Lecture 5 - Invertibility (cont.), Vector Spaces, Subspaces, nul and col HW1 due tonight at 11:59 pm 3×3 determinant $A = \begin{bmatrix} a & b & c \\ d & e & f \\ q & h & i \end{bmatrix}$:= a det[ef]-b det[df]+c det[de] def def def hi Prop: A 3×3 matrix A is invertible det (A) 70 11 $ex/A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 5 \\ 3 & 1 & 1 \end{bmatrix}$ det [ab] = ad-be det(A) = 1. det [15] -2 det [325] + 4 det [31] = 1(1-5) -2 (2-15) + 4(2-3) = -4+26-4 = 18 70 >> A mertible. Theorem [Properties of Inverses] · Let A, B be invertible non matrices, and let CER, CFO. Then,

and let
$$C \in \mathbb{R}$$
, $C \neq 0$. Then,

(i) A^{-1} is invertible, $(A^{-1})^{-1} = A$

(ii) AB is invertible, $(AB)^{-1} = B^{-1}A^{-1}$

(iii) A^{-1} is invertible, $(A^{-1})^{-1} = (A^{-1})^{-1}$

(iv) CA is invertible, $(CA)^{-1} = CA^{-1}$

Proof:

(i) find C s.t. $CA^{-1} = I_n = A^{-1}C$

since A is invertible,

 $A^{-1}A = I_n = AA^{-1}$

(howse $C = A \Rightarrow (A^{-1})^{-1} = A$.

(ii) $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B$
 $= B^{-1}B = I_n$
 $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$
 $= AA^{-1} = I_n$

(AB) $(AB)^{-1} = AA^{-1}$

(hake transpose $(A^{-1}A)^{-1} = I_n = (A^{-1})^{-1}A^{-1}$
 $\Rightarrow (A^{-1}A)^{-1} = I_n = (A^{-1})^{-1}A^{-1}$

=> (AT) = (A-1) T (W) cheek. Theorem [Invertible Matrix Theorem] Let A be an nxn matrix. The following are equivalent: (i) A is invertible (iii) A is row equivalent to In

(iii) A has n pivots

(iv) $A\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$ CV) Columns of A are In. indep. (vi) The linear transformation TiRn > Rn associated to A is injective. (Ni) Ax=6 is consistent for all be R? (viti) The columns of A spon Rn (ix) T is surjective (x) There exists nxn matrix C s.t. CA=In (xi) There exists man matrix D s.t. AD=In (xii) AT is invertible. ex/ Consider an upper triangular matrix, i.e., an nxn matrix where the entries below the diagonal are O A = 000 What must be true about the entires A for it be

the entires A for it be invertible? " [0 0 @] A is invertible (All of the diagonal entres are non-zero ex Prove that if A & B are two nxn matrices s.t. AB is invertible, then so B. can I solve Bx=y for all y∈R? $B\bar{x}=\bar{y}$ > ABX = AY \Rightarrow $\vec{x} = (AB)^T A \vec{y}$ ⇒ B is invertible. (Chapter 4) Vector Spaces A vector space is a non-empty set V, whose elements are called vectors, which has operations of addition & scalar multiplication (by real #s) satisfying: For all U, V, we V and scalars c, deR,

(i)
$$\ddot{u} + \ddot{y} \in V$$

(ii) $\ddot{u} + \ddot{v} = \ddot{v} + \ddot{u}$

(iii) $(\ddot{u} + \ddot{v}) + \ddot{u} = \ddot{u} + (\ddot{v} + \ddot{u})$

(iv) There is a zero vector, \ddot{o} ,

5+. $\ddot{u} + \ddot{o} = \ddot{u}$

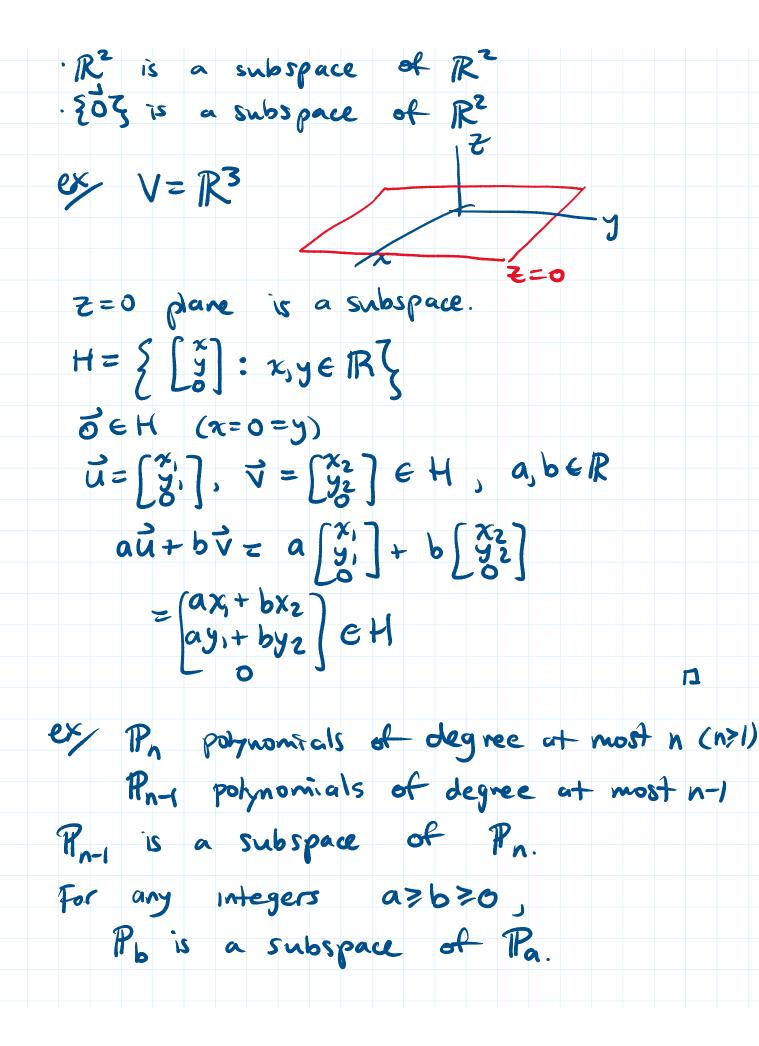
(v) For each $\ddot{u} \in V$, there exists a vector $\ddot{u} \in V$ st. $\ddot{u} + (-\ddot{u}) = \ddot{o}$

(vi) $\ddot{c} = \ddot{u} \in V$

(vii) $\ddot{c} = \ddot{u} + \ddot{u}$

(viii) $\ddot{c} = \ddot{u} + \ddot{u}$

(viiii) $\ddot{c} = \ddot{u} + \ddot{u}$


(viiii) $\ddot{c} = \ddot{u} + \ddot{u}$

(viiii) $\ddot{c} = \ddot{u} + \ddot{u} + \ddot{u}$

(viiii) $\ddot{c} = \ddot{u} + \ddot{u} + \ddot{u} + \ddot{u}$

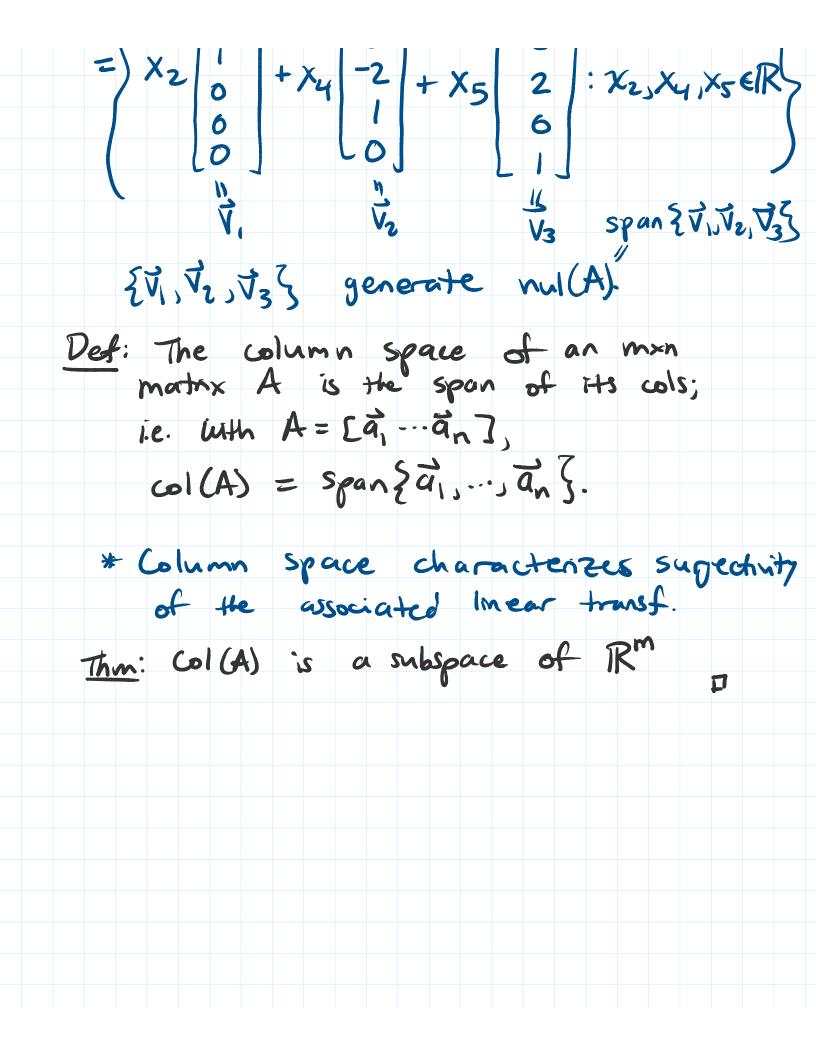
(viiii) $\ddot{c} = \ddot{u} + \ddot{u} +$

p(x) = Co + C, x + ... + Cn x? 9(x) = do + d, x + ... + d, x" apox+ (390x) = a(Co+C, x+,...+ C, xn) + B (do + dx + ... + dnxh) = a co+ pdo + (ac,+ pd,)x + ... + (a cn+ pdn)x" ⇒ ap(x) + 89(x) ∈ Pn. ex/ Fun (R, R) = set of all functions from R to R => Fun (R,R) is a vector space. Def: A subspace of a vector space V
is a subset HSV satisfying: (i) The zero vector of V is in H (ii) H is closed under addition, i.e., U, VeH > U+VeH (iii) H is closed under scalar multiples CER, UEH >> CUEH ex V=R2 any line passing through the origin is a subspace of TR2 · Ris a subspace of R2

ex Fun (R, R) functions from IR to IR Let C(R, IR) = set of continuous functions from IR to IR C(R, IR) is a subspace of Fun(R, IR).	1
C(R,R) is a subspace of Fun(R,R).	
CCRIR) is a subspace of Fun(RIR).	
Theorem: If ViviVa are in a medan	
Theorem: If $V_1,,V_p$ are in a rector space V_1 then $H=span \{V_1,,V_p\}$ is a subspace of V_1 .	
"Say H is the subspace generated or spanned by VI,, Vp. "	
spanned by Vis-1, Vp.	
(or spanning) set for H.	
(or spanning) set for H.	
Proof: H= \{\int_{k=1}^{\text{P}} \ckspace \text{C} \text{K} \ckspace \text{C} \text{K} \ckspace \text{C} \text{V} \text{K} \cdot \text{C} \text{V} \text{V} \text{K} \cdot \text{C} \text{V} \text{K} \cdot \text{C} \text{V} \text{V} \text{K} \cdot \text{C} \text{V} \text{V} \text{K} \text{C} \text{V} \text{V} \text{K} \text{C} \text{V} \text	
\(\(\) \(\)	
0 EH (Ck=0, k=1,, P)	
= 3 11 = 0P 0 = 3 = 5? d.	د
$\vec{U}, \vec{\omega} \in H$ $\vec{U} = \sum_{k=1}^{P} C_k \vec{V}_K, \vec{\omega} = \sum_{k=1}^{P} d_k$ $ e+\alpha, \beta \in \mathbb{R}$	۸K
	_
QU+ BW = Q SKZ, CKVK + BSKZ, dK	Vk
= Sk=1 (ack+Bdk) VK EH	
DK-1 C K N/K 1	
ox. a Spatb+c7	7

ex Show that
$$H = \begin{cases} a+b+c \\ a-c \\ 2a+b-c \end{cases}$$
 is a subspace of R^4 .

 $H = \begin{cases} a[\frac{1}{2}] + b[\frac{0}{1}] + C[\frac{1}{2}] \cdot a_1b_1 \in eR \end{cases}$
 $= \text{Span } \{\vec{V}_1, \vec{V}_2, \vec{V}_3\}$.


 $Pef: \text{ The null space of an man matrix } A, \text{ nul}(A), is the set of all solutions to homog. egn. $A\vec{x} = \vec{0}$ of $nul(A) = \{\vec{x} \in R^n : A\vec{x} = \vec{0}\}$
 $= \text{Nul}(A)$
 $= \text{Null}(A)$
 $= \text{Null}(A$$

mue H 13 an mxn matix. groof: Benul (A) let x, ye nul(A), a, b e/R $A(a\vec{x} + b\vec{y}) = aA\vec{x} + bA\vec{y} = \vec{0}$ ⇒ ax+by ∈ nul(A) $A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$ Find generating Set for nul(A) [A 0] (1) -2 0 -1 3 0]

(row, 0 6 (1) 2 -2 0

reduce [0 0 0 0 0 0]

X2 free Xy free $\begin{pmatrix}
X_1 = 2X_2 + X_4 - 3X_5 \\
X_2 & \text{free} \\
X_3 = -2X_4 + 2X_5
\end{pmatrix} = \text{nul}(A)$ $\begin{pmatrix}
X_4 & \text{free} \\
X_5 & \text{free}
\end{pmatrix}$ $= \left(\begin{array}{c} 2 \\ \times 2 \\ 0 \end{array} \right) + \chi_{4} \left[\begin{array}{c} 0 \\ -2 \\ + \end{array} \right] + \chi_{5} \left[\begin{array}{c} -3 \\ 2 \\ \end{array} \right] : \chi_{2} \chi_{4} \chi_{5} \in \mathbb{R}$

