrodinger operators Hy on (*(Z") =
*({1,2,...}), given by

(Hyu)(x) =u(z+ 1) +u(x — 1) + V(x)u(x) (1.1)
for x € Z*, with the potential V' and boundary condition ¢ € (-7, 7]
u(0) cos(d) + u(1) sin(¢) = 0. (1.2)

Here (1.2) defines u(0), which then enters in (1.1) for z = 1. Hence H, is the Dirichlet
operator with u(0) = 0, and Hy = Hy — tan(¢)d; where 9y is the delta function at x = 1.
H /5 is the Neumann operator with u(1) = 0. All these are rank one perturbations of Hy.

A function u on Z* U {0} is a generalized eigenfunction of the above operators for energy
E and boundary condition ¢ if

w(z+1) +u(z—1)+ V(z)u(z) = Eu(zx) (1.3)

for z € Z* and (1.2) holds. Since such w is uniquely given by its values at = = 0, 1, the space
of generalized eigenfunctions for any energy is 2-dimensional. The 2 x 2 unimodular matrix
Tg(x,y) which takes (“(uy(;r)l)) to (“Ef(z)l)) whenever u is a generalized eigenfunction for energy
E, is called the transfer matriz for E. It is immediate that

To(ey) = [[ TeGi—1 = ][ (E Ju) 01> .
J=y+1 J=y+l
We denote Tg(x) = Tr(z,0).

We let p4 be the spectral measures of the above operators. The aim of this paper is to
construct a (non-random) bounded potential V' such that these measures are purely singular
continuous and have fractional (not 0 or 1) Hausdorff dimension in some interval of energies.
We consider the sparse potential with equal barriers V,, , given by (1.6) below, with v # 0
and v > 2. Here is our main result:
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Theorem. Let H, be the discrete Schrédinger operator on Z* with potential V,, , given by
(1.6), and boundary condition ¢. Let p4 be its spectral measure. For any closed interval of
energies J C (—2,2) there is vy > 0 and g € N such that if 0 < |[v| < vy and 7 > v 2 is
an integer, then for any ¢, the measure p4 has fractional Hausdorff dimension in J.

This is proved in Section 5 as Theorem 5.1. From the rest of our results we would like to
single out Theorems 1.4, 6.3 (random case) and 7.1.

Our motivation is a paper by Jitomirskaya-Last [4], which relates the power growth/decay
of eigenfunctions and the Hausdorff dimension of spectral measures. We will apply ideas
from [5] and use sparse potentials, which allow us to control this growth. We mention that
[4] also provides an example of potentials with the above properties, but these are unbounded
(and hence so are the operators).

First we recall some basic facts about dimension of sets and measures. If S C R and
a € [0, 1], then the a-dimensional Hausdorff measure of S' is

ha(s) = }521(1) |:5-(i:£/£rs Z ‘[n|a1 ’
n=1

Here a d-cover is a covering of S by a countable set of intervals I,, of lengths at most §.
Notice that h° is the counting measure and h' the Lebesgue measure. For any S there is a
number ag € [0, 1] such that h*(S) = 0 if & > ag, and h*(S) = o0 if @ < ag. This ag is the
dimension of S.

If i1 is a measure on R, we say that u is a-continuous if it is absolutely continuous with
respect to A%, and pu is a-singular if it is singular to h*. Hence a-continuous measures do
not give weight to sets S with h%(S) = 0 (e.g., to sets S such that dim(S) < «), and a-
singular measures are supported on sets S with A%(S) = 0 (and so dim(S) < «). We say
that p has fractional Hausdorff dimension in some interval I if p(1 N -) is a-continuous and
(1 — a)-singular for some a > 0. Finally, x has exact (local) dimension in I if for any E €
there is an «(F), and for any € > 0 there is 6 > 0 such that u((E — 6, EF 4+ ) N+) is both
(a(E) — e)-continuous and (a(FE) + ¢)-singular. We do not prove an exact dimension for our
measures [, (corresponding to (1.6)), but we do it for the random potential case which we
consider in Section 6.

In the present paper, we will sometimes say that a-continuous measures have dimension
at least o and that a-singular measures have dimension at most a.

We will mainly use two results from [4] (Corollaries 4.4 and 4.5) which relate eigenfunction
growth and spectral dimension. Here, however, these results will be restated in terms of the
EFGP transform of eigenfunctions (Propositions 1.2 and 1.8 below), rather than in terms of
the eigenfunctions themselves.

The EFGP transform (R, #) of an eigenfunction v with energy £ € (—2,2) is a Priifer-type
transform which makes the growth/decay of u more transparent. It is defined as follows. We
let k € (0,7) be such that £ = 2cos(k) and set

u(zx) — cos(k)u(x — 1) = R(x) cos(8(x)),

sin(k)u(x — 1) = R(z) sin(6(x)). (1.4)

These equations define R(x) > 0 and #(x) (mod 27) uniquely, and we write u ~ (R, ).
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If we set

0(z) =0(x) +k and () = ——

then (1.3) becomes (see [5])
cot(A(z + 1)) = cot(A(z)) + vi(z),
R(z+1)?
R(x)?
Notice that (1.5) only determines §(z + 1) (mod 7). There are two ways to deal with this.
The first is to examine (1.4) more closely and conclude (as in [6]) that sgn(sin(6(z + 1))) =
sgn(sin(f(z))), and if this is 0, then sgn(cos(6(z+1))) = sgn(cos((z))). This fact and (1.5)
determine 6(z + 1) (mod 27) uniquely, but we will not need this extra condition here.

The second way is to realize that sin(26), sin?(#) and cot(#) all have period 7, and so this
ambiguity in 6 does not affect the values of R, which are of main interest to us. Notice also,
that once u(0) and u(1) are fixed and k is varied, u(x) is a polynomial in E of degree x.
Therefore u(z), and by (1.4) also R(x) and 6(z) (viewed as a function on the unit circle),
are well-defined C*° functions of k. Moreover, there is completely no ambiguity in %9(:5),
which will be of significant importance in our considerations.

The relations (1.5) are of interest to us for two reasons. The first is that they are par-
ticularly useful when dealing with sparse potentials, which we will consider here. Sparse
potentials are non-zero only at sites x = =z, such that z,, — x,_1 — oo. This is because
on the gaps — the intervals where the potential is zero — the propagation of R and @ is
especially transparent. Namely, R is constant and # increments by k£ when passing from z
to z + 1.

The second reason is that (1.5) provides a good control of the growth of R, which is the
same as the growth of u in the sense of the following lemma. Let us define

L

lullf = ul)®.

r=1

— _ 1.5
=1+ v(2)sin(20(x)) + vg(x)? sin® (0(x)). (15)

Then we have

Lemma 1.1. There are constants c¢1,co > 0 depending only on k € (0,7) such that if
u~ (R,0) is any generalized eigenfunction for energy 2 cos(k) and L > 2, then

cllulle < [IR]lL < eallullz-

Remark. The proof shows that ¢; and ¢y can be chosen uniformly for k& € I, with I any
closed sub-interval of (0, 7).

Proof. From (1.4) we have
R(n)? = u(n)? + u(n — 1)% — 2 cos(k)u(n)u(n — 1)
e [dl (u(n)? + u(n — 1)2) , dy (u(n)? + u(n — 1)2)}
with d; = 1 + (—1)’ cos(k). Hence
di[lullz < |R|Z < 2da([lull7 + u(0)?).



4 ANDREJ ZLATOS

The result follows from the fact that
u(0)* = [(2cos(k) — V(1))u(1) — u(Q)}2 < [(2cos(k) = V(1))* +1] [w(1)*+u(2)?]. O

Let us denote by ugs ~ (Rgx, 0pr) the generalized eigenfunction for energy E = 2 cos(k)
satisfying the boundary condition ¢. We are now ready to state, in terms of R rather than
u, the abovementioned results from [4]. These will be our main tools for proving fractional
dimension of measures.

Proposition 1.2 ([4]). Let 0 < a < 1 and let A be a Borel set of energies. If for every
E € A and every generalized eigenfunction u ~ (R, 0) for energy E

2
IRl

< 00
L—o0 LQ—O[ ’

then for any ¢ the restriction py(AN-) is a-continuous.

This says that if all eigenfunctions for all energies in some support of p, have a small
power growth, then p, cannot be very singular.

Proposition 1.3 ([4]). Let 0 < o < 1 and let A be a Borel set of energies. If for every
EecA
| BelZ
1 ’ =0
e LT

where k is such that E = 2 cos(k), then the restriction jiy(AN -) is a-singular.

An eigenfunction v for energy E is called a subordinate solution if

tim 122 _
L=o [Jullx

for any other eigenfunction v with the same energy. The Gilbert-Pearson subordinacy theory
[3] shows that p, is supported off the set of energies for which a subordinate solution exists,
but does not satisfy the boundary condition ¢. Hence Proposition 1.3 says that the existence
of a power decaying eigenfunction (which is then by standard arguments the subordinate
solution) for all energies in some support of j, implies certain singularity of fi,.

Moreover, Lemma 2.1 below shows that the existence of a power growing eigenfunction
u implies (for the potential (1.6)) the existence of a power decaying subordinate solution v,
and the power of decay of v is the same as the power of growth of u. Thus we only need to
estimate the power of growth of eigenfunctions.

We will specifically concentrate on the generalized eigenfunctions with Dirichlet boundary
condition ¢ = 0. Let us denote by wu the eigenfunction for energy E = 2cos(k) with
k € (0,7), such that u(0) = 0 and uy(1) = 1. Let uy, ~ (Ry,0), and let 0(z) = Op(z) + k.
Notice that Ry(1) = 1. Recall that Ry (), 0x(z) and 8, (x) are C> functions of k.

As we mentioned before, we will use sparse potentials, which are non-zero only for x €
{z,}52 . It turns out that the set of possible candidates is quite small. Firstly, for our
considerations we will need to have a good control of 8%5;6(:%), in order to estimate the long-
run behavior of Ry using (1.5). This turns out to be hard if {x, }7°, grows sub-geometrically
and so we will not consider this case. On the other hand we have
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Theorem 1.4. Let x, € N be an increasing sequence, a, € R and let py be the spectral
measure for the discrete Schrodinger operator on Z+ with boundary condition ¢ and potential

Vi) = a, =z, for somen,
0  otherwise.

Then

(1) if im 2, /2p1 < 1 and a,, — 0, then the dimension of jus is 1 everywhere in (—2,2);

(2) if 2/Tps1 — 0 and sup|a,| < 0o, then the dimension of ps is 1 everywhere in (—2,2).
Remark. 1t is known [5, 6] that in (2) the type of the spectrum depends on Y > a2. If
this is finite, then we have purely a.c. spectrum, whereas if it is infinite, we have purely
S.c. spectrum.

Proof. (1) Let I C (0,7) be a closed interval. For k € I let wy, ~ (P, 1) be the generalized
eigenfunction with energy £ = 2 cos(k) such that w(0) = 1 and wg(1) = 0.

There are v > 1 and ng € N such that z,/x,_1 > v and x, > ™ for all n > n.
Since a,, — 0, for each ¢ > 0 there are ¢;,co > 0 such that RZ2(L) > ¢;(1 — &)"™ and
PAL) < (1 +¢)" for L € [z, + 1,2,41] and k € I. This follows from (1.5). Also,
L—xn,IZCOLWithcozl—%>Oifn>n0. Let 8 < 1. Then for n > ng

IBellZ o (L= ana)a(l—e)"

> L' Pa™ > ¢ (’yl’ﬂa)n

IPllZ — (Lea(l+2)m)”
with @ = (1 —€)/(1 + ¢)?. We can choose ¢ small enough so that y'~?a > 1 and we obtain
R 2
LA
L=oo | Bl
Then Theorem 1.2 from [4] implies %—continuity of po. Since this is true for any § < 1

and for any pair of generalized eigenfunctions with energy E = 2cos(k), as well as for any
1, the result follows.
(2) We know that |a,/sin(k)| < M < oo for any n and k € I (I as above). It is easy to

show that then there are 0 < a < b < oo such that
2
a a
1 — ——sin(20) + —2—sin?(4) € (a,b
sin(k) (26) sin?(k) (6) € (a,0)
for any n, # and k € I. Therefore in the previous argument we have to replace 1 — ¢ and
1+ ¢ with a and b. On the other hand, x,,/x,+1 — 0 implies that for any - there is ng such
that z,/x,_1 > v and x, > 4™ for n > ny. Thus for any § < 1 choose ~ large enough so
that y1=%a/b” > 1. The rest of the proof is identical with (1). O

This leaves us with non-decaying potentials and z, growing geometrically. Therefore we
will consider the following natural choice of potential. We take v # 0 and an integer v > 2,
and define

v r=ux,=7"for somen >1,
Voo (1) = { (1.6)

0 otherwise.
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Notice that the increasing gaps in V,, , ensure that the interval of energies [—2, 2], which is
the essential spectrum of the free operator, is contained in the spectrum of each Hy. Indeed,
by the discrete version of a theorem of Klaus (Theorem 3.13 in [1]), the essential spectrum

of Hy is
[—2,2] U {sgn(v)@} :

In what follows, we will show that for suitable v and «, the spectral measures p, are o-
continuous and (1 — a)-singular (for some o > 0) in some sub-interval of [—2,2], and so have
fractional Hausdorff dimension there. It turns out that we will need small |v| and large .

More precisely, we will show, that for certain v and ~y, we have that for “most” k (in a
sense to be specified later) within a given closed interval I C (0,7) the function R} has a
suitable power growth with some power g € (0, %) Then Propositions 1.2, 1.3, together
with Lemma 2.1 below, can be used to compute (bounds on) the dimension of the spectral
measures. Notice that since by (1.5) Ry is constant on [x,_; + 1, x,], we only need to look
at the growth of { Ry (x, + 1)}5°,.

In what follows, we will not only prove fractional Hausdorff dimension, but also give
bounds on it, and therefore we will need to enumerate those constants appearing in our
argument, which affect the power of growth of R;. We will denote these Cj.

In the present paper, we will consider spectral measures w.r.t. k, rather than w.r.t. £ =
2 cos(k). This will not affect the validity of the results because on any closed interval I C
(0,7) of k’s (and we consider only such) the function 2 cos(k) is C' with bounded non-zero
derivative. Therefore the dimensional properties of pi4 wrt. K € I and wrt. £ € J =
2cos(I) are identical. Nevertheless, our results will be stated in terms of E.

Finally, we mention that in (1.6) v does not need to be integral. If one only requires v > 1
and sets, for instance, z,, = |"], all our results continue to hold.

The rest of the paper is organized as follows. In Section 2 we present the main ideas of
our proofs and results. Section 3 contains the abovementioned estimates on %gk(xn). In
Section 4 we prove fractional Hausdorff dimension of the spectral measures for almost all
boundary conditions, along with bounds on this dimension (Theorems 4.1, 4.2). Section 5
contains the same results for all boundary conditions (Theorems 5.1, 5.2). We distinguish
these two cases because in the case of a.e. ¢ the bounds we provide are considerably better
than those for all ¢. In Section 6 we consider certain randomization of the potential V,, , given
by (6.2) and prove exact fractional Hausdorff dimension for a.e. realization of the potential
and a.e. boundary condition (Theorem 6.3). Finally, Section 7 contains the corresponding
whole-line results (Theorem 7.1).

It is a pleasure to thank Barry Simon for many useful discussions and suggestions. My
thanks also go to David Damanik, Wilhelm Schlag and Boris Solomyak.

2. GROWTH OF EIGENFUNCTIONS

In this section, we will present a short tour of the proof of our main result. Technical
details are left for later.

Let J C (—2,2) be a given closed interval of energies. We let I C (0,7) be such that
2cos(I) = J. We define v, = — s for k € 1, wy = minger{|vr|} > 0, we = maxge{|vr|} <
00, T, = " forn > 1 and g = 0. Here v # 0 and v > 2 are to be determined later.
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We consider the half-line discrete Schrédinger operator H, given by (1.1), (1.2) with the
potential (1.6), and we denote its spectral measure . We will prove fractional Hausdorff
dimension of y,(1 N -) for suitable v, v and ¢.

As mentioned earlier, we need to estimate the growth of Ry(x, +1). Asin [5], using (1.5)
and the Taylor series of In(1 + z), one obtains for n > 1

In(Ri(z, + 1)) — In(Re(2p-1 + 1)) = %ln(l + v sin (20, () + vf sin2(§k(a7n))>

= %vk sin(20y(x,)) + %lvi <2 sin?(0 (2,,)) — sin2(25k(a:n))> + gn (k)

= %’% + g—k sin(20(v,)) + %’%(003(4@(%)) - 2cos(2§k(q:n))) +ga(k) (2.1)

where |g,, (k)| < Colvg|? for some Cy > 0. Here g, (k) is the sum of all third and higher order
terms in v, and the last equality comes from

2sin*(0) — sin®(26) = 1 — cos(26) + 1 cos(46).
Now take v # 0 small enough so that wy + w3 < 1 and Cow3 < w?/8, and define d; =
w?/8 — Cows and dy = w3 /8 + Cow3 If we let 0 < C; < dy and dy < Cy < 0o, then we have
2

”—g 4 gu(k) € [d1, ds) © (Ch, Cs) (2.2)

for any n and k € I. From now on, v and Cj (and thus also C; and Cy) will be fixed.

Here is our main idea. Tt follows from (2.2) that the contribution of the terms v}/8+ g,,(k)
to the size of In(Rg(z,, + 1)) is within the interval [din, dsn]. If we could show that for large
n the contribution of the remaining three (oscillating) terms in (2.1) is small compared to
this, we would obtain estimates proving positive power of the growth of Rj. It is reasonable
to hope for this because the oscillating terms change sign when n is varied, and so we can
expect cancellations. This is the central idea of [5].

So let us assume for a while that for some A C I with |A| = 0 (|A| being the Lebesgue
measure of A)

> sin(20i(z,)) = o(N)  VkeI\A (2.3)

and that the same holds for the other two oscillating terms. For any k € I\ A we have for
large n (by (2.2))

Ri(zn + 1) € (917, e92") = (2, 2) (2.4)

n o ren

where 3; = C;/1In(7). If we choose v to be large enough so that 0 < 3; < By < %, we get
e L' < || Ry |7 < cp L' TP (2.5)

for large L and ¢; = ¢;(k). Then Proposition 1.2, along with the theory of rank one pertur-
bations [10], proves for a.e. boundary condition ¢ that the dimension of p is at least 1 — 2/,
(see the last paragraph of the proof of Theorem 4.1).

To obtain a good upper bound for the dimension, we need to prove an appropriate decay
of the corresponding subordinate solutions. We will use the following result, the proof of
which we postpone until the end of this section.
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Lemma 2.1. Let xy < xy < --- be such that ||Tg(xp, xn—1)|| < B for some E € (—2,2) and
B < c0. Let us assume that u ~ (R, ) is a generalized eigenfunction for energy E such that

R(x, +1) =e*

where oy, = > 1 (Z; + X;) with Z; € [dy,ds] (for some 0 < dy < dy < 00) and Y ] X; = o(n).
Then there exists a subordinate solution v ~ (P,1) for energy E such that for any 0 < d < d;
and for all sufficiently large n we have

P(z,+1) < e,

Remark. In principle, the lemma shows that the power of decay of the subordinate solution
is the same as the power of growth of all other solutions for the same energy. Hence, in a
sense, the result is optimal. Notice that information on only one growing solution is needed,
but this has to satisfy a “steady growth” condition. Compare with Lemma 8.7 in [5], where
two growing solutions are involved.

The lemma can be applied here because we have (2.2) and (2.3). Notice also that all the
powers of the free transfer matrix
E -1
1 0

for energy E € (—2,2) are uniformly norm-bounded. Hence, we also have a uniform (in n)

bound on
E—v —1\| | (B -1\
1 0 1 0

2

v
Zj = gk +9;(k)

1 Te(zn, 201l <

So for k € I\ A we let

and
2

X = 5 sin(2By(w;)) + 5 (cos(4Bu(a;)) — 2cos(2Bu(,))).

If we now take d such that C; < d < d; (say d = C} +¢), we obtain the existence of a vector
P € R? which generates the subordinate solution uf"® with [|uf®||2 < L1~261=2¢/In(y),
Hence by Proposition 1.3 and the Gilbert-Pearson subordinacy theory [3], the dimension of
e is at most 1 — 20 for a.e. ¢ (see the proof of Theorem 4.1).

Moreover, by the proof of Lemma 2.1, || Tg(x,)|| — oo asn — oo whenever E € 2cos(/\A).
Theorem 1.2 from [7] then implies absence of a.c. spectrum in [ for all ¢. The next paragraph
proves absence of p.p. spectrum if wy + w3 < In(y). Thus for v large enough, we obtain
purely s.c. spectrum in [ for all ¢.

But we can do even better. It turns out that with a slightly stronger assumption than
(2.3), we can show fractional dimension for all boundary conditions! First notice that

2
Wy + W5

In(Ri(xn + 1)) — In(Re(wn-1 + 1)) < 5
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and so for all k € I we have Ry(z,+1) < :L'S”Uﬁwgw () Gince Ry is constant on [x,_1+1, x,],
Proposition 1.2 implies that the dimension is at least 1 — (ws 4+ w3)/In(y) on all of I. Since
wy + w3 < 1, this is strictly positive if v > 3.
Now replace (2.3) with the (stronger) assumption that for any € > 0 there exists A° C I,
a set with dimension smaller than 1 such that

N
— 1 . o7 e
Algnoo N nE:1 sin(20x(zn))| <e  Vk e I\A°, (2.6)

and the same is true for the other two oscillating terms. Let us consider the “Dirichlet”
measure [ip. Since it has no a.c. part, it is supported on the set of k for which u; is the
subordinate solution. It follows that po(I\A®) = 0. Indeed, if k € I\ A®, then for large n we

have
wy w3
Rk(xn+1)>exp 01—8 7+_8 n.,.

If € is small enough so that the exponent is positive, Lemma 2.1 again shows the existence

of a subordinate solution 45", and this must be different from wuy, (by which we mean that

u$"™ is not a multiple of uy,). This implies that pq is supported on A®.

Hence the dimension of o on I (which we know is positive) is at most dim(A%) < 1,
and therefore fractional. Considering instead of u; the generalized eigenfunction for energy
2 cos(k) satisfying boundary condition ¢ # 0, and assuming (2.6) for the corresponding
5¢7k(mn), we can obtain the same result for any ¢. For details see the proof of Theorem 5.1.

Our considerations have, however, a pitfall. Neither (2.3) nor (2.6) need hold for such a
large set of k’s as we want. We cannot hope for this because we have only limited control
of the argument of the sin term. Fortunately, we do not really need (2.3) and (2.6) in the
presented form. This is because the non-oscillatory term v?/8 gives us some space. We can
“sacrifice” part of it, just as we did when we joined it with the g, (k) term, and still keep a
power growth of Ry. More precisely, we will divide the sin term into two, one of which will
be small with respect to the non-oscillatory term, whereas the other one will have enough
“regularity” for (2.3) and (2.6) to hold. The two cos terms can be treated similarly.

Proof of Lemma 2.1. Let dy = 3(d + dy) and let v ~ (P,%) be any solution for energy E
different from u. Let p, = P(x,+1), r, = R(z,+1) and t,, = ||T(x,)||. The first ingredient
in the proof is Theorem 2.3 from [5] which states that there are ¢, ¢y > 0 such that

cy max{py, rn} < t, < comax{p,,r,}.

Since by hypothesis r,, > e%" /¢, for large n, it follows that for large enough n

t, > ehn, (2.7)
On the other hand, if d3 > max{ds,In(B)}, then for large n
tn < e®n.
Hence if
5= lim ln(tn)’

n—oo n

then do S ) S dg.
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From (2.7) we know that

T mny n—
ZH (T, 2 1)” < co.

175 () |2

This is the assumption of our second ingredient, Theorem 8.1 from [7], the proof of which
(namely inequalities (8.5), (8.7)) yields the following. There is a vector v € R? and ¢y > 0
such that

| Tp(xn)0]|* < cotash + ¢,

with s, = > °_, t 2., Our aim is to show that for large enough n this is smaller than e~2",

The abovementioned Theorem 8.1 also asserts that v generates the subordinate solution
for energy E. One expects that this is different from wu, generated by @ = (u(0), u(1)), which
is a growing solution. We will now prove this claim.

Let ¢ < § < ¢” be such that ¢ < 20’. From the definition of § we know that for large
enough n

< en,
Also there are {n;}32, such that t,, < ¢’ and so
| T (2, )] < coc? ey | =2y )
as j — 0o. Since
2

the subordinate solution is indeed different from u. Let us take it for v, and change P, p,,
¢ and ¢y accordingly. Since Theorem 8.1 from [7] also states that

T (a)oll
1T ()|
it then follows that p, < r, for large n. Hence c;r,, < t, < cor, for large n.
Let a, = a,/n. If n is large enough, then a, € (do,d3). Let b € N be such that
do(b+ 1) > ds. Pick £ > 0 small enough so that ¢/ = e(b+2) < (dy — d)/2.
Since a,n = Y [ (Z; + X;), for large n we have > | Z; > (a, —e)n and | Y ] X;| < en.
Since

”TE(x”j)ﬂW - u($"j + 1)2 + u(znj)g > — 00,

— 0,

n+m
(7 4m) = AGnim(n +m) = Z(Zj + X;) > (an —e)n +dim —e(n +m),
1
for m < bn we have
(an—e’)n—l-dlm‘

Tn+m Z €

Hence for large n

bn [e's)
Sy < Cl_2 Z e—Q(an—g/)n—Qchm + 61_2 Z e—2do(n+m) <ec <6—2(an_g')n + 6—2do(b+1)n>
m=0

m=bn
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for some ¢ > 0. It follows that
1T ()32 < 2cc02 (e(Qan—4(an—€’))n i 6(2an—4do(b+1))n> 4 ey 2e2anm
< (e7 e e < 3de
The rest is an easy computation. From (1.4) we have
Pz, 4+ 1) <2 (v(zy +1)* +0(2,)?) = 2||Tp(2,)0]]* < 6™
for large n. Since this holds for any d < d;, the result follows. [

3. ESTIMATES ON GROWTH OF 0

From now on let us write 0(z,, k) instead of 4(x,). As mentioned before, the key to
our results are estimates on 2-0(xz,, k) which we denote 6 (2,,k). Differentiating the first
equation of (1.5) with respect to k, and using sin?(#) = (1 + cot?(9)) !, we get (as in [6])

0(x) = V() S sin*(0(x))

sin?(0(z)) + [cos(@(m)) - b‘l/n(k sin(0(z ))]2

For our potential V;,, and for # = z,,, the denominator is

0
— 1
ak@(:v—l— ) =

anp = 1+ vpsin(20(z,, k) + visin?(0(x,, k))
and so
§/<£L‘n+1, k) =21 — 0+ 60 (x, + 1, k)
5/(%, k) L cot(k) sin?(0(z,, k)) (3.1)
Qn k Qn, k

The denominator a,,  is in the interval [Cs, Cy] C (1 — (wq + w3), 1 + (wq + w3)) with

= Tn+1 — Ty +

w2 A w2

(=14 2+ (—1)'way/1+ -2,
Notice that C5Cy = 1. The last fraction in (3.1) is in some interval (—M, M) for any n and
any k € I. From (3.1) one can show that as n — oo, gl(xn, k) gets close to x,. Indeed, if for

some n we have 0 (z,, k)/z, € (Al, Ay) forall k e T (and some A; € R), then

0 (241, k) A M A, M
- ey =y 1+- (=21 .
Tng1 © + Cy D + Cs " i

Iterating this, one proves that for any D; < C5 = (7 —1)/(y — C3) and Dy > Cs =
(v —1)/(y — Cy) there is ng such that for n > ny and all k € [

!/

0 (zn, k)
T
This is because (7 —1)/(y — C; ') are the fixed points of the map A +— 1+ (A/C; — 1)y}

and C3' = Cy. Thus (Dy, D,) is an interval containing 1, which can be made as small as we
need by taking v large enough. This will play an important role in our considerations.

€ (D1, Dy). (3.2)
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For n > ng let K, ; and K, » be the smallest and largest numbers in I such that 0(z,, K, ;)
is an integral multiple of 7. Notice that by (3.2) the distance of these numbers from the cor-
responding edges of [ is smaller than 7rD1’1fy_". Let k1= Ky <kpo < <kpj, =Kpo
be all numbers in I such that 6(z,, k;) is an integral multiple of 7. Let I,,; = [k, kn.jt1]-
Then (3.2) implies that

|L,;] € (rDy 'y ™™, wDy ™). (3.3)

We will slightly alter the oscillating sin term on each I, ;. This way we will obtain the
(previously mentioned) more regular term for which we can prove (2.3) (and later (2.6)).
This is the content of Sections 4 and 5. But before that, we present an additional argument.
It turns out that by considering @ (., k) one can improve (3.2) and (3.3) on small scale
(i.e., the scale of I,, ;). This improvement is not essential for our results; it only yields better
numerical estimates for large 7. Differentiating (3.1) with respect to k one obtains

_ 0 (xn, k) = 29 20(z,, k) + v2sin(20(z, k _ .
9”(%+1, k) = —(ax i ) - [9/(%, k)] vk cos(20(z );2 Ve sin(26(zn, b)) + bn,lﬂ/(In, k) + bn
n, n,k

where b, g, I;nk € (=M, M) for some M and all n, k. Then for n > ng (since a;}f < Cy),

0" @ns1, )| Cal0 (@n, k)|, D3CH(2ws +w}) | 2MDy

2 — A2
anrl v

Similarly as above, by iterating this we obtain that for large enough n (say n > nq for a new
ng) and all k € 1

2 2 1 -
T, v Yyt

/!

0" (z0, k)| _ D3CE(2ws +wh)
T -2

This is because the fixed point of the mapping A — CyA/7? + D3C?(2wy + w3)/4? is
D2C% (2w, + w3)/(7* — Cy), and because Cy < 2.

If n > ng, let D and D5 be such that for any k € I,
0 (xa, k)
xn

€ [Dy7, D3], (3.2)

and the interval [D/, D}”] is smallest possible. From (3.3) and the obtained estimate on
|§//(aﬁn, k)| we have that

m D3C3(2wy +w3) o, _, 7wD3CI(2wy + w3)
’Y =
Dy 72 -2 K Dy(y? - 2)

Notice that Dy — Dy = ¢/, and so as 7 — o0, the estimate (3.2") is better than (3.2). We
also have the obvious improvement of (3.3), namely

I, € [r(Dy") 'y, m(Dy) 1y (3.3)

Now let

07 — min {WD%OE(2U)2 —i—w%) D2 — D1 } .

D¥?-2) ' Di
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Since D; < D’f’j < D;L’j < D,, we have
Dy’ — Dy <o, < DD
D} D,
for all 7 and n > ny.

4. FRACTIONAL DIMENSION FOR A.E. BouNDARY CONDITION

Let us now turn to the announced division of the sin term in two. Since (Cs — C5)/C5 =
(Cy — C3)/(y — Cy), we can pick Dy, Dy close to Cs, Cg so that (Dy — Dq)/D;y is arbitrarily
close to (Cy — C5)/(y — Cy). Since C3 and Cy (as well as Cy and Cy) are independent of +,
and C7 < (Dy — Dq)/D;, we can make C7 arbitrarily small by taking v large enough. Let

us do this so that
07 Wa 3w%
— =4+ —= ) 4.1
- (2 + g <y (4.1)

For k € I and n > ng we let
1,7t sin(20(x,, k))ds k€ I, ;
Onlk) = {|0 A o) ke I\’EKM, Kl
and define
X, (k) = sin(20(z,, k) — Qn(k).
Notice that

/ X, (k) dk =0 (4.2)

for any j. Also, by (3.2)
= 2Dy —Dy?_C
|2, K)) — X ()] = |Qulh)] < 22— D2 CF
T Dl’ + D2’ T
for any k& € I and n > ng. This is because |Q»| is maximal possible on I, ; if g equals D?’j ™
when sin(26) is positive and D574 when sin(26) is negative (or vice-versa). And in that
case we have equality in the first inequality above.
Therefore we have

If we do the same with the other two oscillating terms (the corresponding I, ;’s and X,,’s
will be slightly different), the three terms containing C; will add up to
C7 <w2 3w%

T 2 8

So if we prove (2.3) for X, in place of sin (and similarly for the two cos terms), we will still
keep a power growth of Ry. We will be able to do this using (4.2).
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To this end we need estimates on the covariances of the X,,’s, so take n > m > ngy. Then
for all j we have (4.2), whereas from (3.2) it follows that X, takes on I, ; values within an
interval of length at most Doy™|I,, j| < 7Dy Dy 'y™~™. Therefore

/ X X, dk
I

Notice that this might not be true if I, ; contains some k,,;, points where X,, may be
discontinuous. But this is not a problem because the total length of such I, ;’s is of order
A™~™. Since also |I\[Kp 1, K2]| ~ ™ and the X,,’s are bounded, we get for n > m > ng

/Xan dk
I

7TD2
< e m—n [n |
— D1 Y | ) |

S C,ymfn

By Cauchy-Schwarz inequality

15

n=ng+1

dk <c /1< i Xn>2dk

n=ng+1

1/2

- N 1/2
= / YooXI+ ) 2X,X, dk:] < ¢(N 4+ eN)Y?* < eN'V?
I

n=ng+1 no<m<n<N

(the value of ¢ changes in each inequality, but is independent of N). Thus

which means that for a.e. k
N4
Zn:no+1 X”l

because > 7° N2 < co. Since the X,,’s are bounded and [(N +1)* — N*]/N* — 0, it follows
that for these k

N
Zn:no—l-l X” _
N
and so
N
Zn:l Xn N O
N

Theorem 4.1. Let H, be the discrete Schrédinger operator on Z* with potential V, ., given
by (1.6), and boundary condition ¢. Let uy be its spectral measure. For any closed interval
of energies J C (—2,2) there is vg > 0 and o € N such that if 0 < |v] < vy and v > 7y is
an integer, then each g is purely singular continuous in J, and for a.e. ¢ the measure L,
has fractional Hausdorff dimension in J.

Remark. A priori, 79 depends on v. However, since in (4.1) we have C; = O(v?), C; =
O(vy™?) and wy = O(v) as v — 0, v — oo, we can choose 7y uniformly for all small v.
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Proof. Let I C (0,7) be such that 2cos(I) = J. The above discussion and (2.2) show that
there is A C I with |A| = 0, such that for any k € I'\ A there is ny (k) such that for n > n; (k)

Rk(xn + 1) c (ecln’ecﬂb) — (xﬁl xﬁQ))

nJrn

where

_ iO7 w2 3w§ .
szcz+( 1)?(?+? >0 (1—1,2)
and 5; = ¢;/In(y). Take ~ large enough so that 0 < 1 < (2 < % It follows from the
constancy of Ry on [z, + 1, z,41] that (2.5) holds for k € I'\ A.

Using Lemma 2.1 with

C 3w3
dt (O () -1

in place of dy, dy, one gets for these k the existence of a vector uf"™ € R? such that the fol-
lowing holds. If u§™ ~ (P4, ) is the generalized eigenfunction for energy 2 cos(k) generated

by ", then for some small &
Pu(z, + 1) < e~(@ton — g=hi=e/In(v)
Since Py is constant on [x,_1 + 1,x,], we have

[Pl < ¢/ Lt202e i), (4.3)

Since u{"™ is the subordinate solution for energy 2 cos(k), all other solutions for this energy

grow (in power) no faster than Rj. Also, g4 restricted to I is supported on the set of those
k, for which u$"P satisfies the boundary condition ¢ (this is because e has no a.c. part; see
3]), and so P, = Ry . Then we have by Propositions 1.2, 1.3 and by (2.5), (4.3) that for
any ¢ the restriction p,((I\A) N-) is (1 — 20,)-continuous and (1 — 2 )-singular. By the
theory of rank one perturbations (Theorem 1.8 in [10]) we know that ,(A) = 0 for a.e. ¢,
and so for a.e. ¢ we have the same continuity/singularity of j,(1 N -). O

To get numerical bounds on the dimensions, one needs to evaluate constants C;. These
depend on w; and therefore it is best to consider (for given v and large ~) a small interval
I around each k, so that w; =~ |v;|. One then obtains bounds on local dimension of s,
which will be k-dependent. We will, however, first present an additional argument which
will considerably facilitate this (by eliminating constants Cy, C; and C5) as well as improve
the obtained bounds.

Let us push the above ideas a little bit further. At the beginning of this argument we
introduced the term g, (k) as the sum of all third and higher order terms in vg. One can,
however, write down all these terms explicitly, using the Taylor series of In(1 + x).

In(Ri(z,, + 1)) — In(Re(2p-1 + 1)) = %111(1 + v sin(20(z,, k) + vf sin®(0(x,, k;)))

(=1t (a+b) +2b i a(og . 2b(g

= 5 —t v sin®(20(xy, k)) sin® (0(z,, k)).

s 2a + 2b a
a+b>1

If |vi| + v; < 1, then the sum of the amplitudes of the terms of this sum (with n fixed)
converges absolutely.
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Now notice that all terms with odd a are oscillating, whereas terms with even a do not
change sign when varying n. This will allow us to obtain more precise bounds on the
dimension, since, once again, the contribution of oscillating terms will be (for a.e. k) negligible
in comparison with that of non-oscillating terms. This will be proved by the same methods
as above. We will replace the oscillating term sin®(26(z,, k)) sin®(0(x,,, k)) by a more regular
term sin®(20(z,,, k)) sin®(0(z,,, k) — Qn.ap(k), With Q, 44(k) small. The fact that we now
have an infinite number of terms will not cause problems because the sum of their amplitudes
converges absolutely.

First we need to do what we have already done once. We will split each non-oscillating
term in two, a constant and an oscillating term. The latter will be treated as the other
oscillating terms. We define

1 m
Fop = —/ sin®(26) sin? (6) d6.
0

7r
If 21 a, then this is 0 and

Whan(k) = sin®(20(z,, k)) sin® (0(x,, k))
is oscillating. If 2|a, the corresponding term is non-oscillating and we split it into F,; and

Wiap(k) = sin(20(z,, k)) sin® (0(wn, k) — Fop-

Let
(_1>a+b+l a + b
F(v) = Sy F,
() Z 2a + 2b a ) .
a,b>0
a+b>1
1 a+b
G = § : a+2b'
(vs) 2a + 2b( a )|Uk|
a,b>0
a+b>1

Then F'(v) is the sum of all the constant terms, and G(vg) is strictly larger than the sum
of the amplitudes of the oscillating terms (for fixed n). Notice that

G(ox) = =5 In(1 — Jvr| — vg)
and (see [8, 6])

1 /™1 ) ' 1 02
F(ue) = ;/0 3 1n<1 + vy, sin(20) + v} sm2(6)> df = 3 In (1 n Zk) _

We take v large so that C7G(v;)/m < F(vy) for all k € 1.

Now fix any a,b and consider all the W, ,;’s. We can do everything as above. Take the
intervals I, ; (these will be different for 2|a and 2 { a, just as they were for the sin and cos
terms). As before, the integral of W, ., over any I, ; is close to 0 (it would be exactly 0 if

6 (2, k) were constant on I, ;). Thus from (3.2) we know that there is @, (k) such that
|Qn,a b( )| < C’7/71— and for Xnab( Wnab( ) Qnab( ) we have

/ Xn.ap(k)dk =0.



SPARSE POTENTIALS WITH FRACTIONAL DIMENSION 17
As before, one can use this to prove that

nyzl Xn,a,b
Prat (4.4)
for a.e. k. This holds for any a,b. Since the number of these pairs is countable, we have
that for a.e. £ (4.4) holds for any a,b. Using the fact that the sum of the amplitudes of the
oscillating terms is finite, we obtain that

N
1 (=1) " Ca 4+ b\ oo
NZ Z St \a )Y Xnap — 0
n=1 a,b>0
a+b>1

for a.e. k. Then for each such k and for large n > n;(k) we have
Ri(z, + 1) € (e, e2"),

where ¢; = ¢;(k) = F(v,) + (—1)'C7G(vy,) /7 (remember that G(vy) is strictly larger than
the sum of the amplitudes). We know from [10] that for a.e. ¢ the spectral measure j, is
supported on the set of these k’s because it is a set of full measure.

Let us now estimate C; for |vg| 4+ U,% < 1. Let I be a small interval around k. so that w, is
arbitrarily close to |vg|. Then Cy — C3 < 2(|vg| + v3) and Cy < 2, and one can pick Dy, Dy
so that (Dy — Dy)/Dy < 2(|vk| +v)/(y —2) and Do/Dy < /(v — 2). We trivially have
72wy + w3)/(7? — 2) < T(Jug| + v})/~?* for small T and v > 5. So we obtain

28(|ve| + i) 2(Jvel + Uﬁ)} _
(v=-2 7 y-2 ’
Let I be small enough so that for any &' € I

c1(K), (k') € (F(vk) — %G(vk), F(ug) + %G(v@) :

C7 < min{ (4.5)

Repeating the proof of Theorem 4.1 we obtain

Theorem 4.2. With the notation of Theorem 4.1 let v > 5, F(z) = $In(1 + %) and
G(z) = —3In(1 — |z| — 2?). For k € (0,7) let E(k) =2cos(k), vy = TIOL
2
a(k)=1-2 (v) + G ),
In(v)
F(u,) — 28(Jok|+vp) Vs
as(k)=1-2 (o) m—2)* (o0)
In(7)

Then for a.e. ¢ we have for all k such that |vy| +vi < 1 and as(k) < 1, that on a small
interval around E(k) the measure ps is oy (k)-continuous and as(k)-singular.

Remarks. 1. Notice that the hypotheses imply that aq(k) > 0 whenever as(k) < 1.

2. So under the above conditions we know that for a.e. ¢, the local dimension of the spectral
measure is within an interval which is close to 1, and for large ~ its size is small compared
to its distance from 1.
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5. FRACTIONAL DIMENSION FOR ALL BOUNDARY CONDITIONS

Now we turn to the proof for all boundary conditions. We return to considering the term
gn(k) and three oscillating terms first. We again restrict our considerations to the sin term,
the two cos terms are treated similarly.

It turns out that the X,, from Section 4 are not regular enough to prove (2.6) (with sin
replaced by X,). Therefore we need to make a new breakup of the oscillating term to
obtain a more regular X,,. This is done in the Appendix in the proof of Theorem A.1 (with
fulk) =20(z,, k), 3=2,6, =1 — Dy and 6, = Dy — 1). Using the reasoning from Section 2

we then obtain our main result:

Theorem 5.1. Let H, be the discrete Schridinger operator on Z*+ with potential V, ., given
by (1.6), and boundary condition ¢. Let py be its spectral measure. For any closed interval
of energies J C (—2,2) there is vo > 0 and vy € N such that if 0 < |v| < vy and v > yov =2
is an integer, then for any ¢, the measure p, has fractional Hausdorff dimension in J.

Remark. A priori, 7o depends on v. However, (5.1) below gives ¢ = O(v) as v — 0 (since
Cy = O(v?), C; = O(vy™2) and wy = O(v)). So if v = O(7?) = O(v™?), then in (5.2)
a(e) < 1 (because Dy, Dy — 1 as v — 0). Compare with the remark after Theorem 4.1.

Proof. Let I C (0,7) be such that 2cos(I) = J. Let of =1 — (wy + w3)/In(y) > 0 (with
wy+w3 < 1 and v > 3). We already know that by Proposition 1.2 ji, is o/;-continuous on I.

By the Appendix, the absolute value of the “small” term sin(260(x,,, k)) — X,,(k) from the
new breakup is at most 7(d; + d2)(1 — 6)7t < 7C7, and for all € > g9 = 9(Dy, D2, 7y) =
(2In(1 + %DQDI_I))U2 there is A® with dim(A®) < 1 such that (2.6) with X,,(k) in place of
sin(20(z,, k)) is satisfied. Here Cy7,e9 — 0 as Dy, Dy — 1 and v — oo, which is guaranteed
when v — oo. Hence we proceed as follows.

This time we let v, D; and Dy be such that

(this is possible for all large 7). Then for n > ng we have

N N
(% — Wy T Vg,
n=nop+1 n=nop+1

We do the same with the other two oscillating terms, and the three terms containing C'; add
up to

7r wy  3w?
2 2 8

—Cy —+—)N<01N

Next, we choose € with

wy  3w3 s wy  3w3
=472 i 2y 2 1
0<6<2+ 8)<C'1 207(2—1—8 (5.1)
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and we take v large enough so that ¢y < €. By the Appendix there is a set A° such that
10D.
e —2n (1+12:)
21In(vy)

and (2.6) holds with sin replaced by X,,. Similarly for the other two oscillating terms, and
we let A® be the union of the three sets.
From the above discussion it follows that for k£ € I\ A and n large enough we have

dim(A%) <ae)=1-—

(5.2)

Ri(zy +1) > ™ = g (5.3)
where
T wy 3w}
cg =01 — <§C7+€> (7—1—?) >0
and 51 = c¢1/In(7y). It is known (see [4]) that for a.e. k w.r.t. ug we have
i Bl

L—oo L1/2 hl(L)

Given (5.3), this can be true only if 1o(1\A%) = 0. Thus po(f N -) is supported on A°.
Hence on I the measure g is (dim(A®) + 0)-singular for any 6 > 0. Since Dy, Dy can be
arbitrarily close to C5, Cs, and since Cg/Cs < /(v — 2) if wy + w3 < 1, we have

0
e =2 (1+:15)

21n(y)

So po is ady-singular on I. If in this argument we replace uy by the generalized eigenfunction
for the same energy satisfying boundary condition ¢, we obtain the same singularity for zi4.
Now take v large so that af, < 1, and the result follows. O]

dim(A%) <ay=1-—

At this point we can do the same as what we did after proving Theorem 4.1: consider an
infinite sum of terms instead of g, (k).

Now we use a different type of regularization of the oscillating terms, but everything
can be done as before, with one adjustment. We need to use Theorem A.3 in place of
Theorem A.1, which gives us a different bound for the difference of the oscillating term
sin®(20(xy, k)) sin® (6(z,, k)) and its regularization X, ,5(k), namely Z(a+b)Cy. The deriv-
ative of the oscillating term enters here, and we use the (very crude) estimate

|[sin” (26) sin®(0)]'|| _ < (a+ b)||[sin(20)]'||__.

So this time we need to take F'(v;) and G(vg) as before (the latter will be the coefficient
for ), and also

~ 1/a+b 1 |og| + v}
G — 2 - at2b _ — k
(V) 2( a )’vk| 21— |vg| — v}

a,b>0
a+b>1

which will be the coefficient for FC7. We take v large so that TC7G(vx) < F(vy), and take
€ > 0 such that

cG(vy) < Fluy) — gC'7é(vk).
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Then given any pair a,b we construct the set Ag, for X, .. We show, as above, that its
dimension is at most «(e). Letting the (countable) union of these sets play the role of A¢ in
the proof of Theorem 5.1, and considering (4.5), we obtain

Theorem 5.2. With the notation of Theorem 5.1 let v > 5. For k € (0,7) let E(k) =

2cos(k), vp = BT
v? 147 (|og | +v?2)?2
n (1 + Tk) R K e
£p =
’ —In(l—fo —of)
_ o lul
2 10
€k — 21n (1 —+ T)
ay(k)=1-— i

21In(y)

If k is such that |vg| + v < 1, &, > 0 and ab(k) < 1, then on a small interval around E(k)
each piy is o/ (k)-continuous and oly(k)-singular.

Remarks. 1. Notice that the hypotheses imply that o (k) > 0.

2. So for large v, the dimension of each spectral measure p, is within an interval which
is close to 1, and its size is comparable to its distance from 1. The estimate for a.e. ¢ in
Section 4 is better by a factor of v~ 2.

To illustrate the obtained results we provide an

Example. Let us assume that v, v and I are such that v > 10% 72, and |v;| < % for any
k € I. Estimating the quantities in Theorems 4.2 and 5.2, one can obtain

In (1 + %) 10 In <1 + %) 10
S R T R T KR Ty R s eTay
and
T, [os] + v Ui
bl < |1 B 1 - oo

(notice that vy = —2v/v/4 — E?). For instance, take v = 5, v = 10° and J = [-1.9,1.9].
Then for a.e. ¢ the local dimension of p, at any £ € J is in

1 1
In <1 + 100(4—E2)> 1 . In (1 + 100(4—E2)> 1

1— —
61n(10) 1012’ 61n(10) 1012

and for all ¢ it is in

1 1 1 1
1 — 1— Cil——=,1——1.
{ 201n(10)v/4 — E?’ 105 In(10)(4 — E2)] = { 10’ 1061
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6. RANDOM OPERATORS

In this section we consider potentials of the form (1.6), with certain randomness in the
position of the special sites xz,. More precisely, z, will be a random variable uniformly
distributed over {y" —n,...,7" + n}. The fact that the size of these sets grows will yield
certain “averaging” of In(Ry(x, + 1)) — In(Rg(z,—1 + 1)) and thus a constant growth (in
the limit n — o0) of In(Ry(z, + 1)) for a.e. realization of the potential. As a consequence
we will be able to compute the exact dimension of the spectral measures for these random
potentials.

We begin with a standard result.

Lemma 6.1. For a.e. x € R there is qy such that for any integer q > qo we have

dist(qz,Z) > =

@

(6.1)

Proof. For any n € N the measure of the set of z € [n,n + 1), for which (6.1) fails, is
2¢~2. This is summable in ¢, and so by the Borel-Cantelli Lemma the measure of those
x € [n,n+ 1) for which (6.1) fails infinitely often is zero. O

Let X be the set of all such x and let I = 27 X. Notice that I is a set of full measure,
not intersecting 27Q. The “averaging” result we need is also well-known.

Lemma 6.2. Let k € K and let f € C*R) have period 27 with fo t)dt = 0. Then there
is C = C(k, f) < oo such that for every 6 € R and n € N

zn: £(6 + Ck)

(=1

Proof. Let 322 ase'® be the Fourier series of f(t). Since f is C*, we know that |a,| < cg™*
for some c¢. Thanks to this fact all the sums appearing in this argument are pointwise
absolutely convergent. Also, ag = 0 by the hypothesis. We have

Zf(9+€k) §Z|Qq| Zeiqek Z| q|
(=1 q =1

970

<C.

1 — ezan

ezqk
9

|aq| 1
< - -
Z dist(gk, 277Z) C; q*dist(qz, Z)

where © = k/2m € X. By Lemma 6.1 this is bounded by

= 1
CZ S =0C<
— ¢
where ¢ < oo depends on z and c. O
Let w,, be a random variable uniformly distributed over {—n, —n+1,...,n} and let (2, )

be the product probability space for these w,’s (n € N). For w = (w1,ws,...) € Q let

(@) —
voT =Xy v 4+ w, for some n > 1,
(l’)—{ (6.2)

0 otherwise.
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It is a consequence of the “smallness” of w,, (compared to 4™), that all previous results for

Vi, apply to each %(,“A;) as well. In this random case, however, we will prove and compute
exact (local) dimension for the spectral measures for a.e. w and a.e. boundary condition ¢.
Moreover, our results will apply to any v, k& and v, not only to small v and large ~.

Let us fix k € K and define

1 s o7 (W) 2.:2(7 ((w) 1 U/%
Xp(w)=35In (1 + g sm(26k (z )) + v}, sin <9k (zl ))) —5In (1 + Z) .

Obviously | X, (w)| < M for some M = M (k) < co. We will prove that for a.e. w

N
Zn_1]\4;(n(w) -0, (6.3)
which in turn implies (see below) that the exact dimension of ,u((;) for a.e. w and a.e. ¢ is
) 1n(1+%) , ln(l—i—%)
In(v) In(v)

We use the same methods as earlier. We exploit Lemmas 6.1 and 6.2 to show that the
expectations of the cross terms X,,X,, for m < n are small, which implies (6.3) for a.e. w.
This time, however, we consider expectations w.r.t. w, rather than k.

Let
2
f(o) = %111(1 + v sin(260) + v} sin2(9)> —iln (1 + %) .
Then f(0) = f(0 + 27), OZW f(0)dd =0, and f is C*, so f is as in Lemma 6.2. Let §,w €
be such that §; = w; for j = 1,...,n — 1, and 0, = w, + [ for some . Then the recursive

relation for the EFGP transform of generalized eigenfunctions implies that if X, (w) = f(6)
for some 6, then X, (d) = f(6 + (k). This shows why Lemma 6.2 enters in our argument.
For m < n we have with E = E,,

< max {M‘E(Xn\wl =C1y.. ., Who1 = cn_l)‘ }

C1,C2,..-,Cn—1

IE(X,,X,)| < max { ’E(Xan Wi = 1y Wt = Coit)

C1,C2,..-,Cn—1

By Lemma 6.2 there exists C' < oo such that the last expectation is at most C'/(2n + 1).
Hence for fixed k € K there is D = D(k) < oo such that for m <n

D
IE(X,X,)| < =.
n
Then
N o\ 1/2
) <E ( Xn> < (M?N +2DN)Y? = N2,
1

n=

N
(-

As before, using summability of E (‘N -4 22;41 X,
(6.3) holds for a.e. w.

) and boundedness of X,,, one shows that
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We have proved (6.3) for a.e. k and a.e. w. By the Fubini Theorem, (6.3) holds for a.e. w
and a.e. k. Thus for these (w, k) we obtain an exact power of the growth for the solution wuy.

Namely we have that for any
1 V2
1 <§1n<1—|—zk> < ¢y

there is ng such that for n > ng
Ry, (2@ + 1) € (e, e™).

Also, Lemma 2.1 gives us the existence of a subordinate solution u}
2 cos(k), so that for large n

sub

~ (Pyg, ) for energy

P, (xﬁf) + 1) <e 9™
Since for any such w, for a.e. ¢ the spectral measure u((;) is supported on the set of the
corresponding k’s, one can conclude (by methods presented earlier) the following
Theorem 6.3. Let (Q,v) be the above probability space. For w € Q let H ) be the discrete

Schrodinger operator on Z+ with potential Vv(,7 , given by (6.2) with v # 0 and v > 1, and
boundary condition ¢. Let ,u((;’) be its spectral measure. Let

2 2
J={—yfa- T Ja- Y
v—1 v—1

(w)’iS

if v2 < 4(y—1), and J = 0 otherwise. Then for a.e. w and for a.e. ¢ the measure He
purely singular continuous in J, with local dimension

In (1+ %)
In(y)
and it is dense pure point in the rest of the interval [—2,2].

1—

7. WHOLE LINE OPERATORS WITH SYMMETRIC POTENTIALS

It is readily seen that our results also apply to certain whole-line operators (satisfying
(1.1) for & € Z). Let us consider the operator H on ¢*(Z) with potential V, , given by (1.6)
for > 1 and by V,(z) = VM( z) for z < 0. This potential is reflected about 3. One
casily sees that H = Hl|e ® H|o where & = {u € (*(Z) | u(l — z) = u(z) for all z € Z}
and O = {u € (*(Z) | u(l —z) = —u(x) for all z € Z} are, respectively, the even and odd
subspaces of (?(Z).

On the other hand, if §; is the delta function at x = 1, then
Hle =2 Hy+ 6, = Hax,
. ‘ (7.1)
H|lo 2 Hy— 0, = H=

by simply taking the restriction of uw to Z*. Hence fi = fir/s + fi3-/4 is a spectral measure
for H, and all we have proved about the measures for the half-line operators applies to ji.
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Notice that variation of boundary condition (i.e., of V(1)) in the half-line case correponds
to varying V(1) = V(0), as can be seen from (7.1). We conclude:

Theorem 7.1. Let H be the discrete Sch'r’odmger operator on Z, with potential V;w given
by (1.6) for x > 1 and reflected about 1. Let Hy = H — tan(¢)(dy + 01) and let fis be the
spectral measure of H¢ Then the statements of Theorems 4.1, 4.2, 5.1 and 5.2 hold for H¢,

If instead of H and V, ~ we consider H® and V% 5 (given by (6.2) and reflected about 5 )
and H;w = H“ —tan(¢)(0y + 01), then the statement of Theorem 6.3 holds for Héw).

APPENDIX. A DIMENSIONAL ESTIMATE

Theorem A.1. Let v > 1, B > 0 and 61,02 € [0,1). Let I be a finite interval and let
fn € C(I) be such that

/
k
fgLV") € [1— 61,1+ 0o (A.1)
for alln € N and a.e. k € I. Let
F(k) ]\l&noo— Zsm fu(k |

and A® = {k| F(k) > e}. Then there is €y = €o(d1, 0a,7) with g — 0 as 61, 2,7~+ — 0 such
that for e > g the set A° has Hausdorff dimension less than 1.

Remarks. 1. In fact, we obtain

e — ﬂ—5l+i2>2 —2mn (1+042)

. ( v 1-61
€ < —

whenever € > Z(d; 4 d2)(1 — ;)"

2. Similar questions have been studied using dynamical systems and Riesz measures (see,
g., [2, 9]). The methods, however, seem to require §; = d, = 0 and vy € N.

3. This result is only useful if we can take € smaller than 1. Hence even in the case §; = 63 =0
it applies only when + is large (larger than 10/(y/e — 1)).

4. See Section 5 for the application of this result in the present paper.

The rest of this appendix is devoted to the proof of the above estimate. First, we explain
the presence of the term (d;+0d5)(1—0;)~!. The reason is the same as in Section 4. We need
more regularity than the functlon sin( f,,(k)) possesses, and so we will need to break it up in
two terms. One of them will be small, with absolute value not more than (8, +d,)(1—d1) ",
whereas the other one will be regular enough so that we will be able to prove for it the
above theorem with (¢ — ...)? replaced by just €2. These two facts then yield the theorem
as stated. We note that the regular term, denoted X,,, will be different from the X,, term
from Section 4, which is not regular enough for the purposes of this argument.



SPARSE POTENTIALS WITH FRACTIONAL DIMENSION 25

Before we perform this breakup, notice that if we define intervals I,, ; = [ky j, kn j+1] in
the same way as in Section 3, but with 20(x,, k) replaced by f,(k) (i.e., so that f,(k, ) are
multiples of 27), then (A.1) implies

2T 2
ITL 1 E 9 A2
i [ﬁDﬂ" ﬁDW"} (4.2)

Wlth Dl = 1—(51 and D2 = 1+52
We now define for k € 1

Falkns) +2r5tms e,
@n(k) = 51
fu(k) ke I\[Kp1, Knpl.

Notice that ¢, (k, ;) = fu(k,;) for all j, and ¢,(k) is linear on each I, ;. So if we let
Xn(k) = sm(gpn(k)) then X, is a series of exact sin waves on intervals [, ;. This is the type
of regularity we need and X,, will be the regular term in our breakup.

Now we want to estimate the small term sin(f,(k)) — X,(k). To do that, we need an
upper bound on |f,(k) — ¢,(k)|. This will be maximal if f) (k) equals SD;y"™ on some
interval (ky, j, k. ; +¢) and SDyy™ on (ky, ; + ¢, ky j41) (or vice-versa), and the maximum will
occur at k, ; + c¢. Since in such case BD1vy"c 4+ BD2y" (|1, ;| — ¢) = 2w by the definition of
k, j, we can compute |1, ;| and ¢, in terms of ¢, and then maximize for c. We obtain

VD, D,

(k) — on(k)] <2 ™ D+ VD,

which yields the above claimed estimate
D2_D1 < 7T(51+52

[sin(fa(k)) = Xn(B)[ < fa(k) = pn(k)] < 27 —=5= < 57—~

Now we only need to treat the term X,,. We start with a technical

Lemma A.2. There is a constant cq such that for anyn > 1 and any 0 < e < % we have

|5 —en] N
Z < ) < con2"e’252".
J

J=0

Remark. By the normal approximation to the binomial distribution, the left-hand side is
roughly 2"®(—2¢y/n) < 2ne~2*" where ® is the standard normal distribution function. The
extra factor n is added for convenience of proof and can be removed.

Proof. The sum is obviously smaller than n(LﬂfEn J), so we will estimate this. By Stirling’s
2
formula we have for n > 1

Cl\/_<

for some c1,¢2 > 0. Let [2 —en] = (

( noY L o/ (2)" ST
G=0)n) = [G-om) GO rom) om0 [ \2 2
o [52] ]

e

n n
> <n!< CQ\/E (g)
- 5)n (hence ¢ < ¢§ < %) Then
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Since ¢ < 4, it is sufficient to prove that

P 1ys
1 2 1 2 2
——90 —+9 > 2 1e®

for 0 <9 < % This can be done by taking the logarithm of both sides of the inequality and
observing that the resulting quantities have the same value and first derivative for § = 0,

and the left hand side has a larger second derivative in (0, 3). O

_Let us now study a simple example which will illustrate our strategy. Let us take
X, (k) = sgn(sin(2"7k)) for k € [0, 1] with sgn(0) = 1. Thus X, takes only values 1 and —1,
alternatively on intervals of lengths 27". Let us denote

A}E{k}‘ lim Z” 1X( )>€}.

N—o0 N

We will show that the dimension of A% is smaller than 1.

Let Sy be the union of those mtervals 27N, (j+1)27V] (for 5 =0,...,2Y —1), in which
Zn 1 X, (k) > eN. Their number equals the number of sequences of N symbols from the
alphabet {—1,1} such that the number of occurences of —1 is at most | (1 — )& |. For any
N, the set [Jy, Sn is obviously a (27"1)-cover of A%, and we have by Lemma A 2

| 652N

h* (A% <N111an22aN Z ()

_Nl
< lim 2- O‘Nc N2Ne™ N
B Nl*)oo ZJV
=iV1
o0 1 52 N
= lim colN (2 _0‘6_7>
Jim > e
N=N;

52
If a < 1is such that 2'~%e~> < 1, we get h*(A%) = 0.
Since we can do the same for

B% E{k“ lim Z" 1X( )<—€},

x N—oo N
it follows, that the set

{k‘ Tim
N—oo

has dimension at most o < 1.

We would like to prove now a similar result for our X,,’s. There is, however, a problem.
The technique used in the above example was applicable to finite-valued functions only.
Thus we have to “discretize” X, via another breakup into a “small” and a “nice” term. Pick

Ly Xnlk)
N

>€}:A§~<UB§~<
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p € N and define

[pXn(k) + 3]
p

Then Y,, takes values % for j = —p,...,p and | X, (k) — Y, (k)| < 5. Later we will take

2p
p — 00, and then results which we prove for Y,, will apply to X,, as well.

Finally we will break up Y, into p even simpler terms. Let

Y(k) = sgn(Yo(k)) if [Ya(k)| > £,
" |0 otherwise,

Y, (k) = (A.3)

fori=1,...,p. Then Y, ; takes only values —1, 0 and 1, and Y, (k) = % LD

It is obvious from the construction of Y, ; and the fact that X, is a perfect sin wave on
I, j, that on any I, ; we have
(0 kel (i) = [kny, kny + ail L)),
1 kel (i) = [y + ail Ll kny + (5 — i)l 1],
Yoik)=q0 k€L (6) = (kuj + (5 = @) Lngl, kny + (5 + ai) [ Lngll,
1 kel (i) = (ko + (5 + @) Lol kng + (1= ai) |1 50),
(0 ke ]2,j<.) [Fon g + (1= ai)[ L jl, Kk jia],
where a; = 5= arcsin((i — 3)/p). Hence we have
|1, ;1) U I} (i) U L (3)]
|In7j|
20 _ ol 1
251 Lyl 2

To complete our argument, we will prove that for €2 > 21In(1 + 2 D2 Dy 1) the sets

A;z{k)m M»},

N—oo N

= {k‘z\lfinoo Z" ﬁ\fn( ) <—5}

have dimension smaller than 1, and then deduce the same for X,,. To this end it is sufficient
to show that for any ¢ = 1,...,p the set

Az (i) = {k( i Lt Yi(k) >s}

N—oo N

= 46Li,

(A4)

has dimension smaller than 1. This is because

P
A A,
i=1
and similarly for B;.
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Fix some i and . Let I’ be any closed sub-interval of I, not containing the endpoints of I.
Let Ny be such that for all N > Ny we have I’ C (Ky 1, Ky2). Let us consider Zgiﬁoﬂ Y,
on I” and denote

A= {k el

Obviously A = Af(i) N I'. Hence proving that dim(A) < a with a < 1 independent of I’
and 7 will be enough to show dim(4;) < a < 1.

As in our simple example, we will cover A by a (recursively constructed) set of intervals.
Let N > 1 and define Ay,n, = {k € I’\Zgjﬁ,\gl Y, (k) > eN}. Then for any N; > 1
we have A C Uﬁ:Nl Anin,- If k€ Anin, for some N, then the sequence {sn}%;ﬂ‘) with
$p = Y,i(k) can have at most |(1 — )N| zeros, and if it has [ zeros, then it can have at
most

N—o0 N

N+Ng
. i Y,..(k
lim anNo—‘rl , ( ) > E} .

2 2 2 2(N —1) (- Z)J

occurences of —1. The number of such sequences (with [ zeros) is at most

R R R

N-l__eN (N_
N 152 2(N—l>(N bl N _] N 2 2 2 N
() E ) 2z (e
by Lemma A.2.

Let us pick one such sequence {sn}%jﬁo with [ zeros. We will construct a covering of the

set of those k € I’ which generate this sequence, by intervals Iy ny4+1,;. Let Sy, be the union
of those In,+1,; which have nonzero intersection with I’. Now construct inductively S,, from
Sn—1, so that .S, is the union of those intervals I, ;, which have nonzero intersection with
the set

i Ui, scs, 1 (0) if s, = 1,
Sn= U cs @) UL () UL ()] if s, =0,
Ulnngsnfl I;LLJ (i) if 5,, = —1.
We want to estimate | Sy, n,|.- This can be done recursively using (A.4) and these facts:

(1) [Swol < |1
(2) If J is an interval and n € N, then the (Lebesgue) measure of the union of intervals
I, +1; which have nonzero intersection with J is at most |J| + 2(%“Df y~(n D),

(3) For any j we have %”Dfl’y_(”ﬂ) < |I,;|Do(yDy) 1.
Here (2) and (3) follow from (A.2). The net result is
Do\ /1 Dy \ V!
S <|I||(4a; +6—— - —2a; +2—— .
|N+N0|_||<a+ 7D1) (2 " 7D1>
Since Sn4n, is a union of intervals Iy n,+1,;, their number is (by (A.2)) at most

6D,\" /1 2D\ 8D,
I (4a; + —= ) (= —2u; N+l
"(C‘JWDl) (2 “T 2D, o
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Therefore Ay .y, can be covered by at most

L[(1—e)N]

2y (N 6D
-5 N N-1 ) 2
E colNe (l)2 |1] <4az+—7Dl>

=0

z N-1
<1 90, 4 2D2) %VN-&-NO-H
T

2 ’}/Dl

> NN 6D, \' /1 2D, \ ¥
< cNe 3NN da; + —22 S 9a 4 22 oN-—I
< cNe 704 Z<l><a+7D1> <2 a+fyD1

intervals Inyn,+1,5- Let us denote their union Ay .
Now Ux_n, A, contains A, and by (A.2) it is a (%“Dl_lv_Nl_NO_l)-cover. This yields

BE(A) < i - N —% 1 10D, N —(N+No+1)a
( )_Nllinoo Z cN | ve + D, ¥

N=N;

- 2 10D\ \ "
= lim cN (71_0‘6_2 (1 + 2)) .
N1—>OO N "}/Dl

Hence if

we get h*(A) = 0. This is the case for any

10D
221 (1 i le)

2In(y) ’
and so dim(A) < a(e). If €2 > 2In(1 + %DQDl’l), then this is smaller than 1.

As mentioned earlier, it follows that dim(A7) < a(e). Notice that a(e) does not depend
on p. Thus if

a>ae)=1-

AXE{/{:‘]\IZILHOOIT>€ ,

then obviously
Az <4,
p=1

and so dim(A%) < a(e). Since the same result holds for

N
X,
B§zz{kh§m,z;5%73@2<:—s},

we can take A° = A5 U B%. By the discussion at the beginning, this completes the proof.
We conclude with a generalization of Theorem A.1. We denote x4 = max{=+z,0}.
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Theorem A.3. Theorem A.1 remains valid if we take

F(k) = 113100% ZG(fn(/f))‘

where G : R — R satisfies the following conditions:
(1) G is continuous and piecewise C';
(2) G(z) = G(z +27) and [ G(z)dx = 0;
(3) There are 0 = x1 < 29 < -+ < Xy, = 27 such that G is monotone on [r;,x;11], and
G(xj41) = 0 whenever G(z;) # 0.
Remarks. 1. The x;’s are the zeros and local maxima and minima of G in [0, 27]. Between
two zeros G has only one local extreme.

2. In fact, we obtain

2
(remreimomre — 31012 ) — 20 (14 2
2In(7)
whenever £ > Z||G|| oo (| G+l + [|G=lo0) (61 + 62) (1 — 8;) 1, with M being the sum of twice
the number of zeros and four times the larger of the numbers of local maxima and local
minima of G. If in addition G(7 + z) = —G(7 — ), then £(||G4 || + |G- |ls) " in (A.5) is

replaced by just ¢]|G/|| ).
3. So, for instance, for G(z) = sin(z) we have M =2-3+4-1 =10 as in Theorem A.1.

dim(A) < 1— (A.5)

Proof outline. We first assume G(7m + x) = —G(m — z). In that case we proceed as before,
but this time the functions Y,,; can take the value 0 on as many intervals as G' has zeros,
and the value 1 (resp. —1) on as many as G has maxima (resp. minima). That is why 10 is
replaced by M.

If now G is not odd with respect to 7, we notice that (A.3) does not guarantee Y, to
have zero average. However, using the fact that G has zero average, and that any up-
per/lower Riemann sum is larger/smaller than the Riemann integral, we can construct Y,
with fozTr Yo(k)dk =0, || X, — Yalleo < % and such that pY, only takes integer values. The
real price has to be paid when defining Y,,;. If one wants them to have zero average, take
only values 0 and +1/ — 1, and only on as many intervals as G has zeros and local max-
ima/minima, then one may need to take ~ p(||G+||s + [|G-||) of them. Since their sum is
still just pY,,, this time we obtain

p
A cJay )
i=1

with &1 = (|G ¢]|eo + ||G—|loc) ™. This finishes the proof. O
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