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Abstract. We study the Case sum rules, especially C0, for gen-
eral Jacobi matrices. We establish situations where the sum rule
is valid. Applications include an extension of Shohat’s theorem to
cases with an infinite point spectrum and a proof that if lim n(an−
1) = α and lim nbn = β exist and 2α < |β|, then the Szegő condi-
tion fails.

1. Introduction

This paper discusses the relation among three objects well known
to be in one-one correspondence: nontrivial (i.e., not supported on a
finite set) probability measures, ν, of bounded support in R; orthog-
onal polynomials associated to geometrically bounded moments; and
bounded Jacobi matrices. One goes from measure to polynomials via
the Gram-Schmidt procedure, from polynomials to Jacobi matrices by
the three-term recurrence relation, and from Jacobi matrices to mea-
sures by the spectral theorem.

We will use J to denote the Jacobi matrix (an > 0)

J =




b1 a1 0 . . .
a1 b2 a2 . . .
0 a2 b3 . . .

. . . . . . . . . . . .


 (1.1)

ν will normally denote the spectral measure of the vector δ1 ∈ `2(Z+)
and Pn(x) the orthonormal polynomials.

We are interested in J ’s close to the free Jacobi matrix, J0, with
bn = 0, an = 1, and dν0(E) = (2π)−1χ[−2,2]

√
4− E2 dE. Most often,

we will suppose J − J0 is compact. That means σess(J) = [−2, 2] and
J has only eigenvalues outside [−2, 2], of multiplicity one denoted E±

j

with E+
1 > E+

2 > · · · > 2 and E−
1 < E−

2 < · · · < −2.
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One of the main objects of study here is the Szegő integral

Z(J) =
1

2π

∫ 2

−2

ln

( √
4− E2

2πdνac/dE

)
dE√

4− E2
(1.2)

The Szegő integral is often taken in the literature as

(2π)−1

∫ 2

−2

ln

(
dνac

dE

)
dE√

4− E2

which differs from Z(J) by a constant and a critical minus sign (so the
common condition that the Szegő integral not be −∞ becomes Z(J) <
∞ in our normalization). There is an enormous literature discussing
when Z(J) < ∞ holds (see, e.g., [1, 2, 7, 9, 13, 14, 16, 17, 22, 24]).
It can be shown by Jensen’s inequality that Z(J) ≥ −1

2
ln(2) so the

integral can only diverge to +∞.
We will focus here on various sum rules that are valid. One of our

main results is the following:

Theorem 1. Suppose

A0(J) = lim
N→∞

(
−

N∑
n=1

ln(an)

)
(1.3)

exists (although it may be +∞ or −∞). Consider the additional quan-
tities Z(J) given by (1.2) and

E0(J) =
∑
±

∑
j

ln

[
1
2

(
|E±

j |+
√

(E±
j )2 − 4

)]
(1.4)

If any two of the three quantities A0(J), E0(J), and Z(J) are finite,
then all three are, and

Z(J) = A0(J) + E0(J) (1.5)

Remarks. 1. It is not hard to see that E0(J) < ∞ if and only if
∑
±

∑
j

√
(E±

j )2 − 4 < ∞ (1.6)

2. The full theorem (Theorem 4.1) does not require the limit (1.3)
to exist, but is more complicated to state in that case.

3. If the three quantities are finite, many additional sum rules hold.

4. This is what Killip-Simon [11] call the C0 sum rule.

5. Peherstorfer-Yuditskii [17] (see their remark after Lemma 2.1)
prove that if Z(J) < ∞, E0(J) = ∞, then the limit in (1.3) is also
infinite.
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Theorem 1 is an analog for the real line of a seventy-year old theorem
for orthogonal polynomials on the unit circle:

1

2π

∫ 2π

0

ln

(
dνac

dθ

)
dθ =

∞∑
n=0

ln(1− |αj|2) (1.7)

where {αj}∞j=1 are the Verblunsky coefficients (also called reflection,
Geronimus, Schur, or Szegő coefficients) of ν. This result was first
proven by Verblunsky [27] in 1935, although it is closely related to
Szegő’s 1920 paper [24].

For J ’s with J−J0 finite rank (and perhaps even with
∑∞

n=1 n(|an−
1|+ |bn|) < ∞), the sum rule (1.5) is due to Case [2]. Recently, Killip-
Simon [11] showed how to exploit these sum rules as a spectral tool
(motivated in turn by work on Schrödinger operators by Deift-Killip
[5] and Denissov [6]). In particular, Killip-Simon emphasized the im-
portance in proving sum rules on as large a class of J ’s as possible.

One application we will make of Theorem 1 and related ideas is to
prove the following (≡ Theorem 5.2):

Theorem 2. Suppose σess(J) ⊂ [−2, 2] and (1.6) holds. Then Z(J) <
∞ if and only if

lim inf
N

(
−

N∑
n=1

ln(an)

)
< ∞ (1.8)

Moreover, if these conditions hold, then
(i) The limit A0(J) in (1.3) exists and is finite.

(ii) limN→∞
∑N

n=1 bn exists and is finite.
(iii)

∞∑
n=1

(an − 1)2 +
∞∑

n=1

b2
n < ∞ (1.9)

Results of this genre when it is assumed that σ(J) = [−2, 2] go back
to Shohat [22] with important contributions by Nevai [14]. The precise
form is from Killip-Simon [11]. Nikishin [16] showed how to extend
this to Jacobi matrices with finitely many eigenvalues. Peherstorfer-
Yuditskii [17] proved Z(J) < ∞ implies (i) under the condition E0(J) <
∞, allowing an infinity of eigenvalues for the first time. Our result
cannot extend to situations with E0(J) = ∞ since Theorem 1 says if
(i) holds and Z(J) < ∞, then E0(J) < ∞.

We will highlight one other result we will prove later (Corollary 6.3).

Theorem 3. Let an, bn be Jacobi matrix parameters so that

lim
n→∞

n(an − 1) = α lim
n→∞

nbn = β (1.10)
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exist and are finite. Suppose that

|β| > 2α (1.11)

Then Z(J) = ∞.

Remark. In particular, if α < 0, (1.11) always holds. (1.11) describes
three-quarters of the (2α, β) plane.

In Section 6, we will discuss the background for this result, and de-
scribe results of Zlatoš [28] that show if |β| ≤ 2α and one has additional
information on the approach to the limit (1.10), then Z(J) < ∞. Thus
Theorem 3 captures the precise region where one has (1.10) and one
can hope to prove Z(J) = ∞.

Theorem 3 will actually follow from a more general result (see The-
orem 4.4, 6.1, and 6.2).

Theorem 4. Suppose (1.9) holds and that either lim sup(−∑n
j=1(aj−

1+ 1
2
bj)) = ∞ or lim sup(−∑n

j=1(aj−1− 1
2
bj)) = ∞. Then Z(J) = ∞.

The main technique in this paper exploits the m-function, the Borel
transform of the measure, ν:

mν(E) =

∫
dν(x)

x− E
(1.12)

Since ν is supported on [−2, 2] plus the set of points {E±
j }, we can

write

mν(E) =
∑
±

∑
j

ν({E±
j })

E±
j − E

+

∫ 2

−2

dν(x)

x− E
(1.13)

It is useful to transfer everything to the unit circle, using the fact
that z 7→ E = z + z−1 maps D = {z | |z| < 1} onto the cut plane
C\[−2, 2]. Thus we can define for |z| < 1

M(z) = −mν(z + z−1) (1.14)

The minus sign is picked so Im M(z) > 0 if Im z > 0. We use M(z; J)
when we want to make the J-dependence explicit.

In (1.13), we translate the pole term directly. Define βj so

E±
j = β±j + (β±j )−1 (1.15)

with |β±j | > 1. We sometimes drop the explicit ± symbol and count

the βj’s in one set. We define a signed measure dµ# on (0, 2π) by
Im M(reiθ) → dµ# weakly as r ↑ 1. µ# is positive on (0, π) and



SUM RULES AND THE SZEGŐ CONDITION 5

negative on (π, 2π). Thus (1.13) implies

Im M(z) = Im
∑

j

µ({β−1
j })

z + z−1 − (βj + β−1
j )

+
1

2π

∫ 2π

0

P (z, eiϕ) dµ#(ϕ)

(1.16)

where we use µ({β−1
j }) for the weights ν({Ej}) and P (z, w), with |z| ≤

1, |w| = 1, is the Poisson kernel

P (z, w) =
1− |z|2
|z − w|2 (1.17)

or

P (reiθ, eiϕ) ≡ Pr(θ − ϕ) =
1− r2

1 + r2 − 2r cos(θ − ϕ)
(1.18)

We note now that since µ({β−1
j }) are point mass of a probability mea-

sure, we have
∑

j

µ({β−1
j }) ≤ 1

It is useful to use the fact that µ# is odd under reflection to rewrite
(1.16) in the form

Im M(reiθ) = Im
∑

j

µ({β−1
j })

reiθ + r−1e−iθ − (βj + β−1
j )

+
1

2π

∫ π

0

Dr(θ, ϕ) dµ(ϕ)

(1.19)

where

Dr(θ, ϕ) = Pr(θ, ϕ)− Pr(θ,−ϕ) (1.20)

This is because M(z) = M(z̄), so that µ# ¹ [−π, 0] is a reflection across
R of µ ≡ µ# ¹ [0, π].

Note that not only does Im M(reiθ)dθ converge weakly to µ#, but
by general principles [21], limr↑1 M(reiθ) ≡ M(eiθ) exists for a.e. θ and
dµ#

ac = Im M(eiθ)dθ.
Section 2, the technical core of the paper, proves some convergence

results about integrals of ln[Im M(reiθ)]. It is precisely such integrals
that arise in Section 3 where, following Killip-Simon [11], we use the
well-known

−m(z; J)−1 = z − b1 + a2
1m(z; J (1))

where J (1) is J with the top row and leftmost column removed. We will
be able to prove sum rules that compare J and J (1). In Section 4, we
will then list various sum rules, including Theorems 1 and 4. Section 5
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proves Theorem 2 and Section 6 discusses Coulomb Jacobi matrices
(J − J0 decays as n−1) and Theorem 3 in particular.

It is a pleasure to thank Mourad Ismail, Rowan Killip, and Paul
Nevai for useful discussions.

2. Continuity of Integrals of ln(Im M)

In this section, we will prove a general continuity result about bound-
ary values of interest for M -functions of the type defined in (1.18). We
will consider suitable weight functions, w(ϕ), on [0, π], of which the
examples of most interest are w(ϕ) = sink(ϕ), k = 0 or 2. Our goal is
to prove that

lim
r↑1

∫
ln[Im M(reiϕ)] w(ϕ) dϕ =

∫
ln[Im M(eiϕ)] w(ϕ) dϕ (2.1)

and that the convergence is in L1 if the integral on the right is finite.
All integrals in this section are from 0 to π if not indicated otherwise.
We define

d(ϕ) ≡ min(ϕ, π − ϕ) (2.2)

and we suppose that

0 ≤ w(ϕ) ≤ C1 d(ϕ)−1+α (2.3)

for some C1, α > 0 and that w is C1 with

|w′(ϕ)w(ϕ)−1| ≤ C2 d(ϕ)−β (2.4)

for C2, β > 0. For weights of interest, one can take α = β = 1.

Remarks. 1. For the applications in mind, we are only interested in
allowing “singularities” (i.e., w vanishing or going to infinity) at 0 or
π, but all results hold with unchanged proofs if d(ϕ) ≡ min{|ϕ− ϕj|}
for any finite set {ϕj}. For example, w(ϕ) = sin2(mϕ) as in [12] is fine.

2. Note that by (2.3),
∫ π

0
w(ϕ) dϕ < ∞.

The main technical result we will need is:

Theorem 2.1. Let M be a function with a representation of the form
(1.19) and let w be a weight function obeying (2.3) and (2.4). Then
(2.1) holds. Moreover, if∫

ln[Im M(eiϕ)]w(ϕ) dϕ > −∞ (2.5)

(it is never +∞), then

lim
r↑1

∫ ∣∣ln[Im M(reiϕ)]− ln[Im M(eiϕ)]
∣∣w(ϕ) dϕ = 0 (2.6)



SUM RULES AND THE SZEGŐ CONDITION 7

Let ln± be defined by

ln±(y) = max(0,± ln(y))

so

ln(y) = ln+(y)− ln−(y)

|ln(y)| = ln+(y) + ln−(y)

We will prove Theorem 2.1 by proving

Theorem 2.2. For any a > 0 and p < ∞, ln+[Im(M(eiϕ))/a] ∈
Lp((0, π), w(ϕ)dϕ), and

lim
r↑1

∫ ∣∣∣∣ln+

(
Im M(reiϕ)

a

)
− ln+

(
Im M(eiϕ)

a

)∣∣∣∣
p

w(ϕ) dϕ = 0 (2.7)

Theorem 2.3. For any a > 0, we have

lim
r↑1

∫
ln−

(
Im M(reiϕ)

a

)
w(ϕ) dϕ =

∫
ln−

(
Im M(eiϕ)

a

)
w(ϕ) dϕ

(2.8)

Proof of Theorem 2.1 given Theorems 2.2 and 2.3. By Fatou’s lemma
and the fact that for a.e. ϕ, Im M(reiϕ) → Im M(eiϕ), we have

lim inf
r↑1

∫
ln−[Im M(reiϕ)] w(ϕ) dϕ ≥

∫
ln−[Im M(eiϕ)] w(ϕ) dϕ

(2.9)

Since Theorem 2.2 says that sup0<r≤1

∫
ln+[Im M(reiϕ)]w(ϕ) dϕ < ∞,

it follows that if
∫

ln−[Im M(eiϕ)]w(ϕ) dϕ = ∞, then (2.1) holds.
If (2.5) holds, then

lim
a↓0

∫
ln−

[
Im M(eiϕ)

a

]
w(ϕ) dϕ = 0

since ln−(y/a) is monotone decreasing to 0 as a decreases. Given ε,
first find a so ∫

ln−

[
Im M(eiϕ)

a

]
w(ϕ) dϕ <

ε

3

and then, by (2.8), r1 < 1 so for r1 < r < 1,
∫

ln−

[
Im M(reiϕ)

a

]
w(ϕ) dϕ <

ε

3

By (2.7), find r2 < 1, so for r2 < r < 1,
∫ ∣∣∣∣ln+

[
Im M(reiϕ)

a

]
− ln+

[
Im M(eiϕ)

a

]∣∣∣∣ w(ϕ) dϕ <
ε

3
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Writing

|ln(α)− ln(β)| ≤
∣∣∣∣ln+

(
α

a

)
− ln+

(
β

a

)∣∣∣∣ + ln−

(
α

a

)
+ ln−

(
β

a

)

we see that if max(r1, r2) < r < 1, then
∫ ∣∣ln[Im M(reiϕ)]− ln[Im M(eiϕ)]

∣∣w(ϕ) dϕ < ε

so (2.6) holds.

We will prove Theorem 2.2 by using the dominated convergence the-
orem and standard maximal function techniques. Given the measure µ
on (0, π), we define µ̃ to be the sum of µ and its reflection on (π, 2π),
and its maximal function by

µ∗(x) = sup
0<a<π

µ̃(x− a, x + a)

2a

The Hardy-Littlewood maximal inequality for measures (see Rudin
[21]) says that

|{x | µ∗(x) > λ}| ≤ 3µ̃(0, π)

λ
(2.10)

Lemma 2.4. Let M be an M-function based on a measure µ on [0, π]
and weights at the poles at (β±j )−1, and let α be a sum of the weights
of the poles. Then for 0 < r < 1,

Im M(reiθ) ≤ µ∗(θ) + αr−1[sin(θ)]−2 (2.11)

Proof. Since Dr(θ, ϕ) ≤ Pr(θ, ϕ) and Pr is a convolution operator with

a positive even decreasing function of ϕ on [0, π] with
∫ 2π

0
Pr(ϕ) dϕ/2π =

1, we have, by standard calculations, that
∫ π

0

Dr(θ, ϕ)
dµ(ϕ)

2π
≤ µ∗(θ)

On the other hand, for β ≥ 1,
∣∣∣∣

1

z + z−1 − β − β−1

∣∣∣∣ =

∣∣∣∣
z

(z − β)(z − β−1)

∣∣∣∣ ≤
|z|

|Im z|2 ≤
1

r sin2 θ

if z = reiθ, so summing the pole term shows,

Im
∑

i

µ({β−1
i })

z + z−1 − βi − β−1
i

≤
∑

i µ({β−1
i })

r sin2 θ
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Proof of Theorem 2.2. Let

f1(θ) = µ∗(θ) f2(θ) = 2[sin(θ)]−2

For a.e. θ, ln+[(Im M(reiθ))/a] → ln+[(Im M(eiθ))/a]. By (2.11) for all
1
2

< r < 1, ln+[(Im M(reiθ))/a] ≤ ln+[(f1(θ) + f2(θ))/a]. Thus if we
prove that for all p < ∞,

∫ ∣∣∣∣ln+

(
f1 + f2

a

)∣∣∣∣
p

w(ϕ) dϕ < ∞

we obtain (2.7) by the dominated convergence theorem. Since

|ln+(x)|p ≤ C(p, q)|x|q

for any p < ∞, q > 0, and suitable C(p, q) and

|x + y|q ≤ 2q|x|q + 2q|y|q

it suffices to find some q > 0, so
∫

(|f1(ϕ)|q + |f2(ϕ)|q) w(ϕ) dϕ < ∞

Since for v−1 + t−1 = 1,
∫
|f1(ϕ)|qw(ϕ) dϕ ≤

(∫
|f1(ϕ)|qv dϕ

)1/v(∫
|w(ϕ)|t dϕ

)1/t

and w(ϕ) ∈ Lt for some t > 1 by (2.3), it suffices to find some s > 0
with ∫

(|f1(ϕ)|s + |f2(ϕ)|s) dϕ < ∞ (2.12)

By (2.10),
∫ |f1(ϕ)|s dϕ < ∞ if s < 1 and clearly,

∫ |f2(ϕ)|s dϕ < ∞ if
s < 1

2
.

As a preliminary to the proof of Theorem 2.3, we need

Lemma 2.5. Let w obey (2.4). Let 0 < ϕ0 < π and let ϕ1, ϕ2 ∈ [0, π]
obey

(a) d(ϕ1) ≥ d(ϕ0), d(ϕ2) ≥ d(ϕ0) (2.13)

(b) |ϕ1 − ϕ2| ≤ d(ϕ0)
β (2.14)

Then for C3 = C2 exp(C2),∣∣∣∣
w(ϕ1)

w(ϕ2)
− 1

∣∣∣∣ ≤ C3|ϕ1 − ϕ2| d(ϕ0)
−β (2.15)
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Proof. ∣∣∣∣
w(ϕ1)

w(ϕ2)
− 1

∣∣∣∣ =

∣∣∣∣exp

( ∫ ϕ2

ϕ1

w′(η)

w(η)
dη

)
− 1

∣∣∣∣
≤ |exp(C2|ϕ2 − ϕ1| d(ϕ0)

−β)− 1| (2.16)

by (2.4) and (2.13). But |ex − 1| ≤ e|x||x|, so by (2.14),∣∣∣∣
w(ϕ1)

w(ϕ2)
− 1

∣∣∣∣ ≤ C2 exp(C2)|ϕ1 − ϕ2| d(ϕ0)
−β

which is (2.15).

We will also need the following pair of lemmas:

Lemma 2.6. Let 0 < η < θ < π − η and

Nr(θ, η) =

∫ θ+η

θ−η

Dr(θ, ϕ)
dϕ

2π

Then

0 ≤ [1−Nr(θ, η)] ≤ 2(1− r)

r sin2 θ
+

1− r

r sin2 η
(2.17)

Proof. We have

1 =

∫ 2π

0

Pr(θ, ϕ)
dϕ

2π

so since Dr ≤ Pr, Nr ≤ 1 and

1−Nr(θ, η) ≤ 2

2π

∫ 0

−π

Pr(θ, ϕ) dϕ +
1

2π

∫
ϕ∈[0,π]
|θ−ϕ|≥η

Pr(θ, ϕ) dϕ (2.18)

Now

Pr(θ, ϕ) =
1− r2

(1− r)2 + 4r sin2[1
2
(θ − ϕ)]

(2.19)

≤ 2(1− r)

4r sin2[1
2
(θ − ϕ)]

≤ 2(1− r)

r sin2(θ − ϕ)

The first integrand in (2.18) is thus bounded by 2r−1(1−r)[sin2(θ)]−1

and the second by 2r−1(1− r)[sin2(η)]−1, so (2.17) is immediate.

Lemma 2.7. If
∫ π

0
Im M(eiθ) dθ 6= 0, then for θ ∈ [0, π], r ∈ (1

2
, 1),

Im M(reiθ) ≥ c(r−1 − r) sin θ (2.20)
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Proof. In terms of the real line m function, for E2 > 0, E1 real,

Im[−m(E1 − iE2)] ≥ E2

π

∫ 2

−2

Im m(E) dE

(E1 − E)2 + E2
2

(2.21)

since we have dropped the positive contributions of νsing to Im(−m).
Now if z = reiθ,

M(z) = −m(E1 − iE2)

where z + z−1 = E1 − iE2 or E1 = (r + r−1) cos θ, E2 = (r−1 − r) sin θ.
If r > 1

2
, then |E1| ≤ 5

2
, |E2| ≤ 3

2
, and in (2.21), |E| ≤ 2. Thus

Im M(z) ≥ cE2(z)

which is (2.20).

Proof of Theorem 2.3. Since ln− is a decreasing function, to get upper
bounds on ln−[Im M(reiθ)/a], we can use a lower bound on Im M . The
elementary bound

ln−(ab) ≤ ln−(a) + ln−(b) (2.22)

will be useful.
As already noted, Fatou’s lemma implies the lim inf of the left side

of (2.8) is bounded from below by the right side, so it suffices to prove
that

lim sup
r↑1

∫ π

0

ln−

(
Im M(reiϕ)

a

)
w(ϕ) dϕ ≤

∫ π

0

ln−

(
Im M(eiϕ)

a

)
w(ϕ) dϕ

(2.23)

Pick γ and κ so 0 < max(β, 1)γ < κ < 1
2

and let θ0(r) = (1 − r)γ,

η(r) = (1− r)κ. We will bound Im M(reiθ) from below for d(θ) ≤ θ0(r)
using (2.20), and for d(θ) ≥ θ0(r), we will use the Poisson integral for
the region |ϕ− θ| ≤ η(r).

By (2.20) and (2.3),
∫

d(ϕ)≤θ0(r)

ln−

(
Im M(reiϕ)

a

)
w(ϕ) dϕ ≤ Caθ

α
0 [ln−(r−1 − r) + ln− θ0]

which goes to zero as r ↑ 1 for any a. So suppose d(θ) > θ0. Write

Im M(reiθ) ≥
∫ θ+η(r)

θ−η(r)

Dr(θ, ϕ) Im M(eiϕ)
dϕ

2π

= Nr(θ, η)

∫ θ+η(r)

θ−η(r)

Dr(θ, ϕ)

2πNr(θ, η)
Im M(eiϕ) dϕ (2.24)

For later purposes, note that for d(θ) > θ0, (2.17) implies

0 ≤ 1−Nr(θ, η) ≤ C(1− r)1−2κ (2.25)
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which goes to zero since κ < 1
2
. Using (2.24) and (2.22), we bound

ln−[Im M(reiθ)/a] as two ln−’s. Since ln− is convex and Dr(θ, ϕ)/2πNr(θ, η)
χ(θ−η,θ+η)(ϕ) dϕ is a probability measure, we can use Jensen’s inequality
to see that

w(θ) ln−

[
Im M(reiθ)

a

]

≤ w(θ) ln−[Nr(θ, η)] +

∫ θ+η(r)

θ−η(r)

w(θ)

w(ϕ)

Dr(θ, ϕ)

Nr(θ, η)
w(ϕ) ln−

[
Im M(eiϕ)

a

]
dϕ

2π
(2.26)

In the first term for the θ’s with d(θ) ≥ θ0(r), Nr obeys (2.25) so∫

d(θ)≥θ0(r)

w(θ) ln−[Nr(θ, η)] dθ = O((1− r)1−2κ) → 0 (2.27)

In the second term, note that for the θ’s in question, Nr(θ, η)−1 − 1 =
O((1− r)1−2κ) and by (2.15), w(θ)/w(ϕ)− 1 = O((1− r)κ−βγ). Since
Dr(θ, ϕ) ≤ Pr(θ, ϕ), we thus have

∫

d(θ)≥θ0

ln−

[
Im M(reiθ)

a

]
w(θ) dθ

≤ O((1− r)1−2κ) + [1 + O((1− r)1−2κ)][1 + O((1− r)κ−βγ)]
∫

d(θ)≥θ0

|ϕ−θ|≤η

Pr(θ, ϕ)w(ϕ) ln−

[
Im M(eiϕ)

a

]
dϕ

dθ

2π
(2.28)

Since the integrand is positive, we can extend it to {(θ, ϕ) | θ ∈
[0, 2π], ϕ ∈ [0, π]} and do the θ integration using

∫
Pr(θ, ϕ)dθ/2π = 1.

The result is (2.23).

This concludes the proof of Theorem 2.1. By going through the
proof, one easily sees that

Theorem 2.8. Theorem 2.1 remains true if in (2.1) and (2.6), ln[Im M(reiϕ)]
is replaced by ln[g(r) sin ϕ + Im M(reiϕ)] where g(r) ≥ 0 and g(r) → 0
as r ↑ 1.

Proof. In the ln+ bounds, we get an extra [sup 1
2
<r<1 g(r)] sin θ in f2(θ).

Since we still have pointwise convergence, we easily get the analog of
Theorem 2.2. In the proof of Theorem 2.3, Fatou is unchanged since
g(r) → 0, and since

ln−(g(r) sin ϕ + Im M(reiϕ)) ≤ ln−(Im M(reiϕ))

the lim sup bound has an unchanged proof.
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3. The Step-by-Step Sum Rules

We will call J a BW matrix (for Blumenthal-Weyl) if J is a bounded
Jacobi matrix with σess(J) = [−2, 2], for example, if J −J0 is compact.
Let J (n) be the matrix resulting from removing the first n rows and
columns. Let {E±

j (J)}∞j=1 be the eigenvalues of J above/below ±2,

ordered by ±E±
1 ≥ ±E±

2 ≥ · · · with E±
j (J) defined to be ±2 if there

are only finitely many eigenvalues k < j above/below ±2. Then by the
min-max principle,

±E±
j+n(J) ≤ ±E±

j (J (n)) ≤ ±E±
j (J) (3.1)

We have limj→∞ E±
j (J) = ±2 if J is a BW matrix.

It follows by the convergence of sums of alternating series that if f
is even or odd and monotone on [2,∞) with f(2) = 0, then

lim
N→∞

∑
±

N∑
j=1

[f(E±
j (J))− f(E±

j (J (n)))] ≡ δfn(J) (3.2)

exists and is finite. If β±j is defined by E±
j = β±j +(β±j )−1 with |βj| > 1,

we define X
(n)
` (J) as δfn(J) for

f(E) =

{
ln|β| ` = 0

−1
`
[β` − β−`] ` = 1, 2 . . .

(3.3)

In addition, we will need

ζ
(n)
` (J) =

{
−∑n

j=1 ln(aj) ` = 0
2
`
limm→∞[Tr(T`(

1
2
Jm;F ))− Tr(T`(

1
2
J

(n)
m−n;F ))] ` = 1, 2, . . .

(3.4)

where Jm;F is the finite matrix formed from the first m rows and
columns of J and T` is the `-th Chebyshev plynomial (of the first kind).
As noted in [11, Proposition 4.3], the limit in (3.4) exists since the ex-
pression is independent of m once m > ` + n.

Note that

ζ
(n)
1 (J) =

n∑
j=1

bj (3.5)

ζ
(n)
2 (J) =

n∑
j=1

1
2
b2
j + (a2

j − 1) (3.6)

as computed in [11].
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Note that by construction (with J (0) ≡ J),

X
(n)
` (J) =

n−1∑
j=0

X
(1)
` (J (j)) (3.7)

and

ζ
(n)
` (J) =

n−1∑
j=0

ζ
(1)
` (J (j)) (3.8)

As final objects we need

Z(J) =
1

4π

∫ 2π

0

ln

(
sin θ

Im M(eiθ, J)

)
dθ (3.9)

and for ` ≥ 1,

Z±
` (J) =

1

4π

∫ 2π

0

ln

(
sin θ

Im M(eiθ, J)

)
(1± cos(`θ)) dθ (3.10)

Y`(J) = − 1

2π

∫ 2π

0

ln

(
sin θ

Im M(eiθ, J)

)
cos(`θ) dθ (3.11)

We include “sin θ” inside ln(. . . ) so that Z(J0) = Z±
` (J0) = Y`(J0) = 0

because M(z, J0) = z. Notice that (3.9) is the same as (1.2). Indeed,

Im M(eiθ, J) = sgn(π − θ) π
dνac

dE
(2 cos θ)

for a.e. θ ∈ (0, 2π), and the factor (4π)−1 replaces (2π)−1 because under
z 7→ z + z−1 the unit circle covers (−2, 2) twice.

Of course,

Z±
` (J) = Z(J)∓ 1

2
Y`(J) (3.12)

when all integrals converge. By Theorem 2.2, the ln− piece of the
integrals in (3.9)–(3.11) always converges. Since 1 ± cos(`θ) ≥ 0, the
integrals defining Z(J), Z±

` (J) either converge or diverge to +∞. We
therefore always define Z(J) and Z±

` (J) although they may take the
value +∞. Since [1± cos(`θ)] ≤ 2, Z(J) < ∞ implies Z±

` (J) < ∞, so
we define Y`(J) by (3.12) if and only if Z(J) < ∞.

If Z(J) < ∞, we say J obeys the Szegő condition or J is Szegő. If
Z±

1 (J) < ∞, we say J is Szegő at ±2 since, for example, if Z+
1 (J) < ∞,

the integral in (3.9) converges near θ = 0 (E = 2 cos(θ) near +2) and
if Z−

1 (J) < ∞, the integral converges near θ = π (i.e., E = −2). Note
that while Z+

1 (J) < ∞ only implies convergence of (3.9) at θ = 0, it
also implies that at θ = π the integral with a sin2 θ inserted converges
(quasi-Szegő condition).

Our main goal in this section is to prove the next three theorems
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Theorem 3.1 (Step-by-Step Sum Rules). Let J be a BW matrix. Z(J) <
∞ if and only if Z(J (1)) < ∞, and if Z(J) < ∞, we have

Z(J) = − ln(a1) + X
(1)
0 (J) + Z(J (1)) (3.13)

Y`(J) = ζ
(1)
` (J) + X

(1)
` (J) + Y`(J

(1)); ` = 1, 2, 3, . . . (3.14)

Remarks. 1. By iteration and (3.7)/(3.8), we obtain if Z(J) < ∞,
then Z(J (n)) < ∞ and

Z(J) = −
n∑

j=1

ln(aj) + X
(n)
0 (J) + Z(J (n)) (3.15)

Y`(J) = ζ
(n)
` (J) + X

(n)
` (J) + Y`(J

(n)); ` = 1, 2, 3, . . . (3.16)

2. We call (3.13)/(3.14) the step-by-step Case sum rules.

Theorem 3.2 (One-Sided Step-by-Step Sum Rules). Let J be a BW
matrix. Z±

1 (J) < ∞ if and only if Z±
1 (J (1)) < ∞, and if Z±

1 (J) < ∞,
then we have for ` = 1, 3, 5, . . . ,

Z±
` (J) = − ln(a1)∓ 1

2
ζ

(1)
` (J) + X

(1)
0 (J)∓ 1

2
X

(1)
` (J) + Z±

` (J (1))
(3.17)

Remark. Theorem 3.2 is intended to be two statements: one with all
the upper signs used and one with all the lower signs used.

Theorem 3.3 (Quasi-Step-by-Step Sum Rules). Let J be a BW ma-
trix. Z−

2 (J) < ∞ if and only if Z−
2 (J (1)) < ∞, and if Z−

2 (J) < ∞,
then for ` = 2, 4, . . . , we have

Z−
` (J) = − ln(a1) + 1

2
ζ

(1)
` (J) + X

(1)
0 (J) + 1

2
X

(1)
` (J) + Z−

` (J (1))
(3.18)

Remarks. 1. The name comes from the fact that since 1 − cos 2θ =
2 sin2 θ, Z−

2 (J) is what Killip-Simon [11] called the quasi-Szegő integral

Z−
2 (J) =

1

2π

∫ 2π

0

ln

(
sin θ

Im M(eiθ, J)

)
sin2 θ dθ (3.19)

2. Since Z(J) < ∞ implies Z+
1 (J) and Z−

1 (J) < ∞, and Z+
1 (J) or

Z−
1 (J) < ∞ imply Z−

2 (J) < ∞, we have additional sum rules in various
cases.

3. In [12], Laptev et al. prove sum rules for Z−
` (J) where ` =

4, 6, 8, . . . . One can develop step-by-step sum rules in this case and
use it to streamline the proof of their rules as we streamline the proof
of the Killip-Simon P2 rule (our Z−

2 sum rule) in the next section.
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The step-by-step sum rules were introduced in Killip-Simon, who
first take r < 1 (in our language below), then take n → ∞, and then
r ↑ 1 with some technical hurdles to take r ↑ 1. By first letting r ↑ 1
with n < ∞, and then n → ∞ as in the next section, we can both
simplify their proof and obtain additional results. The idea of using
the imaginary part of

−M(z; J)−1 = −(z + z−1) + b1 + a2
1M(z; J (1)) (3.20)

is taken from Killip-Simon [11].

Proof of Theorem 3.1. Taking imaginary parts of both sides of (3.20)
with z = reiθ and r < 1, we obtain

[Im M(reiθ; J)] |M(reiθ; J)|−2 = (r−1 − r) sin θ + a2
1 Im M(reiθ; J (1))

(3.21)

Taking ln’s of both sides, we obtain

ln

(
sin θ

Im M(reiθ; J)

)
= t1 + t2 + t3 (3.22)

where

t1 = −2 ln|M(reiθ; J)| (3.23)

t2 = −2 ln a1 (3.24)

t3 = ln

(
sin θ

g(r) sin θ + Im M(reiθ; J (1))

)
(3.25)

where

g(r) = a−2
1 (r−1 − r) (3.26)

Let

f(z) =
M(rz; J)

rz

so f(0) = 1 (see (3.20)). In the unit disk, f(z) is meromorphic
and has poles at {r(β±j (J))−1 | j so that β±j (J) > r−1} and zeros at

{r(β±j (J (1)))−1 | β±j (J (1)) > r−1}. Thus, by Jensen’s formula for f :

1

4π

∫ 2π

0

t1 dθ = − ln r +
∑

β±j (J)>r−1

ln|r−1β±j (J)| −
∑

β±j (J(1))>r−1

ln|r−1β±j (J (1))|

By (3.1), the number of terms in the sums differs by at most 2, so that
the ln(r−1)’s cancel up to at most 2 ln(r−1) → 0 as r ↑ 1. Thus as r ↑ 1,

1

4π

∫ 2π

0

(t1 + t2) dθ → − ln(a1) + X
(1)
0 (J) (3.27)
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It follows by (3.22) and Theorems 2.1 and 2.8 (with w(ϕ) = 1) that
Z(J) < ∞ if and only if Z(J (1)) < ∞, and if they are finite, (3.13)
holds.

It also follows that if Z(J) < ∞, we have L1 convergence of the ln’s
to their r = 1 values. That implies convergence of the integrals with
cos(`θ) inside. Higher Jensen’s formula as in [11] then implies (3.14).
In place of ln|βr−1|, we have (rβ)`− (rβ)−`, but the sums still converge
to the r = 1 limit since we can separate the β` and β−` terms, and
then the r’s factor out.

Proofs of Theorems 3.2 and 3.3. These are the same as the above proof,
but now the weight w is either 1±cos(θ) or 1−cos(2θ) and that weight
obeys (2.3) and (2.4).

Corollary 3.4. Let J be a BW matrix. If J and J̃ differ by a finite
rank perturbation, then J is Szegő (resp. Szegő at ±2) if and only if J̃
is.

Proof. For some n, J (n) = J̃ (n), so this is immediate from Theorems 3.1
and 3.2.

Conjecture 3.5. Let J be a BW matrix. If J and J̃ differ by a trace
class perturbation, then J is Szegő (resp. Szegő at ±2) if and only if J̃
is. It is possible this conjecture is only generally true if J − J0 is only
assumed compact or is only assumed Hilbert-Schmidt.

This conjecture for J = J0 is Nevai’s conjecture recently proven by
Killip-Simon. Their method of proof and the ideas here would prove
this conjecture if one can prove a result of the following form. Let J, J̃
differ by a finite rank operator so that by the discussion before (3.2),

lim
N→∞

∑
±

N∑
j=1

(√
E±

j (J)2 − 4 −
√

E±
j (J̃)2 − 4

)
≡ δ(J, J̃)

exists and is finite. The conjecture would be provable by the method
of [11] and this paper (by using the step-by-step sum rule to remove
the first m pieces of J and then replacing them with the first m pieces
of J̃) if one had a bound of the form

|δ(J, J̃)| ≤ (const.)Tr(|J − J̃ |) (3.28)

(3.28) with J = J0 is the estimate of Hundertmark-Simon [10]. We
have counterexamples that show (3.28) does not hold for a universal
constant c. However, in these examples, ‖J‖ → ∞ as c →∞. Thus it
could be that (3.28) holds with c only depending on J for some class
of J ’s. If it held with a bound depending only on ‖J‖, the conjecture
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would hold in general. If J was required in J0+ Hilbert-Schmidt, we
would get the conjecture for such J ’s.

4. The Z0, Z±
1 , and Z−

2 Sum Rules

Our goal here is to prove that sum rules of Case type hold under
certain hypotheses. Of interest on their own, these considerations also
somewhat simplify the proof of the P2 sum rule in Section 8 of [11], and
considerably simplify the proof of the C0 sum rule for trace class J−J0

from Section 9 of [11]. Throughout, J will be a BW matrix. There are
two main tools. As in [11], lower semicontinuity of the Z’s in J (in the
topology of pointwise convergence of matrix elements) gets inequalities
in one direction. We use step-by-step sum rules and boundedness from
below of Z for the other direction.

We first introduce some quantities involving a fixed Jacobi matrix:

Ā0(J) = lim sup
n→∞

(
−

n∑
j=1

ln(aj)

)
(4.1)

A0(J) = lim inf
n→∞

(
−

n∑
j=0

ln(aj)

)

Ā±
1 (J) = lim sup

n→∞

(
−

n∑
j=1

(aj − 1± 1
2
bj)

)
(4.2)

A±
1 (J) = lim inf

n→∞

(
−

n∑
j=1

(aj − 1± 1
2
bj)

)

A2(J) =
∞∑

j=1

[1
4
b2
j + 1

2
G(aj)] (4.3)

where

G(a) = a2 − 1− ln(a2)

Since G(a) ≥ 0, the finite sums have a limit (which may be +∞).
We note that for a near 1, G(a) ∼ 2(a − 1)2. Thus A2(J) is finite

if and only if J − J0 is Hilbert-Schmidt. In (4.2), we can use aj − 1
in place of ln(aj) because if {aj − 1} ∈ `2 (e.g., if J − J0 is Hilbert-
Schmidt), then

∑|ln(aj)− (aj − 1)| < ∞. Notice also that in the case
of a discrete Schrödinger operator (i.e., an ≡ 1), Ā0(J) = A0(J) = 0.

Next, we introduce some functions of the eigenvalues:

E0(J) =
∑
j,±

ln|β±j | (4.4)
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E±1 (J) =
∑

j

√
(E±

j )2 − 4 (4.5)

E2(J) =
∑
j,±

F (E±
j ) (4.6)

where F (E) = 1
4
[β2−β−2− ln(β4)] with E = β +β−1 and |β| > 1. For

|E| ∼ 2, F (E) is O((|E| − 2)3/2). In (4.4) and (4.6), we sum over +
and −. In (4.5), we define E+

1 and E−1 with only the + or only the −
terms.

We need the following basis-dependent notion:

Definition. Let B be a bounded operator on `2(Z+). We say B has a
conditional trace if

lim
`→∞

∑̀
j=1

〈δj, Bδj〉 ≡ c-Tr(B) (4.7)

exists and is finite.
If B is not trace class, this object is not unitarily invariant.
Our goal in this section is to prove the following theorems whose

proof is deferred until after all the statements.

Theorem 4.1. Let J be a BW matrix. Consider the four statements:
(i) Ā0(J) > −∞
(ii) A0(J) < ∞
(iii) Z(J) < ∞
(iv) E0(J) < ∞
Then
(a) (ii) + (iv) ⇒ (iii) + (i)
(b) (i) + (iii) ⇒ (iv) + (ii)
(c) (iii) ⇒ Ā0(J) < ∞
(d) (iv) ⇒ A0(J) > −∞
Thus (iii) + (iv) ⇒ (i) + (ii). In particular, if A0(J) = Ā0(J), that
is, the limit exists, then the finiteness of any two of Z(J), E0(J), and
Ā0(J) implies the finiteness of the third.

If all four conditions hold and J − J0 is compact, then
(e)

lim
n→∞

(
−

n∑
j=1

ln(aj)

)
≡ A0(J) (4.8)

exists and is finite, and

Z(J) = A0(J) + E0(J) (4.9)
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(f) For each ` = 1, 2, . . . ,

−
∑
j,±

`−1[β±j (J)` − β±j (J)−`] ≡ X
(∞)
` (J) (4.10)

converges absolutely and equals limn→∞ X
(n)
` (J).

(g) For each ` = 1, 2, . . . ,

B`(J) =
2

`

{
T`

(
J

2

)
− T`

(
J0

2

)}
(4.11)

has a conditional trace and

c-Tr(B`(J)) = lim
n→∞

ζ
(n)
` (J) (4.12)

for example, if ` = 1,
∑n

j=1 bj converges to a finite limit.

(h) The Case sum rule holds:

Y`(J) = c-Tr(B`(J)) + X
(∞)
` (J) (4.13)

where Y` is given by (3.11), X
(∞)
` by (4.10), and c-Tr(B`(J)) by

(4.7), (4.11), and (4.12).

Remarks. 1. In one sense, this is the main result of this paper.

2. We will give examples later where Ā0(J) = A0(J) and one of the
conditions (i)/(ii), (iii), (iv) holds and the other two fail.

3. For ` odd, T`(J0/2) vanishes on-diagonal. By Proposition 2.2 of
[11] and the fact that the diagonal matrix elements of Jk

0 are eventu-
ally constant, it follows that for ` even, T`(J0/2) eventually vanishes
on-diagonal and c-Tr(T`(J0/2)) = −1

2
. Thus (g) says c-Tr(T`(J/2)) ex-

ists and the sum rule (4.13) can replace c-Tr(B`(J)) by c-Tr(T`(J/2))
plus a constant (zero if ` is odd and 1/` if ` is even). For ` even,
c-Tr(T`(J0/2)) = −1

2
while Tr(T`(J0,n;F /2)) = −1 for n large because

T`(J0,n;F /2) has two ends.

Corollary 4.2. Let J−J0 be compact. If Z(J) < ∞, then −∑n
j=1 ln(aj)

either converges or diverges to −∞.

Remarks. 1. We will give an example later where Z(J) < ∞, and
limn→∞(−∑n

j=1 ln(aj)) = −∞.

2. In other words, if J − J0 is compact and Ā0(J) 6= A0(J), then
Z(J) = ∞.

3. Similarly, if J − J0 is compact and E0(J) < ∞, then the limit
exists and is finite or is +∞.
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Proof. If Z(J) < ∞ and Ā0 > −∞, then by (b) of the theorem, all four
conditions hold, and so by (e), the limit exists. On the other hand, if
Ā0 = −∞, then Ā0 = A0 = −∞.

Corollary 4.3. If J − J0 is trace class, then Z(J) < ∞, E0(J) < ∞,
and the sum rules (4.9) and (4.13) hold.

Remark. This is a result of Killip-Simon [11]. Our proof that Z(J) <
∞ is essentially the same as theirs, but our proof of the sum rules is
much easier.

Proof. Since J − J0 is trace class, it is compact. Clearly, Ā0 = A0,
and is neither ∞ nor −∞ since aj > 0 and

∑|aj − 1| < ∞ imply∑|ln(aj)| < ∞. By the bound of Hundertmark-Simon [10], E0(J) < ∞.
The sum rules then hold by (a), (e), and (h) of Theorem 4.1.

Theorem 4.4. Suppose J − J0 is Hilbert-Schmidt. Then
(i) A±

1 < ∞ and E±1 < ∞ implies Z±
1 < ∞.

(ii) Z±
1 < ∞ implies Ā±

1 < ∞.
(iii) Z±

1 < ∞ and Ā±
1 > −∞ implies E±1 < ∞.

(iv) E±1 < ∞ implies A±
1 > −∞.

Remarks. 1. Each of (i)–(iv) is intended as two statements.

2. In Section 6, we will explore (ii), which is the most striking of
these results since its contrapositive gives very general conditions under
which the Szegő condition fails.

3. The Hilbert-Schmidt condition in (i) and (iv) can be replaced by
the somewhat weaker condition that∑

j,±
(|E±

j | − 2)3/2 < ∞ (4.14)

That is true for (ii) and (iii) also, but by the Z−
2 sum rule, (4.14) plus

Z±
1 < ∞ implies J − J0 is Hilbert-Schmidt.

Theorem 4.5. Let J be a BW matrix. Then

Z−
2 (J) + E2(J) = A2(J) (4.15)

Remarks. 1. This is, of course, the P2 sum rule of Killip-Simon [11].
Our proof that Z−

2 (J) + E2(J) ≤ A2(J) is identical to that in [11], but
our proof of the other half is somewhat streamlined.

2. As in [11], the values +∞ are allowed in (4.15).

Proof of Theorem 4.1. As in [11], let Jn be the infinite Jacobi matrix
obtained from J by replacing a` by 1 if ` ≥ n and b` by 0 if ` ≥ n + 1.
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Then (3.15) (noting J
(n)
n = J0 and Z(J0) = 0) reads

Z(Jn) = −
n∑

j=1

ln(aj) +
∑
j,±

ln|β±j (Jn)| (4.16)

[11, Section 6] implies the eigenvalue sum converges to E0(J) if J−J0

is compact, and in any event, is bounded above by E0(J) + c0 where
c0 = 0 if J − J0 is compact and otherwise,

c0 = ln|β+
1 (J)|+ ln|β−1 (J)| (4.17)

Moreover, by semicontinuity of the entropy [11, Section 5], Z(J) ≤
lim inf Z(Jn). Thus we have

Z(J) ≤ A0(J) + E0(J) + c0 (4.18)

Thus far, the proof is directly from [11]. On the other hand, by
(3.15), we have

Z(J) ≥ Ā0(J) + lim inf X
(n)
0 (J) + lim inf Z(J (n)) (4.19)

By the lemma below, limn→∞ X
(n)
0 (J) = E0(J). Moreover, by Theo-

rem 5.5 (eqn. (5.26)) of Killip-Simon [11], Z(J (n)) ≥ −1
2
ln(2), and if

J (n) → J0 in norm, that is, J − J0 is compact, then by semicontinuity
of Z, 0 = Z(J0) ≤ lim inf Z(J (n)). Therefore, (4.19) implies that

Z(J) ≥ Ā0(J) + E0(J)− c (4.20)

where

c = 0 if J − J0 is compact; c = 1
2
ln 2 in general (4.21)

With these preliminaries out of the way,

Proof of (d). (iv) and (4.18) imply that

Ā0(J) ≥ A0(J) ≥ Z(J)− E0(J)− c0 > −∞ (4.22)

Proof of (a). (4.18) shows Z(J) < ∞, and (d) shows that (i) holds.

Proof of (c). By (4.20) and E0(J) ≥ 0,

Z(J) ≥ Ā0(J)− c

so Z(J) < ∞ implies Ā0(J) < ∞.

Proof of (b). Since Ā0(J) > −∞ and c < ∞, (4.20) plus Z(J) < ∞
implies E0(J) < ∞. (c) shows that (ii) holds.

Note that (iii), (iv), and (4.20) imply that

A0(J) ≤ Ā0(J) ≤ Z(J)− E0(J) + 1
2
ln 2 < ∞ (4.23)
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Thus we have shown more than merely (iii) + (iv) ⇒ (i) + (ii), namely,
(iii) + (iv) imply by (4.22) and (4.23)

−∞ < Ā0(J) ≤ A0(J) + 1
2
ln 2 + c0 < ∞ (4.24)

We can say more if J − J0 is compact.

Proof of (e). (4.23) is now replaced by

A0(J) ≤ Ā0(J) ≤ Z(J)− E0(J)

since we can take c = 0 in (4.20). This plus (4.22) with c0 = 0 implies
Ā0(J) = A0(J) and (4.9).

Proof of (f), (g), (h). We have the sum rules (3.15), (3.16). Z(J) ±
Y`(J) is an entropy up to a constant, and so, lower semicontinous. Since
‖J (n) − J0‖ → 0, we have

lim inf(Z(J (n))± Y`(J
(n))) ≥ 0 (4.25)

On the other hand, since Z(J (n)) < ∞ and E0(J
(n)) ≤ E0(J) < ∞, J (n)

obeys the sum rule (4.9). Since −∑n
j=1 ln(aj) converges conditionally

lim
n→∞

lim
m→∞

(
−

m+n∑
j=n

ln(aj)

)
= 0

Moreover, E0(J
(n)) → 0 by Lemma 4.6 below and we conclude that

lim Z(J (n)) = 0. Thus (4.25) becomes

lim inf
n

Y`(J
(n)) ≥ 0, lim sup

n
Y`(J

(n)) ≤ 0

or

lim
n

Y`(J
(n)) = 0 (4.26)

By the lemma below, limn X
(n)
` (J) = X

(∞)
` (J) exists and is finite.

Since E0(J) < ∞, we have that the sum defining X
(∞)
` (J) is absolutely

convergent. This proves (f).

By this fact, (3.16), and (4.26), limn→∞ ζ
(n)
` (J) exists, is finite, and

obeys the sum rule

Y`(J) = lim
n→∞

ζ
(n)
` (J) + X

(∞)
` (J)

By Propositions 2.2 and 4.3 of Killip-Simon [11], the existence of

limn→∞ ζ
(n)
` (J) is precisely the existence of the conditional trace.
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Lemma 4.6. Let J be a BW matrix. Let f be a monotone increasing
continuous function on [2,∞) with f(2) = 0. Then

lim
n→∞

∞∑
j=1

[f(E+
j (J))− f(E+

j (J (n)))] =
∞∑

j=1

f(E+
j (J)) (4.27)

Remarks. 1. The right side of (4.27) may be finite or infinite.

2. The sum on the left is interpreted as the limit of the sum from
1 to n as n → ∞, which exists and is finite by the arguments at the
start of Section 3.

3. A similar result holds for E−
j and f monotone decreasing on

(−∞,−2].

Proof. Call the sum on the left of (4.27) (δf)(J, n). Since E+
j (J (n)) ≤

E+
j (J), we have

(δf)(J, n) ≥
m∑

j=1

[f(E+
j (J))− f(E+

j (J (n)))] (4.28)

so, if we show for each fixed j as n →∞,

E+
j (J (n)) → 2 (4.29)

we have, by taking n →∞ and then m →∞, that

lim inf(δf)(J, n) ≥
∞∑

j=1

f(E+
j (J)) (4.30)

On the other hand, since f ≥ 0, for each m,

m∑
j=1

[f(E+
j (J))− f(E+

j (J (n)))] ≤
m∑

j=1

f(E+
j (J))

so taking m to infinity and then n →∞,

lim sup(δf)(J, n) ≤
∞∑

j=1

f(E+
j (J)) (4.31)

Thus (4.29) implies the result, so we need only prove that.
Fix ε > 0 and look at the solution of the orthogonal polynomial

sequence un = Pn(2 + ε) as a function of n. By Sturm oscillation
theory [8], the number of sign changes of un (i.e., number of zeros
of the piecewise linear interpolation of un) is the number of j with
E+

j (J) > 2+ ε. Since J is a BW matrix, this is finite, so there exist N0
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with un of definite sign if n ≥ N0 − 1. It follows by Sturm oscillation
theory again that for all j,

E+
j (J (n)) ≤ 2 + ε

if n ≥ N0. This implies (4.29).

The combination of this Sturm oscillation argument and Theorem 3.1
gives one tools to handle finitely many bound states as an alternate to
Nikishin [16]. For the oscillation argument says that if J has finitely
many eigenvalues outside [−2, 2], there is a J (n) with no eigenvalues. On
the other hand, by Theorem 3.1, Z(J) < ∞ if and only if Z(J (n)) < ∞.

Proof of Theorem 4.5. Z−
2 (J) is an entropy and not merely an entropy

up to a constant (see [11]). Thus Z−
2 (J (n)) ≥ 0 for all J (n). Moreover,

since the terms in A2 are positive, the limit exists. Thus, following the
proofs of (4.18) and (4.20) but using (3.18) in place of (3.15),

Z−
2 (J) + E2(J) ≤ A2(J)

and

Z−
2 (J) + E2(J) ≥ A2(J)

which yields the P2 sum rule. In the above, we use the fact that in place
of Z(J) ≥ −1

2
ln(2), one has Z−

2 (J) ≥ 0, and the fact that A2(J) < ∞
implies that J − J0 is compact.

Proof of Theorem 4.4. Let g(β) = ln β− 1
2
(β−β−1) in the region β > 0.

Then

g′(β) = β−1 − 1
2
− 1

2
β−2 = −1

2
β−2(β − 1)2

so g is analytic near β = 1 and g(1) = g′(1) = g′′(1) = 0, that is,
g(β) ∼ c(β − 1)3. On the other hand, h(β) = ln β + 1

2
(β − β−1) is

g(β) + (β − β−1) = β − β−1 + O((β − 1)3). Since β + β−1 = E means
β − β−1 =

√
E2 − 4 and β − 1 = O

(√
E − 2

)
, we conclude that

E > 2 ⇒ ln(β)− 1
2
(β − β−1) = O(|E − 2|3/2)

ln(β) + 1
2
(β − β−1) =

√
E2 − 4 + O(|E − 2|3/2)

while

E < −2 ⇒ ln(|β|)− 1
2
(β − β−1) =

√
E2 − 4 + O(|E + 2|3/2)

ln(|β|) + 1
2
(β − β−1) = O(|E + 2|3/2)

It follows, using Lemma 4.6, that

lim
n→∞

X
(n)
0 (J)∓ 1

2
X

(n)
1 (J) = E±1 + bdd
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since Theorem 4.5 implies
∑

j,±
(√

E±2
j − 4

)3
< ∞ (or, by results of

[10]). Thus for a constant c1 dependng only on ‖J − J0‖2, we have

Z±
1 (J) ≤ c1 + A±

1 + E±1 (4.32)

by writing the finite rank sum rule, taking limits and using the argu-
ment between (4.16) and (4.17). Since Z±

1 (J) are entropies up to a
constant, we have Z±

1 (J (n)) ≥ −c2 and so by (3.17),

Z±
1 (J) ≥ −c2 + Ā±

1 + E±1 − c‖J − J0‖2
2 (4.33)

With these preliminaries, we have

Proof of (i), (iv). Immediate from (4.32).

Proof of (ii). Since E±1 ≥ 0, (4.33) implies

Z±
1 (J) ≥ −c2 + Ā±

1

so (ii) holds.

Proof of (iii). Immediate from (4.33).

Remark. (i)–(iv) of Theorem 4.4 are exactly (a)–(d) of Theorem 4.1
for the Z±

1 sum rules. One therefore expects a version of (e) of that
theorem to hold as well. Indeed, a modification of the above proof
yields for J − J0 Hilbert-Schmidt that if E+

1 , Z+
1 , Ā+

1 are finite, then

Z+
1 (J) = −

∞∑
n=1

[ln(an) + 1
2
bn] +

∑
j,±

[ln|β±j |+ 1
2
(β±j − (β±j )−1)]

and if E−1 , Z−
1 , Ā−

1 are finite, then

Z−
1 (J) = −

∞∑
n=1

[ln(an)− 1
2
bn] +

∑
j,±

[ln|β±j | − 1
2
(β±j − (β±j )−1)]

5. Shohat’s Theorem with an Eigenvalue Estimate

Shohat [22] translated Szegő’s theory from the unit circle to the real
line and was able to identify all Jacobi matrices which lead to measures
with no mass points outside [−2, 2] and have Z(J) < ∞. The strongest
result we know of this type is the following (Theorem 4′) from Killip-
Simon [11] (the methods of Nevai [14] can prove the same result):

Theorem 5.1. Let σ(J) ⊂ [−2, 2]. Consider
(i) A0(J) < ∞ where A0 is given by (4.1).
(ii) Z(J) < ∞
(iii)

∑∞
n=1(an − 1)2 +

∑∞
n=1 b2

n < ∞
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(iv) A0 = Ā0 and is finite.

(v) limN→∞
∑N

n=1 bn exists and is finite.
Then (under σ(J) ⊂ [−2, 2]), we have

(i) ⇐⇒ (ii)

and either one implies (iii), (iv), and (v).

We can prove the following extension of this result:

Theorem 5.2. Theorem 5.1 remains true if σ(J) ⊂ [−2, 2] is replaced
by σess(J) ⊂ [−2, 2] and (1.6).

Remarks. 1. Gončar [9], Nevai [14], and Nikishin [16] extended
Shohat-type theorems to allow finitely many bound states outside [−2, 2].

2. Peherstorfer-Yuditskii [17] recently proved that E0(J) < ∞ and
(ii) implies (iv) and additional results on polynomial asymptotics.

Proof. Let us suppose first σess(J) = [−2, 2], so J is a BW matrix. By
Theorem 4.1(a), (i) of this theorem plus E0(J) < ∞ implies (ii) of this
theorem. By Theorem 4.1(c), (ii) of this theorem implies (i) of this
theorem.

If either holds, then (iv) follows from (e) of Theorem 4.1, (v) from the
` = 1 case of (g) of Theorem 4.1. (iii) follows from Theorem 4.5 if we
note that E0 < ∞ implies E2 < ∞, that Z(J) < ∞ implies Z−

2 (J) < ∞
and that G(a) = O((a− 1)2).

If we only have a priori that σess(J) ⊂ [−2, 2], we proceed as follows.
If Z(J) < ∞, σac(J) ⊃ [−2, 2] so, in fact, σess(J) = [−2, 2]. If A0 < ∞,
we look closely at the proof of Theorem 4.1(a). (4.18) does not require
σess(J) = [−2, 2], but only that σess(J) ⊂ [−2, 2]. Thus, A0 < ∞
implies Z(J) < ∞ if E0(J) < ∞.

There is an interesting way of rephrasing this. Let the normalized
orthogonal polynomial obey

Pn(x) = γnxn + O(xn−1) (5.1)

As is well known (see, e.g. [23]),

γn = (a1a2 . . . an)−1 (5.2)

Thus

A0 = lim inf ln(γn) (5.3)

and

Ā0 = lim sup ln(γn) (5.4)
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Corollary 5.3. Suppose σess(J) ⊂ [−2, 2] and E0(J) < ∞. Then
Z(J) < ∞ (i.e., the Szegő condition holds) if and only if γn is bounded
from above (and in that case, it is also bounded away from 0; indeed,
lim γn exists and is in (0,∞)).

Remark. Actually, lim sup γn < ∞ is not needed; lim inf γn < ∞ is
enough.

Proof. By (5.3), γn bounded implies A0 < ∞, and thus Z(J) < ∞.
Conversely, Z(J) < ∞ implies −∞ < A0 = Ā0 < ∞. So by (5.2), it
implies γn is bounded above and below.

In the case of orthogonal polynomials on the circle, Szegő’s theorem
says Z < ∞ if and only if κj is bounded if and only if

∑∞
j=1|αj|2 < ∞

where κj is the leading coefficient of the normalized polynomials, and αj

are the Verblunsky (aka Geronimus, aka reflection) coefficients. In the
real line case, if one drops the a priori requirement that E0(J) < ∞,
it can happen that γn is bounded but Z(J) = ∞. For example, if
an ≡ 1 but bn = n−1, then Z(J) cannot be finite. For J − J0 ∈ `2, so
Theorem 4.4(ii) is applicable and thus, Ā−

1 = ∞ implies Z(J) = ∞.
But the other direction always holds:

Theorem 5.4. Let J be a BW matrix with Z(J) < ∞ (i.e., the Szegő
condition holds). Then γn is bounded. Moreover, if J − J0 is compact,
then limn→∞ γn exists.

Remarks. 1. The examples of the next section show Z(J) < ∞ is
consistent with lim γn = 0.

2. This result — even without a compactness hypothesis — is known.
For γn is monotone increasing in the measure (see, e.g., Nevai [15]) and
so one can reduce to the case where Shohat’s theorem applies.

Proof. By Theorem 4.1(c), Z(J) < ∞ implies Ā0 < ∞ which, by (5.4),
implies γn is bounded. If J − J0 is compact, then Corollary 4.2 implies
that lim γn = exp(lim−∑m

j=1 ln(aj)) exists but can be zero.

Here is another interesting application of Theorem 5.2.

Theorem 5.5. Suppose bn ≥ 0 and
∞∑

n=1

|an − 1| < ∞ (5.5)

Then E0(J) < ∞ if and only if
∑∞

n=1 bn < ∞.

Proof. If
∑∞

n=1 bn < ∞, E0(J) < ∞ by (5.5) and the bounds of Hundertmark-
Simon [10]. On the other hand, if E0(J) < ∞, (5.5) implies A0 < ∞,
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so by Theorem 5.2,
∑N

n=1 bn is convergent. Since bn ≥ 0,
∑∞

n=1 bn <
∞.

6. O(n−1) Perturbations

In this section, we will discuss examples where

an = 1 + αn−1 + Ea(n) (6.1)

bn = βn−1 + Eb(n) (6.2)

where E·(n) is small compared to 1
n

in some sense. Our main result
will involve the very weak requirement on the errors that n(|Ea(n)| +
|Eb(n)|) → 0. (In fact, we only need the weaker condition that

∑n
j=1(|Ea(j)|+

|Eb(j)|) is o(ln n).) In discussing the historical context, we will consider
stronger assumptions like

E·(n) =
γ

n2
+ o

(
1

n2

)
(6.3)

We will also mention examples where the leading n−1 terms are replaced
by (−1)nn−1.

These examples are natural because they are just at the borderline
beyond J − J0 trace class or A0(J) < ∞ or Ā0(J) > −∞.

Here is the general picture for these examples. The (α, β) plane is
divided into four regions:
(a) |β| < −2α. Szegő fails at both −2 and 2.
(b) |β| ≤ 2α. Szegő holds.
(c) β > 2|α| or β = −2α with β > 0. Szegő holds at +2 but fails at

−2.
(d) β < −2|α| or β = 2α with β < 0. Szegő holds at −2 but fails at

+2.

Remarks. 1. These are only guidelines and the actual result that we
can prove requires estimates on the errors.

2. Put more succinctly, Szegő holds at ±2 if and only if 2α± β ≥ 0.

3. We need strong hypotheses at the edges of our regions where
|β| = 2|α|. For example, “generally” Szegő should hold if β = 2α > 0,
but if an = 1+αn−1− (n ln(n))−1 and bn = 2αn−1, the Szegő condition
fails (at −2), as follows from Theorem 6.1 below.

Here is the history of these kinds of problems:

(1) Pollaczek [18, 19, 20] found an explicit class of orthogonal poly-
nomials in the region (in our language) |β| < −2α, one example for
each such (α, β) with further study by Szegő [24, 26] (but note formula



30 B. SIMON AND A. ZLATOŠ

(1.7) in the appendix to Szegő’s book [26] is wrong — he uses in that
formula the Bateman project normalization of the parameters he calls
a, b, not the normalization he uses elsewhere). They found that for
these polynomials, the Szegő condition fails.

(2) In [13], Nevai reported a conjecture of Askey that (with O(n−2)
errors) Szegő fails for all (α, β) 6= (0, 0).

(3) In [1], Askey-Ismail found some explicit examples with bn ≡ 0 and
α > 0, and noted that the Szegő condition holds (!), so they concluded
the conjecture needed to be modified.

(4) In [7], Dombrowski-Nevai proved a general result that Szegő holds
when bn ≡ 0 and α > 0 with errors of the form (6.3).

(5) In [3], Charris-Ismail computed the weights for Pollaczek-type
examples in the entire (α, β) plane to the left of the line α = 1, and
considered a class depending on an additional parameter, λ. While they
did not note the consequence for the Szegő condition, their example is
consistent with our picture above.

In addition, we note that in [13], Nevai proved that the Szegő condi-
tion holds if an = 1+(−1)nα/n+O(n−2) and bn = (−1)nβ/n+O(n−2);
see also [4].

With regard to this class, here is our result in this paper:

Theorem 6.1. Suppose
∞∑

n=1

(an − 1)2 + b2
n < ∞ (6.4)

lim sup
N

(
−

N∑
n=1

(an − 1± 1
2
bn)

)
= ∞ (6.5)

for either plus or minus. Then the Szegő condition fails at ±2.

Proof. (6.5) implies that Ā±
1 (J) = ∞ so by Theorem 4.4(ii), Z±

1 (J) =
∞.

Remark. The same kind of argument lets us also prove the failure of
the Szegő conditoin without assuming (6.4) by replacing (6.5) by the
slightly stronger condition that

lim sup
N

(
−

N∑
n=1

(
ln(an)± 1

p
bn

))
= ∞ (6.6)

for some p > 2. For one can use the step-by-step sum rule for (1 ±
2
p
cos(θ)). (6.4) is not needed to control errors in E-sums since they

have a definite sign near both +2 and −2, and it is not needed to
replace ln(a) by a− 1 since (6.6) has ln(an).
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These considerations yield another interesting result. One can prove
Theorem 4.1 for the weight w(θ) = 1± 2

p
cos(θ) just as we did it for the

weight 1. Since w(θ) is bounded away from zero, the corresponding Z±

term is finite if only if Z is. Since p > 2, the corresponding eigenvalue
term is finite if and only if E0 is. Using Theorem 4.1(a)–(d) for this
w(θ), we obtain

Theorem 6.2. Let |p| < 1
2

and |q| < 1
2
.

(i) If

lim sup
N

(
−

N∑
n=1

(ln(an) + pbn)

)
> −∞

and

lim sup
N

(
−

N∑
n=1

(ln(an) + qbn)

)
= −∞

then Z(J) = ∞.
(ii) If

lim inf
N

(
−

N∑
n=1

(ln(an) + pbn)

)
< ∞

and

lim inf
N

(
−

N∑
n=1

(ln(an) + qbn)

)
= ∞

then E0(J) = ∞.

In particular, if an = 1, bn ≥ 0, and
∑∞

n=1 bn = ∞, we have Z(J) =
∞ and E0(J) = ∞. On the other hand, if instead

∑∞
n=1 bn < ∞, then

Z(J) < ∞ and E0(J) < ∞ (see [11, 10]).

Corollary 6.3. If an, bn are given by (6.1), (6.2) with

lim
n→∞

n[|Ea(n)|+ |Eb(n)|] = 0 (6.7)

and 2α± β < 0, then the Szegő condition fails at ±2.

Remarks. 1. This is intended as separate results for + and for −.

2. All we need is

lim
n→∞

(ln N)−1

N∑
n=1

(|Ea(n)|+ |Eb(n)|) = 0

instead of (6.7). In particular, trace class errors can be accommodated.
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Proof. If (6.7) holds,

N∑
n=1

(an − 1)± 1
2
bn = (α± 1

2
β) ln N + o(ln N)

so (6.5) holds if 2α± β < 0.

As for the complementary region |β| ≤ 2α, one of us has proven (see
Zlatoš [28]) the following:

Theorem 6.4 (Zlatoš [28]). Suppose |β| ≤ 2α and

an = 1 + αn−1 + O(n−1−ε)

bn = βn−1 + O(n−1−ε)

for some ε > 0. Then the Szegő condition holds.

Remarks. 1. This is a corollary of a more general result (see [28]).

2. In these cases, −∑N
n=1 ln(an) diverges to −∞. This is only con-

sistent with (4.18) because E0(J) = ∞, that is, the eigenvalue sum
diverges and the two infinities cancel.

We can use these examples to illustrate the limits of Theorem 4.1:
(1) If an = 1 and bn = 1

n
, then Z(J) = ∞ (by Corollary 6.3) while

Ā0(J) = A0(J) < ∞. Thus E0(J) = ∞.
(2) If an = 1− 1

n
, bn = 0, then Z(J) = ∞ (by Corollary 6.3) Ā0(J) =

A0(J) = ∞, but E0(J) < ∞ since J has no spectrum outside
[−2, 2].

(3) If an = 1 + 1
n
, bn = 0, then Z(J) < ∞ (by Theorem 6.4), but

Ā0(J) = A0(J) = −∞ and so E0(J) = ∞.
Finally, we note that Nevai’s [13] (−1)n/n theorem shows that we

can have Z(J) < ∞, E0(J) < ∞, and have the sums
∑

an and/or
∑

bn

be only conditionally and not absolutely convergent.
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