Section 1.4: Matrix Equations rows cols
Let A be an $m \times n$ matrix and let $\vec{x} \in \mathbb{R}^{n}$, the (matrix-vector) product of A and $\vec{x}, A \vec{x}$, is cletined by:

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
\vec{a}_{1} & \cdots & \vec{a}_{n}
\end{array}\right], \vec{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \\
& A \vec{x}:=\left[\begin{array}{lll}
\vec{a}_{1} & \ldots & \vec{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \vec{a}_{1}+\ldots+x_{n} \vec{a}_{n} \in \mathbb{R}^{m}
\end{aligned}
$$

ex/ $\left[\begin{array}{ccc}3 & 2 & 1 \\ 0 & 1 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$

$$
=1\left[\begin{array}{l}
3 \\
0
\end{array}\right]+2\left[\begin{array}{l}
2 \\
1
\end{array}\right]+0\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]+\left[\begin{array}{l}
4 \\
2
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
7 \\
2
\end{array}\right]
$$

$$
\left[\begin{array}{llc}
3 & 2 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \cdot 1+2 \cdot 2+1 \cdot 0 \\
0 \cdot 1+1 \cdot 2+(-1) 0
\end{array}\right]=\left[\begin{array}{l}
7 \\
2
\end{array}\right]
$$

Properties (Linearity)
For A m $m, \vec{u} \in \mathbb{R}^{n}, \vec{v} \in \mathbb{R}^{n}, \quad c \in \mathbb{R}$
(i) $A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}$
(ii) $A(c \vec{V})=c A \vec{V}$
proof:

$$
\left[u_{1}+v_{1}\right]
$$

proof:

$$
\begin{aligned}
& A(\vec{u}+\vec{v})=\left[\vec{a}_{1} \cdots \vec{a}_{n}\right]\left[\begin{array}{c}
u_{1}+v_{1} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right] \\
&=\left(u_{1}+v_{1}\right) \vec{a}_{1}+\ldots+\left(u_{n}+v_{n}\right) \vec{a}_{n} \\
&=\underbrace{u_{1} \vec{a}_{1}+\ldots+u_{n} \vec{a}_{n}}_{A \vec{u}}+\underbrace{v_{1} \vec{a}_{1}+\ldots+v_{n} \vec{a}_{n}}_{A \vec{v}} \\
&=\underbrace{}_{A}
\end{aligned}
$$

Similarly $\quad A(\vec{u})=c A \vec{u}$

Theorem: Let A be $m \times n$ with cols $A=\left[\vec{a}_{1} \cdots \vec{a}_{n}\right]$, $\vec{b} \in \mathbb{R}^{m}$, then the matrix equation

$$
A \vec{x}=\stackrel{\rightharpoonup}{b}
$$

\because unknown, n entries
is equivalent to the vector equation

$$
x_{1} \vec{a}_{1}+\ldots+x_{n} \vec{a}_{n}=\vec{b}
$$

(is equivalent to the linear system $\left[\begin{array}{ll}A & \vec{b}\end{array}\right]$)
proof:

$$
A \stackrel{\rightharpoonup}{x}=x_{1} \stackrel{\rightharpoonup}{a}_{1}+\ldots+x_{n} \stackrel{\rightharpoonup}{a}_{n}
$$

Theorem: Let A be $m \times n$.
The following are equivalent:
(i) $A \vec{x}=\vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^{M}$
(ii) The columns of A span \mathbb{R}^{m}
(iii) A has a prot in every row
(iii) A has a prot in every row

Proof:

- From last time, $(i) \Leftrightarrow$ (ii) since $\vec{b} \in \mathbb{R}^{m}$ arbitron.
- (iii) $\Leftrightarrow(i)$
(li) \Rightarrow (i)

Assume A has a prot in every row.
Then, let $\vec{b} \in \mathbb{R}^{m}$, ask does linear system:
$\left[\begin{array}{ll}A & \vec{b}\end{array}\right]$ have a solution?

$$
\left[\begin{array}{ll}
A & \vec{b}
\end{array}\right] \underset{\text { reduce }}{\stackrel{\text { row }}{\longrightarrow}}\left[\begin{array}{ll}
U & \vec{d}
\end{array}\right]
$$

\Rightarrow no row of the form $[0 \cdots 0 c], c \neq 0$.
(i) \Rightarrow (iii)

- contrapositive not (iii) \Rightarrow not (i) is logically equivalent $\left(\begin{array}{c}\text { warning: converse (iii) } \Rightarrow \text { (i) } \\ \text { logically equivalent }\end{array}\right.$
- Assume that A does not have a prot in every row.

$$
\left[\begin{array}{ll}
A & \vec{b}
\end{array}\right] \xrightarrow[\text { reduce }]{\text { row }}\left[\begin{array}{ll}
u & \vec{d}
\end{array}\right]
$$

last row is all O's.
choose \vec{d} such that $d_{n} \neq 0$.
$\Rightarrow\left[\begin{array}{ll}U & \vec{d}\end{array}\right]$ has a row $\left[0 \cdots 0 \quad d_{n}\right] d_{n} \neq 0$
$\Rightarrow \vec{A} \vec{x}=\vec{b}$ is inconsistent, i.e. not (i).

* Note: If A satisfies (i) \Leftrightarrow (ii) \Leftrightarrow (iii), then

$$
\begin{aligned}
& n \geqslant m \text {. } \\
& \underbrace{\left[\begin{array}{llll}
\otimes \otimes x & x & x \\
x & \otimes & x & x
\end{array}\right]}_{n}] m \\
& \underbrace{\left[\begin{array}{cc}
\otimes x & x \\
x & \otimes \\
x & x \\
x & x
\end{array}\right]}_{n}\} m \quad \begin{array}{c}
n<m \\
\text { not possible to } \\
\text { pivot on every } \\
\text { row! }
\end{array} \\
& {\left[\begin{array}{ccc}
0 & 2 & 3 \\
2 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \longleftrightarrow\left[\begin{array}{ccc}
2 & 1 & 1 \\
-0 & 2 & 3 \\
\rightarrow 1 & 1 & 1
\end{array}\right]} \\
& \xrightarrow{(3)-\frac{1}{2}(1)} \rightarrow(5)\left[\begin{array}{ccc}
i 2 & 1 & 1 \\
0 & i & 3 \\
0 & i / 2 & 1 / 2
\end{array}\right] \rightarrow \operatorname{etc} \ldots
\end{aligned}
$$

ex/ Determine whether the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \text { has a solution to }
$$ $A \vec{x}=\vec{b}$ for all $\vec{b} \in \mathbb{R}^{3}$.

$$
A=\left[\begin{array}{ccc}
i 1 & 0 & 2 \\
2 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \xrightarrow[(3)-(1) \rightarrow(3)]{(2)-2 \cdot(1)}\left[\begin{array}{ccc}
11 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & -11
\end{array}\right]
$$

Section 1.5: Solution sets of linear system Def:

Def:
A linear system is homogeneous if it is of the form $\underset{m \times n}{A} \vec{x}=\overrightarrow{0} \quad$, where $\overrightarrow{0}=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ is the zero n variables vector in \mathbb{R}^{m}.

Clearly, $\vec{x}=\overrightarrow{0} \in \mathbb{R}^{n}$ satisfies the homog. eqn.
$\vec{A}=\vec{O}$. We call this the trivial solution.
Are they are any nontrivial solutions?
Theorem: $A \vec{x}=\overrightarrow{0}$ has a nontrivial solution if and only if (\Leftrightarrow) the system has at least one free variable.
proof:

$$
\vec{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

(\Leftrightarrow) Assume the system has at least one free variable. Without loss of generality (WLOG), just assume one free variable.

WLOG assume it's x_{n}.

$$
\begin{array}{ll}
x_{1}=y_{1}+c_{1} x_{n} & y_{i} \in \mathbb{R} \text { at least } \\
\vdots & c_{i} \in \mathbb{R}<\text { one of them } \\
x_{n-1}=y_{n-1}+c_{n-1} x_{n} & x_{n} \text { free }
\end{array}
$$

\Rightarrow existence of nontrivial solution.
(\Rightarrow) Proof the contrapositive.
Assume the system has no free variables.

$$
\left[\begin{array}{ll}
A & \overrightarrow{0}
\end{array}\right] \underset{\text { reduce }}{\text { row }}\left[\begin{array}{cc}
u & \overrightarrow{0} \\
\vdots
\end{array}\right] \quad \begin{gathered}
x_{1}=0 \\
\vdots
\end{gathered}
$$

L.. J reduce $\left[\begin{array}{cc}\cdots & - \\ \vdots & \\ & \text { full of pivots } x_{n}=0\end{array}\right.$
\Rightarrow only trivial solution
ex/ Determine if $A \vec{x}=\overrightarrow{0}$ has any nontrivial solutions where $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$.

$$
\begin{aligned}
& A \vec{x}=\overrightarrow{0} \Leftrightarrow\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \xrightarrow{(3)-(1) \rightarrow(())}\left[\begin{array}{cccc}
{[1)} & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \\
& \xrightarrow{(3)-(2) \rightarrow(3)}\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{array}{l}
x=-z \\
y=0 \\
z \text { free } \\
\end{array}
\end{aligned}
$$

e.g. $\quad z=1 \Rightarrow x=-1$

$$
\underbrace{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]}_{\vec{x} \neq 0}=(-1)\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+0\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+1\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}_{\tilde{0}}
$$

$\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad$ (shorthand)

$$
\left.\begin{array}{rl}
\xrightarrow{0} 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Theorem:
Suppose $A \vec{x}=\vec{b}$ is consistent, for some given \vec{b}.
ineorem.
Suppose $A \vec{x}=\vec{b}$ is consistent, for some given \vec{b}.
Let \vec{p} be some solution to $A \vec{p}=\vec{b}$. Then, the solution set to $A \vec{x}=\vec{b}$ is the set of all vectors of the form

$$
\vec{x}=\vec{p}_{t}+\vec{v}_{n}
$$

where \vec{v}_{h} is a solution to $A \vec{v}_{h}=\overrightarrow{0}$.
prof:

- Check $\vec{x}=\vec{p}+\vec{V}_{h}$ is a solution

$$
A \vec{x}=A\left(\vec{p}+\vec{v}_{n}\right)=\underbrace{A \vec{p}}_{\vec{b}}+\underbrace{A \stackrel{\rightharpoonup}{v}_{n}}_{\overrightarrow{0}}=\vec{b}+\overrightarrow{0}=\vec{b}
$$

- check any solution is of this form

Let $\vec{\omega}$ be a solution $A \vec{\omega}=\vec{b}$.

$$
\vec{V}_{n}=\vec{w}-\vec{p} \quad\left(\vec{p}+\vec{v}_{n}=\vec{p}+\vec{w}-\vec{p}=\vec{w}\right)
$$

defined such that $\vec{\omega}=\vec{p}+\vec{v}_{n}$

$$
A \vec{V}_{h}=A(\vec{w}-\vec{p})=\underbrace{A}_{\stackrel{\rightharpoonup}{b}} \vec{w}-\underbrace{A}_{\vec{b}} \stackrel{\rightharpoonup}{p} \quad \vec{b}_{b}-\vec{b}=\overrightarrow{0}
$$

Section 1.7 : Linear Independence

1

$$
\begin{aligned}
& 2 x+4 y=\# \\
& 4 x+8 y=\# \\
& {\left[\begin{array}{l}
2 \\
4
\end{array}\right] x+\left[\begin{array}{l}
4 \\
8
\end{array}\right] y=\overrightarrow{\#}}
\end{aligned}
$$

Think of homog. eqn. $A \vec{x}=\overrightarrow{0}$

$$
\Leftrightarrow \quad x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\overrightarrow{0}
$$

Def: A list of vectors $\left\{\vec{v}_{1}, \ldots, \vec{V}_{p}\right\}$ in \mathbb{R}^{n} is linearly independent if there is only the trivial solution to $x_{1} \vec{a}_{1}+\ldots+x_{p} \vec{V}_{p}=\overrightarrow{0}$.

Otherwise, if there is a nontrivial solution, say that they are imearly dependent.

Proposition:
A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{V}_{p}\right\}$ in \mathbb{R}^{n} is linearly dependent if and only if one of the vectors can be written as a linear comb. of the others.
proof:
nontrivial solution

$$
x_{1} \vec{v}_{1}+x_{2} \stackrel{\rightharpoonup}{v}_{2}+\ldots+x_{\rho} \vec{v}_{p}=\overrightarrow{0}
$$

where one of the $x_{i} \neq 0$, FLOG $x_{1} \neq 0$.

$$
\begin{aligned}
& x_{1} \vec{v}_{1}=-x_{2} \vec{v}_{2}-\ldots-x_{p} \vec{v}_{p} \\
& \vec{v}_{1}=-\frac{x_{2}}{x_{1}} \vec{v}_{2}-\ldots-\frac{x_{p}}{x_{1}} \vec{v}_{p} \\
& \xrightarrow{\text { ex }} \xrightarrow{\vec{z}} \begin{array}{l}
\vec{u}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
\vec{v} \\
\vec{v}=\left[\begin{array}{l}
0 \\
2
\end{array}\right)
\end{array} \vec{\omega}=\left[\begin{array}{l}
5 \\
5 \\
0
\end{array}\right]
\end{aligned}
$$

$\vec{V}=\left[\begin{array}{l}- \\ 2 \\ 0 \\ 0\end{array}\right] \quad \omega=\left[\begin{array}{l}- \\ 5 \\ 0\end{array}\right]$
linearly dependent
ex

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \vec{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

linearly independent

