
HIGHER-ORDER SZEGŐ THEOREMS
WITH TWO SINGULAR POINTS

BARRY SIMON1 AND ANDREJ ZLATOŠ2

Abstract. We consider probability measures, dµ = w(θ) dθ
2π +dµs,

on the unit circle, ∂D, with Verblunsky coefficients, {αj}∞j=0. We
prove for θ1 6= θ2 in [0, 2π) that∫

[1− cos(θ − θ1)][1− cos(θ − θ2)] log w(θ)
dθ

2π
> −∞

if and only if
∞∑

j=0

∣∣{(δ − e−iθ2)(δ − e−iθ1)α
}

j

∣∣2 + |αj |4 < ∞

where δ is the left shift operator (δβ)j = βj+1. We also prove that∫
(1− cos θ)2 log w(θ)

dθ

2π
> −∞

if and only if
∞∑

j=0

|αj+2 − 2αj+1 + αj |2 + |αj |6 < ∞

1. Introduction

This paper is a contribution to the theory of orthogonal polynomials
on the unit cirle (OPUC); see [6, 15, 16, 18] for background. Through-
out, dµ will be a nontrivial probability measure on the unit circle, ∂D,
in C, which we suppose has the form

dµ = w(θ)
dθ

2π
+ dµs (1.1)

where dµs is singular with respect to Lebesgue measure dθ on ∂D.
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The Carathéodory and Schur functions, F and f , associated to dµ
are given for z ∈ D by

F (z) =

∫
eiθ + z

eiθ − z
dµ(θ) (1.2)

=
1 + zf(z)

1− zf(z)
(1.3)

The Verblunsky coefficients {αj}∞j=0 can be defined inductively by the
Schur algorithm

f(z) =
α0 + zf1(z)

1 + zᾱ0f1(z)
(1.4)

which defines α0 ∈ D and f1. Iterating gives α1, α2, . . . and f2, f3, . . . .
That αj ∈ D (rather than just D̄) follows from the assumption that dµ
is nontrivial, that is, has infinite support so f is not a finite Blaschke
product. Actually, (1.4) defines what are usually called Schur parame-
ters; the Verblunsky coefficients are defined by a recursion relation on
the orthogonal polynomials. The equality of these recursion coefficients
and the Schur parameters of (1.4) is a theorem of Geronimus [5]; see
[15]. We will use the definition in (1.4).

The most famous result in OPUC is Szegő’s theorem which, in
Verblunsky’s format [19], says

log

( ∞∏
j=0

(1− |αj|2)
)

=

∫
log(w(θ))

dθ

2π
(1.5)

In this expression, both sides are nonpositive (since |αj| < 1,
and Jensen’s inequality implies

∫
log(w(θ)) dθ

2π
≤ log(

∫
w(θ) dθ

2π
) ≤

log(µ(∂D))). Moreover, (1.5) includes the statement that both sides
are finite (resp. −∞) simultaneously. Thus (1.5) implies a spectral
theory result.

Theorem 1.1.∫
log(w(θ))

dθ

2π
> −∞⇔

∞∑
j=0

|αj|2 < ∞ (1.6)

This form of the theorem has caused considerable recent interest due
to work of Deift-Killip [1] and Killip-Simon [7] which motivated a raft
of papers [2, 8, 9, 10, 11, 14, 17, 20].

In [15, Section 2.8], Simon found a higher-order analog to (1.6) that
allows log(w(θ)) to be singular at a single point:
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Theorem 1.2.∫
(1−cos θ) log(w(θ))

dθ

2π
> −∞⇔

∞∑
j=0

|αj+1−αj|2+|αj|4 < ∞ (1.7)

Remark. This result allows a single singular point of order 1 in
log(w(θ)) at θ = 0. By a simple rotation argument [15], if cos(θ) is
replaced by cos(θ − θ1), |αj+1 − αj|2 is replaced by |αj+1 − e−iθ1αj|2.

Our goal in this paper is to analyze two singularities or a single
double singularity. We will prove that

Theorem 1.3. For θ1 6= θ2,∫
(1− cos(θ − θ1))(1− cos(θ − θ2)) log(w(θ))

dθ

2π
> −∞

⇔
∞∑

j=0

∣∣{ (δ − e−iθ2)(δ − e−iθ1)α
}

j

∣∣2 + |αj|4 < ∞
(1.8)

In this theorem, δ is the operator on sequences

(δα)j = αj+1 (1.9)

We will also prove a result for θ1 = θ2.

Theorem 1.4.∫
(1−cos θ)2 log(w(θ))

dθ

2π
> −∞⇔

∞∑
j=0

|αj+2−2αj+1+αj|2+|αj|6 < ∞

(1.10)

Again, one can replace cos(θ) by cos(θ− θ1) if {αj+2 − 2αj+1 + αj}j

is replaced by {(δ − e−iθ1)2α}j.
Given the form of these theorems, it is natural to conjecture the

situation for arbitrarily many singularities:

Conjecture 1.5. For {θk}`
k=1 distinct in [0, 2π),∫ ∏̀

k=1

(1− cos(θ − θk))
mk log(w(θ))

dθ

2π
> −∞

⇔
∞∑

k=0

∣∣∣∣{ ∏̀
k=1

[δ − e−iθk ]mkα

}
j

∣∣∣∣2 + |αj|2max(mk)+2 < ∞

(1.11)

Independently of our work, Denisov-Kupin [3] have found conditions
on the α’s equivalent to the left side of (1.11) being finite. However,

their conditions are complicated and even for the case
∑`

k=1 mk = 2,
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it is not clear they are equivalent to the ones we have in Theorems 1.3
and 1.4 (although they must be!).

In Section 2, we review the features we need of the relative Szegő
function which will play a critical role in our proofs, and we compute its
first two Taylor coefficients. In Section 3, we prove Theorem 1.3 in the
special case θ1 = 0, θ2 = π, and in Section 4, we prove Theorem 1.4.
With these two warmups done, we turn to the general result, Theo-
rem 1.3, in Section 5. The details of this are sufficiently messy that we
do not think this direct approach is likely to yield our conjecture.

We would like to thank S. Denisov and S. Kupin for telling us of
their joint work [3].

2. The Relative Szegő Function

In Section 2.9 of [15], Simon introduced the relative Szegő function,
defined by

(δ0D)(z) =
1− ᾱ0f(z)

ρ0

1− zf1(z)

1− zf(z)
(2.1)

where
ρk = (1− |αk|2)1/2 (2.2)

and f, f1 are given by (1.3) and (1.4).
The key property of δ0D we will need and the reason it was intro-

duced is

Theorem 2.1 ([15, Theorem 2.9.3]). Let dµ1 be the measure whose
Verblunsky coefficients are (α1, α2, . . . ). Let w be given by (1.1) and
w1 by

dµ1 = w1(θ)
dθ

2π
+ dµ1,s (2.3)

Suppose w(θ) 6= 0 for a.e. eiθ in ∂D. Then the same is true for w1 and

(δ0D)(z) = exp

(
1

4π

∫
eiθ + z

eiθ − z
log

(
w(θ)

w1(θ)

)
dθ

)
(2.4)

As in [7, 14, 17], this is the basis for step-by-step sum rules, as we
will see.

To prove Theorems 1.3 and 1.4, we will need to start with computing
the first three Taylor coefficients of log((δ0D)(z)).

Theorem 2.2. We have that

log(δ0D(z)) = A0 + A1z + A2z
2 + O(z3) (2.5)

where

A0 = log ρ0 (2.6)
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A1 = α0 − α1 − ᾱ0α1 (2.7)

A2 = 1
2
α2

0 − 1
2
α2

1 + α1 − α2 − α1|α0|2 + α2|α1|2 − ᾱ0α2ρ
2
1 + 1

2
ᾱ2

0α
2
1

(2.8)

Proof. f2(0) = α2, so

f1 =
zf2 + α1

1 + zᾱ1f2

= α1 + zα2ρ
2
1 + O(z2)

Thus

f =
zf1 + α0

1 + zᾱ0f1

= α0 + zα1ρ
2
0 + z2ρ2

0(α2ρ
2
1 − ᾱ0α

2
1) + O(z3)

Plugging these into (2.1) yields the required Taylor coefficients. �

Remarks. 1. Denisov-Kupin [3] do what is essentially the same
calculation using the CMV matrix.

2. (3.2) and (3.3) below show that (2.4) implies∫
log

(
w(θ)

w1(θ)

)
dθ

2π
= 2A0 (2.9)∫

log

(
w(θ)

w1(θ)

)
e−imθ dθ

2π
=

{
Am m = 1, 2

Ā−m m = −1,−2
(2.10)

3. Singularities at Antipodal Points

As a warmup, in this section we prove the following, which is Theo-
rem 1.3 for θ1 = 0, θ2 = π. By the remark after Theorem 1.2 this also
gives the result for any antipodal θ1 and θ2.

Theorem 3.1.∫
(1−cos2(θ)) log w(θ)

dθ

2π
> −∞⇔

∞∑
j=0

|αj+2−αj|2+|αj|4 < ∞ (3.1)

Remark. Let αj be given and let βj be the sequence
(α0, 0, α1, 0, α2, 0, . . . ). Then (see Example 1.6.14 of [15]), w(β)(θ) =
1
2
w(α)(1

2
θ) and the RHS of (3.1) for β = the RHS of (1.7) for α. Thus

(3.1) for β is (1.7) for α. This shows, in particular, that if a result like
(3.1) holds, it must involve |αj|4, rather than, say, |αj|6.

We begin by noting that if Q(θ) is real and

Q(θ) =
∞∑

n=−∞

bne
inθ (3.2)
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then ∫
eiθ + z

eiθ − z
Q(θ)

dθ

2π
= b0 + 2

∞∑
n=1

bnz
n (3.3)

since (eiθ + z)/(eiθ − z) = 1 + 2
∑∞

n=1 zne−inθ. Thus, by (2.9), (2.10),
and

1− cos2(θ) = 1
4
(2− e2iθ − e−2iθ) (3.4)

we have ∫
(1− cos2(θ)) log

(
w(θ)

w1(θ)

)
dθ

2π
= A0 − 1

2
Re(A2) (3.5)

with A0 given by (2.6) and A2 by (2.8).

Lemma 3.2. We have that

A0 − 1
2

Re(A2) = B0 + C0 + D0 + F0 − F1 + G0 −G2 (3.6)

where

Bj = 1
2

[
log(1− |αj|2) + |αj|2 + 1

2
|αj|4

]
(3.7)

Cj = −1
4
(1− |αj+1|2)|αj − αj+2|2 (3.8)

Dj = −1
8
(|α2

j+1 + α2
j |2 + 4|αjαj+1|2) (3.9)

Fj = −1
2

Re(1
2
α2

j + αj+1 − αj+1|α|2) + 1
4
|αj+1|2|αj|2 − 1

8
|αj|4 (3.10)

Gj = −1
4
|αj|2

Remark. (3.5)/(3.6) is thus the step-by-step sum rule in the spirit of
[7, 14, 17].

Proof. This is a straightforward but tedious calculation. The first term
in B0 is just A0 (since log ρj = 1

2
log(1 − |αj|2)). A2 is responsible for

the Re(·) terms in F0 − F1 and the cross-terms in |αj − αj+2|2 and
|α2

j+1 + α2
j |2. The |αj|2 + |αj+2|2 term in C0 is turned into 2|αj|2 by

G0 − G2, and then cancelled by the |αj|2 term in B0. Similarly, the
|αj|4+|αj+1|4 in D0 (after adding the |αj|4 terms in F0−F1) cancels the
|αj|4 term in B0. Finally, the |αj+1|2(|αj|2 + |αj+2|2) term in C0 (after
being turned into 2|αj+1|2|αj|2 by the |αj+1|2|αj|2 term in F0 − F1)
cancels the 4|αjαj+1|2 term in D0. �
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By iterating (3.5)/(3.6) and noting the cancellations from the tele-
scoping Fj − Fj+1 and Gj −Gj+2 yields∫

(1− cos2(θ)) log

(
w(θ)

w2m(θ)

)
dθ

2π

= F0 − F2m + G0 + G1 −G2m −G2m+1 +
2m−1∑
j=0

(Bj + Cj + Dj)

(3.11)

As a final preliminary, we need,

Lemma 3.3. (i) |Fj| ≤ 13
8
; |Gj| ≤ 1

4

(ii) |αj| < 1
2
⇒ c1|αj|6 ≤ −Bj ≤ c2|αj|6 for some c2 > c1 > 0.

(iii) |αj+1|4 + |αj|4 ≤ −8Dj ≤ 4(|αj+1|4 + |αj|4)

Proof. (i) follows from |αj| ≤ 1, (ii) from − log(1 − x) =
∑∞

j=1 xj/j,

and (iii) by noting that 2 Re(α2
jα

2
j+1)+2|α2

jα
2
j+1| ≥ 0 and repeated use

of |xy| ≤ 1
2
(|x|2 + |y|2). �

Proof of Theorem 3.1. We follow the strategy of [7] as modified by [17].
Suppose first that the RHS of (3.1) holds. Let w(n) be the weight
for the nth Bernstein-Szegő approximation with Verblunsky coefficients
(α0, α1, . . . , αn−1, 0, . . . , 0, . . . ), and let wn be the one for the measure
µn with coefficients (αn, αn+1, . . . ). By (3.11) and (w(n))2m ≡ 1 for
large m,∫

(1−cos2(θ)) log(w(n)(θ))
dθ

2π
= F

(n)
0 +G

(n)
0 +G

(n)
1 +

n−1∑
j=0

(B
(n)
j +C

(n)
j +D

(n)
j )

so, by Lemma 3.3, |αj|6 ≤ |αj|4 → 0, and RHS of (3.1),

inf
n

[∫
(1− cos2(θ)) log(w(n)(θ))

dθ

2π

]
> −∞ (3.12)

Up to a constant,
∫

(1− cos2(θ)) log w(θ) dθ
2π

is an entropy and so upper
semicontinuous [7]. Thus (3.12) implies∫

(1− cos2(θ)) log w(θ)
dθ

2π
> −∞ (3.13)

Conversely, suppose (3.13) holds. Since
∫

(1−cos2(θ)) log(w2m(θ)) dθ
2π

is an entropy up to a constant, it is bounded above [7], and so the left
side of (3.11) is bounded below as m varies.
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Since F and G are bounded and B, C, D are negative, we conclude

∞∑
j=0

−(Bj + Cj + Dj) < ∞

Since
∑

(−Dj) < ∞, Lemma 3.3 implies
∑
|αj|4 < ∞. This implies

αj → 0, so
∑

(−Cj) < ∞ implies
∑
|αj − αj+2|2 < ∞. �

Notice that the redistribution of the terms in (3.6) insures that all
the essential terms on the RHS of (3.11) (i.e., Bj, Cj, Dj) are sign
definite. This ultimately allows us to recover (3.1) by passing to the
limit m →∞ in (3.11). The same strategy will be applied in the proofs
of Theorems 1.3 and 1.4.

4. Singularity of Order 2

Our goal here is to prove Theorem 1.4. Since

(1− cos θ)2 = 1
4
(2− eiθ − e−iθ)2

= 3
2
− eiθ − e−iθ + 1

4
e2iθ + 1

4
e−2iθ

we see, by (2.9)/(2.10) that∫
log

(
w(θ)

w1(θ)

)
(1− cos θ)2 dθ

2π
= 3A0 − 2 Re(A1) + 1

2
Re(A2) (4.1)

with A0, A1, A2 given by (2.6)–(2.8).

Lemma 4.1. The RHS of (4.1) = H0 + I0 + J0 + K0 −K1 + L0 − L2

where

Hj = 3
2
[log(1− |αj|2) + |αj|2]

Ij = −1
4
|αj+2 − 2αj+1 + αj|2

Jj = 1
4
(αjᾱj+2 + ᾱjαj+2)|αj+1|2 + 1

8
(α2

j ᾱ
2
j+1 + ᾱ2

jα
2
j+1)

Kj = −2 Re(αj) + 1
4

Re(α2
j )

+ 1
2

Re(αj+1)− 1
2

Re(αj+1|αj|2) + Re[ᾱj+1αj]− |αj|2

Lj = −1
4
|αj|2

Proof. The non-cross-terms in I0 are

−1
4
(|α2|2 +4|α1|2 + |α0|2) = −3

2
|α0|2 +(|α0|2−|α1|2)+ 1

4
(|α0|2−|α2|2)

which cancel the |α0|2 term in H0, the final |αj|2 term in K0−K1, and
the L0 − L2 term.
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The cross-terms in I0 are

−1
2

Re(ᾱ2α0) + Re(ᾱ2α1 + ᾱ1α0)

= −1
2

Re(ᾱ2α0) + 2 Re(ᾱ0α1)− Re(ᾱ0α1) + Re(ᾱ1α2)

The first term comes from a piece of 1
2
Re(A2) (since ᾱ0α2ρ

2
1 = ᾱ0α2(1−

|α1|2)), the second from the last term in −2 Re(A1), and the last two
are cancelled by the Re(ᾱj+1αj) term in K0 −K1.

The α0−α1 term in A1 leads to the first term in K0−K1. The first
term in J0 comes from the second half of ᾱ0α2ρ

2
1 = ᾱ0α2 − ᾱ0α2|α1|2

(the first half in this expression gave a cross-term in Ij). The second
term in J0 is the 1

2
ᾱ2

0α
2
1 term in A2.

The remaining terms in A2, that is, the first six terms on the RHS
of (2.8), give precisely the remaining terms in K0 −K1. �

Lemma 4.2. The RHS of (4.1) = H̃0 + Ĩ0 + J̃0 + K̃0 − K̃1 + L̃0 − L̃2,
where

H̃j = 3
2

[
log(1− |αj|2) + |αj|2 + 1

2
|αj|4

]
Ĩj = Ij

J̃j = −1
4
|αj+1|2|αj − αj+2|2 − 1

8
|α2

j+1 − α2
j |2 − 1

4
(|αj+1|2 − |αj|2)2

K̃j = Kj − 3
8
|αj|4 − 1

4
|αj+1|2|αj|2

L̃j = Lj

Proof. The non-cross-terms in the last two terms in J̃0 give

−3
8
(|α0|4 + |α1|4) = −3

4
|α0|4 + 3

8
(|α0|4 − |α1|4)

The first term cancels the H̃0−H0 term, and the second, the first term
in (K̃0 −K0)− (K̃1 −K1).

The cross-term in −1
4
(|αj+1|2 − |αj|2)2 and the non-cross-terms in

−1
4
|αj+1|2|αj − αj+2|2 combine to −1

4
|αj+2|2|αj+1|2 + 1

4
|αj+1|2|αj|2 and

are cancelled by the second term in (K̃0 − K0) − (K̃1 − K1). The
cross-term in −1

8
|α2

j+1 − α2
j |2 is the second term in J0 and finally, the

cross-term in −1
4
|αj+1|2|αj − αj+2|2 is the first term in J0. �

Lemma 4.3. (i) |K̃j| ≤ 47
8
; |L̃j| ≤ 1

4

(ii) |αj| < 1
2
⇒ d1|αj|6 ≤ −H̃j ≤ d2|αj|6 for some d2 > d1 > 0.

(iii) J̃j ≤ 0

(iv)
∑∞

j=0(−Ĩj) + |αj|6 < ∞⇒
∑∞

j=0|αj+1 − αj|3 < ∞
(v)

∑∞
j=0(−Ĩj) + |αj|6 < ∞⇒

∑∞
j=0(−J̃j) < ∞

Remark. (iv) is essentially a discrete version of the inequality of
Gagliardo [4] and Nirenberg [12].
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Proof. (i) follows from |αj| < 1, (ii) is just (ii) of Lemma 3.3 (since

H̃j = 3Bj), and (iii) is trivial.
To prove (iv), we let δ be given by (1.9) and let

∂ = δ − 1 (4.2)

so since δ∗ = δ−1 (δ is unitary on `2), we have

∂∗ = δ∗ − 1 = −δ−1∂ = −δ∗∂ (4.3)

As a result, if α is a finite sequence, then∑
n

|(∂α)n|3 =
∑

n

(∂α)n(∂ᾱ)n|∂α|n

= −
∑

n

(δα)n[∂{(∂ᾱ)|∂α|}]n (4.4)

Moreover, we have a discrete Leibnitz rule,

∂(fg) = (δf)(δg)− fg

= (δf)∂g + (∂f)g (4.5)

and since |a− b| ≥ |a| − |b| by the triangle inequality,

|∂|f || ≤ |∂f | (4.6)

which is a discrete Kato inequality.
By (4.5),

∂{(∂ᾱ)|∂α|} = [δ(∂ᾱ)]∂|∂α|+ (∂2ᾱ)|∂α|

so, by (4.6),

|∂{(∂ᾱ)|∂α|}| ≤ |∂2α| |δ(∂ᾱ)|+ |∂2α| |∂α|

Using Hölder’s inequality with 1
6

+ 1
2

+ 1
3

= 1 and (4.4), we get

‖∂α‖3
3 ≤ 2‖α‖6‖∂2α‖2‖∂α‖3

(because ‖δα‖p = ‖α‖p), so∑
n

|(∂α)n|3 ≤ 23/2

( ∑
n

|αn|6
)1/4( ∑

n

|(∂2α)n|2
)3/4

(4.7)

Having proven (4.7) for α’s of finite support, we get it for any α with
the right side finite since

∑
n|αn|6 < ∞ implies αn → 0, which allows

one to cut off α at N and take N →∞ in (4.7). But (4.7) implies (iv).
To prove (v), we control the individual terms in

∑
(−J̃j). First,

‖|α|2|δ2α− α|2‖1 ≤ ‖α2‖3 ‖|δ2α− α|2‖3/2
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(by Hölder’s inequality with 1
3

+ 2
3

= 1)

≤ 4‖α‖2
6 ‖∂α‖2

3 < ∞

(by first using ‖δ2α− α‖3 ≤ 2‖∂α‖3 and then (iv)). Next,

|α2
j+1 − α2

j |2 ≤ (|αj+1|+ |αj+1|)2|αj+1 − αj|2

can be controlled as the first term was and the final term is controlled
in the same way since |αj+1|2 − |αj|2 ≤ |α2

j+1 − α2
j |. �

Proof of Theorem 1.4. Suppose first that the right-hand side of (1.10)
holds, that is, α ∈ `6 and ∂2α ∈ `2. Iterate n times (4.1)/Lemma 4.2
for the nth Bernstein-Szegő approximation (with weight w(n)) to obtain

inf
n

[∫
(1− cos θ)2 log(w(n)(θ))

dθ

2π

]
> −∞

since the left side is just

inf
n

[
K̃

(n)
0 + L̃

(n)
0 + L̃

(n)
1 +

n−1∑
j=0

(H̃
(n)
j + Ĩ

(n)
j + J̃

(n)
j )

]
which is finite by Lemma 4.3 and the hypothesis. Again we have that∫

(1 − cos θ)2 log w(θ) dθ
2π

is an entropy up to a constant and so upper
semicontinuous. Thus RHS of (1.10) ⇒ LHS of (1.10).

For the opposite direction, as in the last section, we use iterated
(4.1)/Lemma 4.2 plus the fact that

∫
(1 − cos θ)2 log(w2m(θ)) dθ

2π
is

bounded from above to conclude
∞∑

j=0

−(H̃j + Ĩj + J̃j) < ∞

Since each is positive,
∑

(−H̃j) < ∞, which implies
∑
|αj|6 < ∞ by

(ii) of Lemma 4.3, and
∑∞

j=0(−Ĩj) < ∞, which implies ∂2α ∈ `2. �

5. The General Case

Finally, we turn to the general case of Theorem 1.3, and we define

Im ≡
∫ [

1− cos(θ − θ1)
][

1− cos(θ − θ2)
]
log

(
w(θ)

wm(θ)

)
dθ

2π
(5.1)

Using (2.9) and (2.10), we obtain

I1 =
4 + ei(θ1−θ2) + e−i(θ1−θ2)

4
A0−Re

[
(eiθ1+eiθ2)A1

]
+ 1

2
Re

[
ei(θ1+θ2)A2

]
(5.2)
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The situation is now somewhat more complicated than in the pre-
vious sections and it will be more convenient to work with Im from
the start, only keeping track of the essential components of the sums
(analogs of

∑
(Bj + Cj + Dj) and

∑
(H̃j + Ĩj + J̃j) above) and ignore

the ones that are always bounded and hence irrelevant for us (analogs
of F0−F1+G0+G1−Gm−Gm+1 and K̃0−K̃m+L̃0+L̃1−L̃m+L̃m+1).
Hence substituting (2.6)–(2.8) in (5.2) and iterating, we obtain

Im = Cα,m +
4 + ei(θ1−θ2) + e−i(θ1−θ2)

4

m−1∑
j=0

log(1− |αj|2)

+
m−1∑
j=0

Re
{(

eiθ1 + eiθ2
)
αj+1ᾱj − 1

2
ei(θ1+θ2)

[
αj+2ᾱj(1− |αj+1|2)− 1

2
α2

j+1ᾱ
2
j

]}
where

Cα,m ≡ −Re
[
(eiθ1 + eiθ2)(α0 − αm)

]
+ 1

2
Re

[
ei(θ1+θ2)

(
1
2
α2

0 − 1
2
α2

m + α1 − αm+1 − α1|α2
0|+ αm+1|αm|2

)]
We let

βj ≡ αje
i(θ1+θ2)j/2

and
a ≡ 1

2

(
ei(θ1−θ2)/2 + e−i(θ1−θ2)/2

)
∈ (−1, 1)

We will assume a 6= 0 since the case when θ1 and θ2 are antipodal
follows from Theorem 3.1. With Cβ,m ≡ Cα,m and all the sums taken
from 0 to m− 1, the above becomes

Im =Cβ,m +
(

1
2

+ a2
) ∑

log(1− |βj|2) + a
∑ [

βj+1β̄j + β̄j+1βj

]
− 1

4

∑ [
βj+2β̄j(1− |βj+1|2) + β̄j+2βj(1− |βj+1|2)

]
+ 1

8

∑ [
β2

j+1β̄
2
j + β̄2

j+1β
2
j

]
(5.3)

In the following manipulations with the sums, we will use Cβ,m as a
general pool/depository of terms that will be added/left over in order
to keep all the sums from 0 to m − 1. Its value will therefore change
along the argument, but it will always depend on a few βj’s with j
close to 0 or m only (i.e., it will gather all the “irrelevant” terms) and
will always be bounded by a universal constant.

Lemma 5.1. With Cβ,m universally bounded, we have

Im =Cβ,m +
(

1
2

+ a2
) ∑ [

log(1− |βj|2) + |βj|2 + 1
2
|βj|4

]
− 1

4

∑
(1− |βj+1|2)

∣∣βj+2 − 2aβj+1 + βj

∣∣2
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− 1
4

∑
|βj+1|2

∣∣βj+2 − 2aβj+1

∣∣2 − 1
4

∑
|βj+1|2

∣∣βj − 2aβj+1

∣∣2
− 1

8

∑ ∣∣β2
j+1 − β2

j

∣∣2 + 1
2
a2

∑
|βj|4 (5.4)

with all the sums taken from 0 to m− 1.

Remarks. 1. This enables us to prove the “⇐” part of (1.8) (even if
a = 0) since∣∣{(δ − e−iθ2)(δ − e−iθ1)α

}
j

∣∣ =
∣∣βj+2 − 2aβj+1 + βj

∣∣ (5.5)

But to prove the other implication, we first need to deal with the last
sum in (5.4), which has the “wrong” sign.

2. Note that we actually did not need to exclude the case a = 0
since then the last sum in (5.4) vanishes and an examination of (5.4)
shows that limm→∞ Im > −∞ if and only if the RHS of (1.8) holds.
An argument from the proofs of Theorems 1.3 and 1.4 then gives the
“⇒” part of (1.8).

Proof. Multiplying out the terms in the second, third, and fourth sums
of (5.4) and after obvious cancellations, we are left with

−1
4

∑ [
|βj+1|2

(
4a2|βj+1|2 − βj+2β̄j − β̄j+2βj

)
+

∣∣βj+2 − 2aβj+1 + βj

∣∣2]
But this is just

−1
4

∑ [
|βj+2|2 + 4a2|βj+1|2 + |βj|2 + 4a2|βj+1|4

]
(5.6)

plus the second and third sums in (5.3), the latter written as

1
2
a

∑
[βj+2β̄j+1 + β̄j+2βj+1 + βj+1β̄j + β̄j+1βj]

(with Cβ,m keeping the change). Adding the fifth and sixth sums in
(5.4) to (5.6) and subtracting the last sum in (5.3), we obtain

−1
4

∑
(2 + 4a2)|βj|2 − 1

8

∑
(2 + 4a2)|βj|4

(again replacing all |βj+1| and |βj+2| by |βj| and adding the difference
to Cβ,m). But this together with the first sum in (5.4) gives exactly the
first sum in (5.3). �

We define
γj ≡ βj+2 − 2aβj+1 + βj

then the second, third, and fourth sums in (5.4) involve |γj|, |γj − βj|
and |γj − βj+2|. Using |x − y|2 ≥ |x|2 + |y|2 − 2|x||y| for the last two,
we obtain (with a new Cβ,m)

(−8)Im ≥Cβ,m +
∑

O(|βj|6) +
∑

(2 + 2|βj+1|2)|γj|2
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+ 4
∑

|βj+1|2|βj|2 − 4
∑

|βj+1|2
(
|βj+2|+ |βj|

)
|γj|

+
∑ ∣∣β2

j+1 − β2
j

∣∣2 − 4a2
∑

|βj+1|4 (5.7)

since

log(1− |βj|2) + |βj|2 + 1
2
|βj|4 = O(|βj|6)

Next, we use −4xy ≥ −8x2− 1
2
y2 with x = |βj+1|2(|βj+2|+ |βj|) and

y = |γj| to estimate the fourth sum by
∑

O(|βj|6)− 1
2

∑
|γj|2. Also,

−4a2
∑

|βj+1|4 = −
∑

|βj+1|2|βj+2 + βj − γj|2

≥ −
∑

|βj+1|2|βj+2 + βj|2 −
∑

|βj+1|2|γj|2

− 2
∑

|βj+1|2|βj+2 + βj||γj|

≥ Cβ,m − 4
∑

|βj+1|2|βj|2 −
∑

|βj+1|2|γj|2

−
∑

O(|βj|6)− 1
4

∑
|γj|2

again using −2xy ≥ −4x2 − 1
4
y2. Plugging these into (5.7), we have

(−8)Im ≥ Cβ,m +
∑

O(|βj|6)+
∑ (

5
4
+ |βj+1|2

)
|γj|2 +

∑ ∣∣β2
j+1−β2

j

∣∣2
The last sum is just

∑
1
2
(|β2

j+2−β2
j+1|2 + |β2

j+1−β2
j |2) plus a piece that

goes into Cβ,m. Letting ε ≡ 1
3
min{2|a|, 2− 2|a|} > 0, we obtain

|βj+1|2|γj|2 + 1
2
|β2

j+2 − β2
j+1|2 + 1

2
|β2

j+1 − β2
j |2 ≥ 1

2
ε4|βj+1|4

Indeed, if the third term is smaller than 1
2
ε4|βj+1|4, then |βj − βj+1| or

|βj + βj+1| is less than ε|βj+1|, and similarly for the second term. But
then |βj+2 + βj|/|βj+1| ∈ [0, 2ε) ∪ (2− 2ε, 2 + 2ε) and so |γj|/|βj+1| ≥
min{2|a|−2ε, 2−2ε−2|a|} ≥ ε, meaning that the first term is at least
ε2|βj+1|4. So finally,

(−8)Im ≥ Cβ,m +
∑

O(|βj|6) +
∑

|γj|2 + 1
2
ε4

∑
|βj|4

that is (by (5.5) and the definition of βj, γj),

Im ≤ Cα,m+
∑

O(|αj|6)−1
8

∑ ∣∣{(δ−e−iθ2)(δ−e−iθ1)α
}

j

∣∣2− 1
16

ε4
∑

|αj|4

(5.8)

Proof of Theorem 1.3. If the RHS of (1.8) holds, then the RHS of (5.4)
for the nth Bernstein-Szegő approximation (with m ≥ n) is bounded
(in n), and so

inf
n

[ ∫ [
1− cos(θ − θ1)

][
1− cos(θ − θ2)

]
log(w(n)(θ))

dθ

2π

]
> −∞
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By upper semicontinuity of the above integral (which is again an en-
tropy up to a constant), we obtain the LHS of (1.8).

Conversely, assume the LHS of (1.8) holds. Then the essential sup-
port of w is all of ∂D, and so by Rakhmanov’s theorem [13], |αj| → 0.
Hence, starting from some j, we have O(|αj|6) ≤ 1

32
ε4|αj|4 and so

Im ≤ Dα,m − 1
8

∑ ∣∣{(δ − e−iθ2)(δ − e−iθ1)α
}

j

∣∣2 − 1
32

ε4
∑

|αj|4 (5.9)

for large m and some bounded (in m) Dα,m. As in the previous sections,∫ [
1−cos(θ−θ1)

][
1−cos(θ−θ2)

]
log(wm(θ)) dθ

2π
is bounded above, and

so Im is bounded below by the hypothesis. (5.9) then shows that the
RHS of (1.8) holds. �
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