



# Geometric Methods for Adjoint Systems Brian Tran (joint work with Prof. Melvin Leok) Department of Mathematics, University of California, San Diego







### Motivation

Adjoint Systems are used to efficiently compute the sensitivity of a terminal or running cost function

$$C(q(t_f))$$
 or  $\int_0^{t_f} L(q(t))dt$ 

subject to an ordinary differential equation (ODE) constraint

$$\dot{q}(t) = f(q(t)), \ \ q(0) = q_0,$$

with respect to a perturbation in the initial condition  $\delta x_0$ .

► Adjoint systems arise as the extremization conditions for optimal control problems via the Pontryagin maximum principle.

# Hamiltonian Description of Adjoint Systems

- ightharpoonup Consider an ODE  $\dot{q} = f(q)$ , specified by a vector field on a manifold M,  $f \in \Gamma(TM)$ .
- ▶ Define the adjoint Hamiltonian  $H: T^*M \to \mathbb{R}$  by

$$H(q,p) = \langle p, f(q) \rangle.$$

 $\blacktriangleright$  The adjoint system is given by a Hamiltonian system on  $T^*M$  relative to the canonical symplectic form  $\Omega = dq \wedge dp$ ,

$$i_{X_H}\Omega=dH$$
.

 $\triangleright$  In coordinates, an integral curve of  $X_H$  has the expression

$$\dot{q} = \partial H/\partial p = f(q),$$
 $\dot{p} = -\partial H/\partial q = -[Df(q)]^*p.$ 

 $\blacktriangleright$  The Hamiltonian vector field  $X_H$  is the cotangent lift of f to a vector field on  $T^*M$ .

## Symplecticity and Adjoint Sensitivity Analysis

► Since the adjoint system is Hamiltonian, the flow of the system is symplectic; i.e., it preserves the symplectic form  $\Omega$ . This can be expressed

$$\frac{d}{dt}\Omega_{(q(t),p(t))}(V(t),W(t))=0,$$

where V and W are first variations of the adjoint system, which can be identified with solutions of the linearization of the adjoint system

$$rac{d}{dt}\delta q = Df(q)\delta q, \ rac{d}{dt}\delta p = -[Df(q)]^*\delta p.$$

Symplecticity implies the quadratic conservation law

$$\frac{d}{dt}\langle p(t), \delta q(t)\rangle = 0.$$

Adjoint Sensitivity Analysis: By the above,  $\langle p(t_f), \delta q(t_f) \rangle = \langle p(0), \delta q(0) \rangle$ . Choosing  $p(t_f) = \nabla_q C(q(t_f))$ , one can backpropagate to solve for p(0), which, by the quadratic conservation law, gives the sensitivity of a terminal cost function with respect to a perturbation in the initial condition

$$p(0) = \frac{\partial}{\partial \delta q_0} C(q(t_f)).$$

► Can similarly treat a running cost function, by augmenting the Hamiltonian  $H_L(q, p) = H(q, p) + L(q)$ .

### Differential-Algebraic Equations

► Consider a differential-algebraic equation (DAE)

$$\dot{q} = f(q, u),$$
 $0 = \phi(q, u).$ 

Here,  $q \in M_d$  are the dynamical variables and  $u \in M_a$  are the algebraic variables. Geometrically, a DAE is specified by a section f of the bundle  $TM_d$ , the pullback bundle of  $TM_d$  by  $M_d \times M_a \to M_d$ , and by a section  $\phi$ of a vector bundle  $\Phi \to M_d \times M_a$ .

Say that the DAE has index 1 if  $\partial \phi/\partial u$  is an isomorphism pointwise. By the implicit function theorem, one can locally solve the constraint equation for u = u(q) and reduce the DAE to an ODE

$$\dot{q}=f(q,u(q)).$$

# Adjoint Systems for DAEs

- ► Idea: extend the notion of an adjoint system to DAEs.
- ► To do this, introduce the spaces



▶ Define the adjoint DAE Hamiltonian  $H: \overline{T^*M_d} \oplus \Phi^* \to \mathbb{R}$  by

$$H(q, u, p, \lambda) = \langle p, f(q, u) \rangle + \langle \lambda, \phi(q, u) \rangle.$$

- ightharpoonup Using the above maps, pullback the symplectic form  $\Omega$  on  $T^*M_d$  to a presymplectic form  $\Omega_0$  on  $T^*M_d\oplus \Phi^*$ .
- ► Define the adjoint DAE system as the presymplectic Hamiltonian system  $i_{X_H}\Omega_0=dH$ .
- In coordinates,

$$\dot{q} = \partial H/\partial p = f(q, u),$$

$$\dot{p} = -\partial H/\partial q = -[D_q f(q, u)]^* p - [D_q \phi(q, u)]^* \lambda,$$

$$0 = \partial H/\partial \lambda = \phi(q, u),$$

$$0 = -\partial H/\partial u = -[D_u f(q, u)]^* p - [D_u \phi(q, u)]^* \lambda.$$

- $\triangleright$  The vector field  $X_H$  is in general only defined on the primary constraint submanifold specified by the last two equations. However, the flow of  $X_H$ may leave the submanifold, so one must further restrict to a final constraint submanifold to which  $X_H$  is tangent. This process to obtain such a final constraint submanifold is known as the presymplectic constraint algorithm.
- ▶ When the underlying DAE has index 1, the presymplectic constraint algorithm terminates after one step; i.e., the primary and final constraint submanifolds coincide.
- $\triangleright$  Presymplecticity of the flow of  $X_H$  yields a quadratic conservation law analogous to the ODE case, allowing one to compute sensitivities of a terminal or running cost function subject to a DAE constraint.

# Structure-Preserving Discretizations of Adjoint Systems

- In most cases, one cannot analytically solve an adjoint system; hence, one must discretize the system; i.e., numerically integrate the system.
- ► Key Idea: since an adjoint system has a (pre)symplectic structure, it is natural to utilize a (pre)symplectic integrator to discretize such systems. In particular, such integrators preserve the (pre)symplectic form and hence, preserve the quadratic conservation laws used for adjoint sensitivity analysis.
- ► We study how Galerkin Hamiltonian variational integrators can be used to discretize such systems and extend the construction of these integrators to presymplectic systems.
- ▶ We show that the process of forming an adjoint system, discretizing, and reducing (from an index 1 DAE to an ODE) commute, for particular choices of these processes:



Using this naturality, we show that if the discrete generating function approximates the exact generating function to order r, then the Type II flow  $(q_0, p_1) \mapsto (q_1, p_0)$  map is order-r accurate.

# **Future Research Direction**

► We aim to explore the extension of this framework to the setting of infinite-dimensional PDEs; in particular, to develop geometric methods for adjoint systems for semilinear evolution equations

$$\dot{q} = Aq + f(q),$$

where A is an unbounded operator on a Banach space and f is a nonlinear operator on a Banach space.

► The main tools are infinite-dimensional symplectic geometry and the theory of  $C_0$ -semigroups. For discretization, we will utilize the Galerkin method in space and symplectic integration in time, with the aim of proving an extended naturality result.

### Summary

- ► The utility of adjoint systems for computing sensitivies can be understood through (pre)symplectic geometry.
- ▶ One can utilize geometric integration to preserve the structures relevant to adjoint sensitivity analysis and hence, construct integrators which can be used to exactly compute sensitivities.