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Abstract. We consider the reaction-diffusion equation

Tt = Txx + f(T )

on R with T0(x) ≡ χ[−L,L](x) and f(0) = f(1) = 0. In 1964 Kanel’
proved that if f is an ignition non-linearity, then T → 0 as t →∞
when L < L0, and T → 1 when L > L1. We answer the open
question of the relation of L0 and L1 by showing that L0 = L1.
We also determine the large time limit of T in the critical case
L = L0, thus providing the phase portrait for the above PDE with
respect to a 1-parameter family of initial data. Analogous results
for combustion and bistable non-linearities are proved as well.

1. Introduction

In the present paper we consider the reaction-diffusion equation

Tt = ∆T + f(T ) (1.1)

in the cylinder R × Ω where Ω is a domain in Rn−1, with Neumann
boundary conditions on R × ∂Ω. The non-linear reaction term f is
assumed to be Lipschitz continuous with f(0) = f(1) = 0 and the
initial datum T0 is between 0 and 1.

We will treat the case when T0 is independent of the transversal
variable y ∈ Ω, and so (1.1) becomes

Tt = Txx + f(T ) (1.2)

with x ∈ R. This equation has been extensively studied in mathemati-
cal, physical and other literature, starting with the pioneering works of
Fisher [7] and Kolmogorov, Petrovskii, Piskunov [11]. In these papers
(1.2) was used to describe the propagation of advantageous genes in a
population. The main object of study in these and many subsequent
works was the existence and stability of traveling fronts for (1.2) and
(1.1). In the recent years most of the results have been extended to
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include an advection term u · ∇T in (1.1), and we refer to the reviews
[2, 16] for an extensive bibliography.

The above equations are used to model not only population genetics
phenomena. When f(θ) > 0 for θ ∈ (0, 1), then f is a combustion non-
linearity and (1.1)/(1.2) model an exotermic chemical reaction in an
infinite tube with a zero heat-loss boundary, in particular, flame propa-
gation in a premixed combustible gas without advection (see Zel’dovich
and Frank-Kamenetskii [17]). In this setting T is the normalized tem-
perature taking values in [0, 1]. We note that (1.1) is usually obtained
from a system involving both the temperature and the concentration
of the reactants after the simplifying assumption of equal thermal and
material diffusivities.

A special case of positive f , used particularly in chemical and bio-
logical literature, is the KPP type with f ′′(θ) ≤ c < 0 [11]. In com-
bustion models the non-linearity is often considered to be of Arrhe-
nius type with slow reaction rates at low temperatures, modeled by
f(θ) = e−A/θ(1 − θ). This case is often approximated by an ignition
non-linearity f satisfying f(θ) = 0 for θ ∈ [0, θ0] and f(θ) > 0 for
θ ∈ (θ0, 1), with θ0 ∈ (0, 1) the ignition temperature.

The last prominent case is the bistable non-linearity with f(θ) < 0
for θ ∈ (0, θ0) and f(θ) > 0 for θ ∈ (θ0, 1), where one usually assumes∫ 1

0
f(θ) dθ > 0. This has been used to model signal propagation along

bistable transmission lines, in particular, nerve pulse propagation [12].
In biological context it is also called heterozygote inferior (see Aronson
and Weinberger [1]).

In this paper we will consider all the above types. Our interest here
will not be in the question of traveling fronts, but in extinction of
reaction — quenching of flames. We will therefore assume the initial
datum T0(x) for (1.2) to be compactly supported, and will want to
know when

‖T (t, ·)‖∞ → 0 as t →∞. (1.3)

For the sake of simplicity we will restrict ourselves to the case of T0

being the characteristic function of an interval,

T0(x) ≡ χ[−L,L](x), (1.4)

and study how long-time behavior of T depends on L. The methods in
this paper allow one to treat some other increasing 1-parameter families
of initial conditions, too.

Thus, we will study the competition of reaction and diffusion. The
former helps increasing the temperature, whereas the latter (together
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with the compactness of the support of the initial datum) works to-
wards the extinction of the flame. This question was originally ad-
dressed forty years ago by Kanel’ [9] who considered the case of ignition
non-linearity and proved that if the initial datum is large enough, then
reaction wins, whereas if it is small then diffusion manages to quench
the flame. More precisely, when T solves (1.2), (1.4) and f is of ignition
type, Kanel’ proved that there are two length scales L0, L1 such that

T (t, x) → 0 as t →∞ uniformly in x ∈ R if L < L0,

T (t, x) → 1 as t →∞ uniformly on compacts if L > L1.

This has been extended to the case of bistable f by Aronson-Weinberger
[1]. Both results also hold when (1.4) is replaced by

T0(x) ≡ αχ[−L,L](x). (1.5)

for any α > θ0, with L0 and L1 depending on α (in the ignition case this
follows from [9], in the bistable case it was proved by Fife and McLeod
[6]). A natural question arises: does L0 equal L1? If this is true and if
one could determine the behavior of T as t → ∞ when L = L0, then
one would be able to provide the complete “phase portrait” for the
PDE (1.2) with respect to a 1-parameter family of initial conditions.

Since these early works, particularly in the recent years, several au-
thors have studied quenching for (1.1). The above results have been
extended to the case when (1.1) includes an advection term u·∇T , with
u a shear or periodic flow (see [13, 15]), even for certain combustion
non-linearities [18]. Quenching of large initial data by large amplitude
shear and cellular flows has been studied in [4, 5, 10, 18]. However,
the question whether L0 = L1 remained open even in the simplest case
of (1.2). The following two results provide the answer, including the
treatment of the critical case L = L0.

The first of them holds for ignition and combustion non-linearities.

Theorem 1. Let θ0 ∈ [0, 1) and f : [0, 1] → R be Lipschitz with
f(θ) = 0 when θ ∈ [0, θ0], f(θ) > 0 when θ ∈ (θ0, 1), and f(1) = 0. If
θ0 > 0 then assume in addition that f is non-decreasing on [θ0, θ0 + δ]
for some δ > 0. Let T : [0,∞)× R → [0, 1] solve

Tt = Txx + f(T )

T0(x) ≡ χ[−L,L](x).
(1.6)

Then there is L0 ≥ 0 such that
(i) if L < L0, then T → 0 uniformly on R as t →∞;
(ii) if L = L0, then T → θ0 uniformly on compacts as t →∞;
(iii) if L > L0, then T → 1 uniformly on compacts as t →∞.
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Remark. The possibility of L0 = 0 (so called hair-trigger effect)
cannot be excluded when θ0 = 0. More precisely, using results from
[18] one can show that L0 = 0 when f(θ) ≥ cθp for some p < 3 and
all small θ, but L0 > 0 when f(θ) ≤ cθp for some p > 3 and all small
θ. Note also that if θ0 = 0, then the convergence in (ii) is as in (i) —
uniform on R.

Our second result holds for bistable non-linearities. We define θ2 ∈
(θ0, 1) by

∫ θ2

0
f(θ)dθ = 0 and let U be the unique function solving

0 = U ′′ + f(U) with U(0) = θ2 and U ′(0) = 0. Then U is an even
function and we will show in the proof of the following theorem that it
is positive on R, decreasing to 0 on (0,∞), and bell-shaped.

Theorem 2. Let θ0 ∈ (0, 1) and f : [0, 1] → R be Lipschitz with
f(0) = f(θ0) = f(1) = 0, f(θ) < 0 when θ ∈ (0, θ0), and f(θ) > 0

when θ ∈ (θ0, 1). Assume also that
∫ 1

0
f(θ)dθ > 0 and U is as above.

Let T : [0,∞) × R → [0, 1] solve the problem (1.6). Then there is
L0 > 0 such that
(i) if L < L0, then T → 0 uniformly on R as t →∞;
(ii) if L = L0, then T → U uniformly on R as t →∞;
(iii) if L > L0, then T → 1 uniformly on compacts as t →∞.

Remark. Both theorems can be extended to some other increasing
families of initial conditions. In particular, to (1.5) with α > θ0.

The crux of the proofs of both theorems will be to show that there
is a single L for which T does not converge to 0 or 1 at x = 0 as
t →∞. In Theorem 1 this will be achieved with the help of Lemma 4
by comparing solutions of (1.6) for two different initial conditions at
differently rescaled times. In Theorem 2 it will follow from a detailed
analysis of the large time behavior of T when the above limit is not 0
or 1, and an application of the comparison principle.

We note here that Theorem 1 is, in a sense, a limiting case of The-
orem 2. If one takes f → 0 on (0, θ0) keeping f unchanged on (θ0, 1),
one has θ2 → θ0 and U → θ0 on compacts. That is, the bell shaped
solution U from Theorem 2(ii) converges to the constant solution θ0

from Theorem 1(ii).
The rest of the paper is devoted to the proofs of the two theorems.

Section 2 contains preliminary Lemmas 3 and 4. Sections 3 and 4 prove
Theorems 1 and 2, respectively.

The author thanks Henri Berestycki, Peter Constantin, François
Hamel, Alexander Kiselev, Peter Poláčik, Jean-Michel Roquejoffre, and
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Lenya Ryzhik for encouragement and useful discussions. He also ac-
knowledges the hospitality of the Mathematics Department of the Uni-
versity of Chicago where part of this work was done, as well as partial
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2. Preliminary Lemmas

We start with

Lemma 3. Let f : [0, 1] → R be Lipschitz with f(0) = f(1) = 0. If
T : [0,∞)× R → [0, 1] solves (1.6), then the following hold.
(i) If |x| ≤ |y| then T (t, x) ≥ T (t, y).
(ii) There is t∗ > 0 (possibly t∗ = ∞) such that T (t, 0) as a function

of t is non-increasing on [0, t∗) and non-decreasing on [t∗,∞).
(iii) If f ≥ 0 then there is θ∗ ∈ [0, 1] such that f(θ∗) = 0 and T (t, x) →

θ∗ as t →∞, uniformly on compacts.

Remarks. 1. For sufficiently smooth f this is essentially a result of
Kanel’ [9].

2. In the case of (1.5) with α ∈ (θ0, 1), part (ii) has 0 < t∗ ≤ t∗∗ ≤ ∞
such that T (t, 0) is non-decreasing on [0, t∗), non-increasing on [t∗, t∗∗)
and non-decreasing on [t∗∗,∞).

Proof. We first assume that f is smooth and briefly recall main points
of the proofs of (i) and (ii) from [9]. Let T ε solve (1.6) but with initial
condition T (0, x) ≡ χε(x) where χε are smooth, symmetric, decreasing
in |x|, and converge to χ[−L,L] in L1(R) as ε → 0. Then T ε

x(0, x) ≤ 0
for x > 0, and by symmetry T ε

x(t, 0) = 0. Since

(T ε
x)t = (T ε

x)xx + f ′(T ε)T ε
x ,

the maximum principle gives T ε
x(t, x) ≤ 0 for x > 0. Symmetry then

yields T ε
x(t, x) ≥ 0 for x < 0. Since for any fixed t > 0 we have

T ε(t, x) → T (t, x) uniformly in x as ε → 0, this proves (i).
Now let Dh(t, x) ≡ T (t+h, x)−T (t, x). By the mean value theorem,

Dh
t = Dh

xx + f ′(S)Dh

for some S = S(t, x). Let ∆h be set of (t, x) for which Dh(t, x) ≤ 0.
Then ∆h ∩ ({0} × R) = {0} × [−L, L]. By the maximum principle
and symmetry, ∆h is connected and its sections by lines parallel to
the x-axis are segments symmetric about the t-axis. Therefore there
is 0 < th∗ ≤ ∞ such that Dh(t, 0) < 0 for t ∈ [0, th∗) and Dh(t, 0) ≥ 0
for t ∈ [th∗ ,∞). From Dh(t, x) = Dh/2(t + h

2
) + Dh/2(t) we obtain

t
h/2
∗ ∈ [th∗ , t

h
∗ + h

2
], and (ii) follows with t∗ ≡ limn→∞ t2

−n

∗ .
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If f is only Lipschitz, take smooth f ε such that ‖f ε − f‖∞ ≤ ε
and let T ε solve (1.6) with f ε in place of f . One can then show that
V ε ≡ T ε−T satisfies |V ε(t, x)| ≤ ε

c
(ect−1) with c the Lipschitz constant

for f (we spell this argument out in the proof of Theorem 1 below).
Therefore T (t, x) = limε→0 T ε(t, x) for all t and x, and since (i) and (ii)
hold for each T ε, they also hold for T .

Finally, assume that f ≥ 0. By (ii), θ∗ ≡ limt→∞ T (t, 0) is well
defined. Let Φ solve Φt = Φxx on R+ with Φ(0, x) ≡ T (0, x) and
boundary condition Φ(t, 0) ≡ T (t, 0). Then Φ(t, x) → θ∗ as t → ∞,
uniformly on compacts. Since by the comparison principle (see, e.g.,
[14]) and (i), Φ(t, x) ≤ T (t, x) ≤ T (t, 0), the second claim in (iii)
follows.

To prove the first claim, assume f(θ∗) > 0 and choose ε > 0 such
that for θ ≤ θ∗ + 10ε we have f(θ) ≥ θ − θ∗ + 2ε. Pick t0 such that if
Φ solves Φt = Φxx on R with initial condition Φ(t0, x) = T (t0, x), then
Φ(t, 0) ≥ θ∗ − ε and T (t, x) ≤ θ∗ + ε for t ∈ [t0, t0 + ln 4] and x ∈ R.
This is possible thanks to the second claim in (iii). Define

S(t, x) ≡ θ∗ − 2ε + (Φ(t, x)− θ∗ + 2ε)et−t0 .

Then S(t, x) ≤ θ∗+10ε for t ∈ [t0, t0 +ln 4] because Φ(t, x) ≤ T (t, x) ≤
θ∗+ε for these t. A simple computation now shows that St ≤ Sxx+f(S)
for t ∈ [t0, t0 + ln 4]. Hence, S is a subsolution of (1.6) with S(t0, x) =
T (t0, x), and so S ≤ T for t ∈ [t0, t0 + ln 4]. But S(t0 + ln 4, 0) ≥
θ∗ + 2ε > T (t, 0), which is a contradiction. Therefore we need to have
f(θ∗) = 0. �

Next, observe that one can use scaling to replace the variation in
the initial condition in (1.6) by variation in the reaction strength. If T
solves (1.6) with T (0, x) ≡ χ[−L,L](x), define T̃ (t, x) ≡ T (L2t, Lx), so
that we have

T̃t = T̃xx + L2f(T̃ )

and T̃ (0, x) = χ[−1,1](x). Hence, Theorem 1 will be proved if we show
that its conclusion holds for the L-dependent family of problems

Tt = Txx + Lf(T )

T0(x) ≡ χ[−1,1](x)
(2.1)

instead of (1.6) (note that Lemma 3 holds here, too). This important
observation motivates the following key lemma.

Lemma 4. Let Ω be a connected open domain in Rn with a smooth
boundary (possibly Ω = Rn) and let f, g : [0,∞) → R be Lipschitz
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with f(0) = g(0) = 0 and f ≤ g. Let T, S : [0,∞) × Ω → [0,∞) be
continuous functions solving

Tt = ∆T + f(T ) (2.2)

St = ∆S + g(S) (2.3)

in Ω with Dirichlet boundary conditions on ∂Ω. Assume 0 ≤ T (0, x) ≤
S(0, x) for all x ∈ Ω and T (0, x0) < S(0, x0) for some x0. Assume also
that for any θ > 0 the set Ω0,θ ≡ {x ∈ Ω |S(0, x) ≥ θ} is compact.
Finally, assume that there are θ1 > 0 and ε1 > 0 such that for any
θ ∈ [θ1, ‖T‖∞) and ε ∈ [0, ε1] we have

g
(
θ + ε[θ − θ1]

)
≥ (1 + ε)f(θ). (2.4)

Then

lim inf
t→∞

inf
T (t,x)>θ1

S(t, x)− θ1

T (t, x)− θ1

> 1 (2.5)

with the convention that infimum over an empty set is ∞.

Remark. The result holds without change when we add a first order
term u(x) · ∇, with u a Lipschitz vector field, to (2.2) and (2.3).

Proof. First notice that the assumptions imply that

Ωt,θ ≡ {x ∈ Ω
∣∣ S(t, x) ≥ θ}

are compact. Indeed, by the maximum principle, Ωt,θ ⊆ Ω̃t,δθ where

δ ≡ e−tc with c the Lipschitz constant for g, and Ω̃t,θ is defined as Ωt,θ

but with Φ, the solution of

Φt = ∆Φ, Φ(0, x) = S(0, x),

in place of S. Compactness of Ω̃t,θ follows from that of Ω̃0,θ and the
Feynman-Kac formula.

The assumptions and the strong maximum principle also imply T (t, x) <
S(t, x) for t > 0 and x ∈ Ω. Let us define

Ω(t) ≡ {x ∈ Ω
∣∣ T (t, x) > θ1},

Ω′(t) ≡ {x ∈ Ω
∣∣ T (t, x) = θ1},

and let

ω(t) ≡ min

{
1 + ε1, inf

x∈Ω(t)

S(t, x)− θ1

T (t, x)− θ1

}
.

Since Ω(t) is compact and T < S continuous, ω(t) > 1 for t > 0. Hence
the result will follow if we show that ω is a non-increasing function.
Since ω is continuous (because T and S are), it is sufficient to show
that for any t0 > 0 there is τ0 > 0 such that for all t ∈ [t0, t0 + τ0] we
have ω(t) ≥ ω(t0).
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Hence, fix t0 > 0. Notice that the maximum principle and Feynman-
Kac formula show that Λt0,θ ≡

⋃
t≤t0+1 Ωt,θ is bounded for each θ > 0.

Since T, S are continuous, they are uniformly continuous on [0, t0+1]×
Λt0,θ, and obviously |S(t, x)−S(s, y)| ≤ θ and |T (t, x)−T (s, y)| ≤ θ for
(t, x), (s, y) ∈ [0, t0 +1]× (R rΛint

t0,θ). It follows that T, S are uniformly
continuous on [0, t0 + 1]× Ω. Notice also that the set

Σ ≡ {(t, x) | t ∈ [t0, t0 + 1] and x ∈ Ω(t) ∪ Ω′(t)} ⊆ [t0, t0 + 1]× Λt0,θ1

is compact.
Thanks to the uniform continuity of T we only need to consider the

case Ω(t0)∪Ω′(t0) 6= ∅ (otherwise Ω(t) = ∅ and ω(t) = 1+ε1 for t close
to t0), and hence Σ 6= ∅. Since S is continuous and S > T ,

σ ≡ inf
(t,x)∈Σ

{S(t, x)− θ1} > 0.

We let δ ≡ σ/4(1 + ε1) and define

∆ ≡ {x ∈ Ω
∣∣ |T (t0, x)− θ1| ≤ δ and S(t0, x)− θ1 ≥ σ − δ}

By the uniform continuity of T, S, there is τ0 ∈ (0, 1) such that for
t ∈ [t0, t0 + τ0] and x ∈ Ω we have

|T (t, x)− T (t0, x)| ≤ δ
2

and |S(t, x)− S(t0, x)| ≤ δ
2
. (2.6)

So if t ∈ [t0, t0 + τ0], then

Ω(t) ⊆ Ω(t0) ∪∆ (2.7)

(note that S(t0, x)− θ1 ≥ σ − δ
2

for x ∈ Ω(t) because then (t, x) ∈ Σ).
Now if t ∈ [t0, t0 + τ0] and x ∈ ∆, then by (2.6),

S(t, x)− θ1 >
σ

2
> (1 + ε1)|T (t, x)− θ1| ≥ ω(t0)(T (t, x)− θ1). (2.8)

Next let

A ≡ {x ∈ Ω
∣∣ T (t0, x) > θ1 + δ} = Ω(t0) r ∆ (2.9)

and
B ≡ {x ∈ Ω

∣∣ T (t0, x) ≥ θ1 + δ
2
} ⊆ Ω(t0).

Uniform continuity of T shows that, dist(A, Bc) > 0, and so there
is an open set Γ with a smooth boundary such that A ⊆ Γ ⊆ B.
Let T̃ ≡ T − θ1, Ũ ≡ ω(t0)T̃ , S̃ ≡ S − θ1, f̃(θ) ≡ f(θ + θ1), and
g̃(θ) ≡ g(θ + θ1). Then for x ∈ Γ we have

S̃(t0, x) ≥ ω(t0)T̃ (t0, x) = Ũ(t0, x)

by the definition of ω(t0). For t ∈ [t0, t0 + τ0] and x ∈ ∂Γ we have

S̃(t, x) > σ − 2δ >
σ

2
≥ ω(t0)T̃ (t, x) = Ũ(t, x)
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since ∂Γ ⊆ B r A ⊆ ∆. And for t ∈ [t0, t0 + τ0] and x ∈ Γ we have

Ũt = ∆Ũ + ω(t0)f̃
(

1
ω(t0)

Ũ
)
,

S̃t = ∆S̃ + g̃(S̃)

by (2.2) and (2.3). For these (t, x) we have T (t, x) ≥ θ1 because of
(2.6) and Γ ⊆ B, and so by (2.4) and ω(t0)− 1 ∈ (0, ε1],

ω(t0)f̃
(

1
ω(t0)

Ũ
)

= ω(t0)f(T ) ≤ g
(
ω(t0)[T − θ1] + θ1

)
= g̃(Ũ).

The comparison principle now shows that S̃ ≥ Ũ on [t0, t0 + τ0] × Γ.
Hence

S(t, x)− θ1 ≥ ω(t0)(T (t, x)− θ1)

for t ∈ [t0, t0 + τ0] and x ∈ A, which together with (2.7), (2.8), and
(2.9) gives ω(t) ≥ ω(t0) for t ∈ [t0, t0 + τ0]. The proof is finished. �

3. Proof of Theorem 1

We can now complete the proof of Theorem 1. We will do this for
the formulation in (2.1).

First assume θ0 > 0. We know from Lemma 3(iii) that for every L
we have T → θL

∗ uniformly on compacts, with θL
∗ such that f(θL

∗ ) = 0.
Obviously θL

∗ /∈ (0, θ0) because in that case we would have T (t, x) ≤ θ0

for all t ≥ t0 and consequently T → 0 (since ‖T (t0, ·)‖1 < ∞ and
Tt = Txx for t ≥ t0). So we are only left with θL

∗ ∈ {0, θ0, 1}.
Let A, B, and C be the sets of L ≥ 0 such that θL

∗ equals 0, θ0, and
1, respectively. Notice that since T (t, 0) ≥ T (t, x), the convergence of
T to 0 for L ∈ A is actually uniform on R. We have A∪B∪C = [0,∞)
and the comparison principle implies that the three sets are intervals
with A lying to the left of B and B to the left of C.

Moreover, A and C are non-empty by Kanel’ [9] and open. The
latter follows from the fact that if TL is the solution of (2.1), then for
L1 < L2 and V ≡ TL2 − TL1 we have V ≥ 0 by comparison, V (0) = 0,
and

Vt = ∆V + (L2 − L1)f(TL2) + L1[f(TL2)− f(TL1)]

≤ ∆V + c(L2 − L1) + cL1V

with c ≥ ‖f‖∞ the Lipschitz constant for f . Since the function Ṽ (t, x) ≡
L2−L1

L1
(ecL1t − 1) (or Ṽ (t, x) ≡ cL2t when L1 = 0) satisfies

Ṽt = ∆Ṽ + c(L2 − L1) + cL1Ṽ

with Ṽ (0) = 0, the comparison principle gives V ≤ Ṽ , that is,

TL2(t, x)− TL1(t, x) ∈ [0, L2−L1

L1
(ecL1t − 1)].
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Therefore if L1 ∈ A, then TL1(t0, 0) ≤ 1
2
θ0 for some t0 > 0, and hence

TL2(t0, 0) < θ0 (and so L2 ∈ A) for L2 < L1 + 1
2
θ0L1(e

cL1t0 − 1)−1. On
the other hand, Kanel’s result [9] also holds for (1.5), and it says that
for any α > θ0 and L > 0 there is M = M(α, L) < ∞ such that if
T solves (2.1) and T (t0, x) ≥ αχ[−M,M ](x), then T → 1 uniformly on
compacts. Let θ0 < α < β < 1 and if L1 ∈ C, let M = M(α, 1

2
L1).

For some t0 we have TL1(t0, x) ≥ βχ[−M,M ](x) and so for any L2 >
L1 − (β − α)L1(e

cL1t0 − 1)−1 we have TL2(t0, x) ≥ αχ[−M,M ](x). If in
addition L2 > 1

2
L1, we have L2 ∈ C. So A, C are non-empty and open,

and hence B is non-empty and closed.
The proof will be finished if we show that B contains a single element.

Hence assume L1 < L2 are both in B. Let θ1 ≡ 1
2
θ0 ∈ (0, θ0) and

ε1 ≡ min{L2L
−1
1 − 1, δ(δ + θ0)

−1} > 0

(with δ from the statement of Theorem 1). Choose t0 > 0 such that
TL1(t, x) ≤ θ0 + δ

2
when t ≥ t0. The comparison principle, f 6≡ 0, and

the strong maximum principle yield TL1 < TL2 for t > 0 and both TL1

and TL2 are obviously continuous for t > 0. Lipschitzness of f and
compact support of TL2(0, ·) show that for any θ > 0, the set of x for
which TL2(t0, x) ≥ θ is compact. Finally, whenever θ ∈ [θ1, θ0 + δ

2
] and

ε ∈ [0, ε1], we have θ + ε[θ− θ1] ≤ θ0 + δ. Thus by the assumptions on
f (and the definition of ε1),

L2f(θ + ε[θ − θ1]) ≥ L2f(θ) ≥ (1 + ε)L1f(θ).

Therefore Lemma 4 applies to TL1 and TL2 (with starting time t0) and
shows that for some r > 1 and all large enough t we have

TL2(t, x)− θ1 ≥ r
[
TL1(t, x)− θ1

]
whenever TL1(t, x) > θ1. But since θ1 < θ0, this contradicts the as-
sumption that both TL1(t, 0) and TL2(t, 0) converge to θ0 as t → ∞.
Hence, B = {L0} and we are done with the case θ0 > 0.

Now, consider θ0 = 0. We have θL
∗ ∈ {0, 1}, the sets A, C satisfy

A∪C = [0,∞), and by the comparison principle, A lies to the left of C.
Moreover, 0 ∈ A and C is non-empty and open by the same argument
as above. Hence A is closed and its maximum is L0 (possibly L0 = 0).
Lemma 3(iii) yields (iii) of this theorem and T (t, 0) ≥ T (t, x) gives (i)
and (ii), including the fact that the convergence in (ii) is uniform on
R. The proof is finished.

4. Proof of Theorem 2

The situation is somewhat more complicated here. Firstly, we do
not have Lemma 3(iii) at our disposal, and so the limit of T as t →∞



SHARP TRANSITION BETWEEN EXTINCTION AND PROPAGATION 11

need not always be a constant function. And secondly, we cannot use
Lemma 4 and the scaling argument preceding it in the way we did in
the last section because it is not anymore true that L2f ≥ L1f when
L2 > L1. We note that one can still use the lemma without scaling,
but then the argument applies only to a restricted class of bistable
f . Fortunately, it turns out that the first of these difficulties actually
cancels the problems created by the second, as we shall see below.

Let us therefore go back to T solving (1.6) rather than (2.1). We
know from Lemma 3(ii) that θL

∗ ≡ limt→∞ T (t, 0) is well defined, and
from the comparison principle that it is non-decreasing in L.

First assume θL
∗ < θ2, with θ2 defined in the introduction by

∫ θ2

0
f(θ)dθ =

0. Choose ε > 0 and a Lipschitz function f̃ : [0, 1] → R so that f̃ = 0

on [0, ε], f̃ ′(ε) < 0, f̃ ≥ f on (ε, 1
2
(θL
∗ + θ2)] and f̃ has a single zero

there, f̃ > 0 on (1
2
(θL
∗ + θ2), 1), f̃(1) = 0 > f̃ ′(1), and∫ 1

0

f̃(θ)dθ < 0. (4.1)

Let t0 be such that for t ≥ t0 and all x ∈ R we have T (t, x) ≤ 1
2
(θL
∗ +θ2).

This is possible by Lemma 3(i). Since f̃ ≥ f on [0, 1
2
(θL
∗ + θ2)], starting

from time t0 one has Tt ≤ Txx + f̃(T ), that is, T is a subsolution of the
equation

Φt = Φxx + f̃(Φ). (4.2)

Let φ : R → [0, 1] with φ(x) → ε as x → ∞ and φ(x) → 1 as
x → −∞ be the unique, up to translation, traveling front profile (with
speed v) for (4.2) [8]. That is, φ(x − vt) solves (4.2). It follows from
(4.1) that in this case v < 0.

From compactness of the support of T (0, x) and Lipschitzness of f ,
T (t0, x) → 0 as |x| → ∞. This and ‖T (t0, ·)‖∞ < 1 mean that there is
x0 such that T (t0, x) ≤ φ(x − x0 − vt0), and since φ(x − x0 − vt) is a
solution and T (t, x) a subsolution of (4.2),

T (t, x) ≤ φ(x− x0 − vt)

for all t ≥ t0. But then T (t, 0) ≤ φ(−x0 − vt) → ε as t → ∞ because
v < 0. This holds for any ε > 0 and thus θL

∗ = 0.
Next assume θL

∗ > θ2. Let S be the solution of (1.6) on R+ with
S(0, x) = 0 and S(t, 0) = s(t) a smooth strictly increasing function
with all derivatives bounded such that s(0) = 0, s(t) ≤ T (t, 0), and
limt→∞ s(t) = θL

∗ . Then for any h > 0 we have S(h, x) > S(0, x) and so
by comparison S(t + h, x) > S(t, x). Hence S̃(x) ≡ limt→∞ S(t, x) > 0
is well defined and S̃(0) = θL

∗ . Since by comparison again S(t, x) ≤
T (t, x) ≤ T (t, 0), we also have S̃(x) ≤ θL

∗ .
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Standard parabolic regularity shows that S(t, x) converges to S̃(x)
along with its first two derivatives uniformly on compacts, and so S̃
solves the stationary problem

0 = S̃ ′′ + f(S̃) (4.3)

on R+ (this can be found also in [1]). But then for any y > 0∫ θL
∗

S̃(y)

f(θ) dθ =

∫ 0

y

f(S̃(x))S̃ ′(x) dx =

∫ y

0

S̃ ′′(x)S̃ ′(x) dx = 1
2

[
(S̃ ′(y))2−(S̃ ′(0))2

]
.

Assume there is z > 0 such that S̃(z) < θL
∗ , and then pick one such

that also S̃ ′(z) < 0. Since
∫ θL

∗
w

f(θ)dθ is bounded below by a positive

constant for all w ∈ [0, S̃(z)], the same must be true for (S̃ ′(y))2 when
S̃(y) ∈ [0, S̃(z)]. But S̃ ′(z) < 0, continuity of S̃ ′, and S̃ > 0 now imply
that S̃ is decreasing and positive on [z,∞), with S̃ ′ bounded away from
zero — a contradiction. Hence, we must have S̃ ≡ θL

∗ , which is only
possible if θL

∗ = 1. Moreover, since S converges to S̃ ≡ 1 uniformly on
compacts as t →∞ (and S ≤ T ≤ 1), so does T .

The above shows that θL
∗ ∈ {0, θ2, 1}. As in the proof of Theorem 1,

and using the equivalent of Kanel’s result for (1.5) and bistable f [6],
one can show that the intervals A, C of L for which θL

∗ = 0, 1, respec-
tively, are non-empty and open. If B is the closed interval of L for which
θL
∗ = θ2, then B lies between A and C and again A ∪B ∪ C = [0,∞).
Next we need to prove that B only contains one element. We will

show below that if L ∈ B, then T (t, x) → U(x) uniformly on R as
t → ∞. Here U solves (4.3) with U(0) = θ2 and U ′(0) = 0. Assume
now that L1 < L2 are both in B, with TL1 and TL2 the corresponding
solutions of (1.6). We then have TL1(t, 0) → θ2, and since the equation
is translation invariant, we also have T̃ (t, ε) → θ2 when T̃ solves (1.6)
with initial condition T̃0(x) ≡ χ[−L1+ε,L1+ε](x). But if |ε| < L2 − L1,

then TL2
0 (x) ≥ T̃0(x), and so by the comparison principle,

U(ε) = lim
t→∞

TL2(t, ε) ≥ lim
t→∞

T̃ (t, ε) = θ2.

Since U ′′(0) = −f(U(0)) = −f(θ2) < 0, U has a strict local maximum
at zero and therefore U(ε) < U(0) = θ2 for all small enough |ε| > 0.
This is a contradiction and hence B = {L0}.

To complete the proof, we need to show that T (t, x) → U(x) uni-
formly as t → ∞ when L ∈ B (and hence θL

∗ = θ2). Notice that the
argument following (4.3) applies to U and we find for any x > 0 such
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that U(x) ≥ 0, ∫ θ2

U(x)

f(θ) dθ = 1
2
(U ′(x))2. (4.4)

The definition of θ2 then shows that U(x) ≤ θ2, and U ′(x) 6= 0 when
U(x) ∈ (0, θ2). Since U(x) cannot be constant θ2 on any interval and
U ′ is continuous, we must have U ′(x) < 0 for all x > 0 such that
U(x) > 0. There is no x with U(x) = 0 because then (4.4) would
give U ′(x) = 0, contradicting uniqueness of solutions to initial value
problems associated to (4.3). Hence U(x) ∈ (0, θ2) and U ′(x) < 0 for
x > 0, with U ′(x) bounded away from zero when U(x) is away from
zero (by (4.4) and the definition of θ2). This and symmetry show that
U is indeed a symmetric bell-shaped solution (with U ′ decreasing on
[0, U−1(θ0)] and increasing on [U−1(θ0),∞) by (4.4)) of the stationary
problem (4.3) such that U(x) → 0 as |x| → ∞.

If we now apply the argument involving S and S̃ from the case θL
∗ >

θ2, we find as above that S̃(x) ≤ θ2 = S̃(0) and that S̃ > 0 is possible
only if S̃ ′(0) = 0. But then S̃(0) = U(0) and S̃ ′(0) = U ′(0), thus
S̃ = U . Moreover, uniform on compacts convergence of S to U and
0 ≤ S(t, x) ≤ U(x) → 0 as |x| → ∞ yield uniform on R convergence
of S to U . Since T (t, x) ≥ S(t, x), we have lim inft→∞ T (t, x) ≥ U(x)
uniformly on R. Here “uniformly on R” means that for every ε > 0
there is τ < ∞ so that T (t, x) ≥ U(x) − ε for any t > τ and x ∈ R.
Hence we are left with proving lim supt→∞ T (t, x) ≤ U(x) uniformly in
x > 0 (which suffices due to symmetry).

Let 0 < x0 < ∞ be such that if S(0, x) ≥ θ2χ[−x0,x0](x) and S satisfies
(1.6), then S → 1 uniformly on compacts. Such x0 exists by [6] because
θ2 > θ0. Then obviously for every t ≥ 0 we have T (t, x0) ≤ θ2, because
otherwise Lemma 3(i) would imply T → 1 uniformly on compacts.
Since both T (t, x) and V (x) = U(x − x0) satisfy (1.6) on (x0,∞),
V (x0) = θ2 ≥ T (t, x0), and V (x) > 0 = T (0, x) for x > x0, the
comparison principle implies T (t, x) ≤ V (x). Let us therefore define

x1 ≡ min{x̃ | lim sup
t→∞

T (t, x) ≤ U(x− x̃) uniformly in x > x̃} ≤ x0.

The minimum is achieved because U is uniformly continuous and by
Lemma 3(i), T (t, x) ≤ T (t, 0) → θ2 = U(0). We note that at this point
one can derive T → U from x1 < ∞ and the results of [3] if f ∈ C1(0, 1)
and f ′(0) < 0. However, our non-linearity is more general and so [3] is
not applicable here.

If x1 = 0, then we are done, so assume x1 > 0. First notice that
lim supt→∞ T (t, 1

2
x1) ≤ θ2 − δ1 for some δ1 > 0. Indeed — in view

of limt→∞ T (t, 0) = θ2, Lemma 3(i), and the comparison principle, it
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is sufficient to show that there are δ1, δ2 > 0 such that if S(0, x) ≥
(θ2 − δ1)χ[−x1/2,x1/2](x) and S satisfies (1.6), then S(t, 0) ≥ θ2 + δ2 for
some t > 0. This in turn is true because it holds for δ1 = 0 and some
t, δ2 > 0, since then S(0, 0) = θ2 and St(0, 0) = f(θ2) > 0, and because
S(t, 0) is continuous in δ1.

Now choose x2 ∈ (1
2
x1, x1) such that U(x1−x2) ≥ θ2−δ1. The above

and Lemma 3(i) show that lim supt→∞ T (t, x) ≤ θ2 − δ1 uniformly in
x ≥ 1

2
x1, and so

lim sup
t→∞

T (t, x) ≤ U(x− x2) (4.5)

uniformly in x ∈ [x2, x1]. We will show that (4.5) also holds uniformly
in x > x1, which will yield x1 ≤ x2 by the definition of x1. This will
be a contradiction and hence necessarily x1 = 0.

Let s(t) be smooth, decreasing, with all derivatives bounded, such
that s(0) = θ2 and limt→∞ s(t) = U(x1 − x2). Let S(t, x) satisfy (1.6)
for x > x1 with S(0, x) = U(x−x1) and S(t, x1) = s(t). As above, one
proves that this time S is non-increasing in t,

S(t, x) ∈ [U(x− x2), U(x− x1)], (4.6)

and S̃(x) ≡ limt→∞ S(t, x) satisfies (4.3) with S̃(x) → 0 as x →∞ (by
(4.6)). Moreover, S → S̃ uniformly on compacts, which together with
(4.6) and U(x) → 0 as x → ∞ shows that S → S̃ uniformly on R.
Since S̃(x1) = U(x1−x2) and S̃(∞) = U(∞) = 0, a formula similar to
(4.4), with the integral from 0 to U(x1−x2), gives S̃ ′(x1) = U ′(x1−x2).
It follows that S̃(x) = U(x− x2).

Now pick any ε > 0 and choose t0 such that

S(t, x)− U(x− x2) < ε
2

(4.7)

for t ≥ t0 and x ≥ x1. Then pick t1 so that

T (t, x)− U(x− x1) < ε0 ≡ ε
2
e−ct0

for t ≥ t1 and x ≥ x1 (with c the Lipschitz constant for f). This is
possible by the definition of x1.

For any t2 > t1 and x > x1 we have

T (t2, x)− S(0, x) = T (t2, x)− U(x− x1) < ε0,

and for t > t2 we have

T (t, x1)−S(t−t2, x1) = T (t, x1)−s(t−t2) ≤ T (t, x1)−U(x1−x2) < ε0

by (4.5) if t2 is large enough. Hence if we let R(t, x) ≡ S(t, x) + ectε0,
then T (t2, x) < R(0, x) for x > x1, T (t, x1) < R(t − t2, x1) for t > t2,
and

Rt = St + cectε0 = Sxx + f(S) + cectε0 ≥ Rxx + f(R).
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So R is a supersolution of (1.6), and by the comparison principle
T (t, x) ≤ R(t− t2, x) for t > t2 and x > x1. In particular,

T (t2 + t0, x) ≤ R(t0, x) = S(t0, x) + ε
2

< U(x− x2) + ε

for x > x1 by (4.7). Since this holds for any large enough t2, we have
T (t, x) < U(x − x2) + ε for all large t and x > x1. As ε > 0 was
arbitrary, this gives (4.5) uniformly in x > x1. Hence x1 ≤ x2 < x1, a
contradiction. Therefore we must have x1 = 0 and the proof is finished.
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Anal. Non Linéaire 14 (1997), 499–552.

[14] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag,
New York, 1994.



16 ANDREJ ZLATOŠ
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