Math 18 Summer Session 1 2023: Homework 4

Instructor: Brian Tran

Due Wednesday, August 2, 11:59 pm.

Remark. Problems written as "Exercise X.Y.Z" are from the textbook, section X.Y exercise Z. For example, Exercise 1.2.4 denotes exercise 4 of section 1.2. For problems referring to a figure, find the question in the textbook for the corresponding figure. Make sure to show all of your work and steps; credit will not be given for just stating an answer.

Problem 1 Exercise 5.3.14

Determine whether the matrix A is diagonalizable. If it is, diagonalize it, i.e., find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

$$
A=\left[\begin{array}{lll}
4 & 0 & 2 \\
2 & 3 & 4 \\
0 & 0 & 3
\end{array}\right]
$$

Problem 2 Polynomial Functions of Similar Matrices

The usual way we think of polynomials is as taking in an input of a number x, taking nonnegative integer powers of that number, multiplying those powers by some coefficients, and adding them together, i.e.,

$$
p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}
$$

Note the $0^{t h}$ power of a number x is just $x^{0}=1$, which corresponds to the constant term above in $p(x)$.
We are going to extend this idea to matrices. We know how to add matrices of the same dimension. We also know how to multiply matrices. In particular, for two $n \times n$ matrices, we know their product is an $n \times n$ matrix. Thus, if A is an $n \times n$ matrix, we can define its $k^{t h}$ power, where k is a nonnegative integer, as multiplying it by itself k times:

$$
A^{k}=\underbrace{A \cdots A}_{k \text { times }},
$$

where we define $A^{0}=I$ (a square matrix raised to the $0^{t h}$ power is the identity matrix, in analogy to numbers raised to the $0^{t h}$ power being 1), and for example, $A^{1}=A, A^{2}=A A, A^{3}=A A A$, etc.

Since we know how to add and take powers of square matrices, this means we can define polynomials as functions of square matrices, which take in a square matrix and returns a square matrix. A polynomial function of a square matrix A has the form

$$
p(A)=c_{0} I+c_{1} A+c_{2} A^{2}+\cdots+c_{n} A^{n}
$$

Let A and B be similar, i.e., there exists an invertible P such that $B=P A P^{-1}$. Let $p(A)$ be a polynomial function on square matrices. Show that

$$
p(B)=P p(A) P^{-1}
$$

i.e., that $p(B)$ and $p(A)$ are also similar, with the same similarity relation as B and A.

Additionally, use this to evaluate the polynomial function $p(A)=A^{8}$, where

$$
A=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Hint. For the first part of the problem, by linearity, it suffices to prove it for the monomials, i.e., that the $k^{t h}$ monomial $p_{k}(A)=A^{k}$ satisfies $p_{k}(B)=P p_{k}(A) P^{-1}$ for every nonnegative integer k. You can show this by induction. Show that it holds for the base case $k=0$, where $p_{0}(A)=I$ (i.e., the monomial p_{0} of degree 0 outputs I regardless of its input). Then, assume that $p_{k}(B)=P p_{k}(A) P^{-1}$ holds for a nonnegative integer k. Show that it holds for the next nonnegative integer $k+1, p_{k+1}(B)=P p_{k+1}(A) P^{-1}$.

For the second part of the problem, diagonalize the matrix A so that it has the form $A=P D P^{-1}$. Then, use the previous part that you proved, noting that for a diagonal matrix

$$
D=\left[\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right]
$$

its $k^{t h}$ power is just given by raising each of the entries to that power:

$$
D^{k}=\left[\begin{array}{cc}
d_{1}^{k} & 0 \\
0 & d_{2}^{k}
\end{array}\right]
$$

Problem 3 Practice with Finding Eigenvalues and Eigenvectors of Linear Transformations

Let $\mathcal{B}=\left\{1, t, t^{2}\right\}$ be the monomial basis of \mathbb{P}_{2}. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ be the linear transformation defined by

$$
T\left(c_{0}+c_{1} t+c_{2} t^{2}\right)=\left(c_{0}-2 c_{1}+c_{2}\right)+\left(c_{0}+2 c_{1}+c_{2}\right) t^{2}
$$

Find the eigenvalues of T and one eigenvector corresponding to each eigenvalue. That is, for each eigenvalue λ of T, find a nonzero polynomial of degree at most two, $p(t) \in \mathbb{P}_{2}$, such that

$$
T(p(t))=\lambda p(t)
$$

Hint. This is similar to the example we did in lecture. Instead of working on the abstract vector space \mathbb{P}_{2}, find the matrix representation $[T]_{\mathcal{B}}$ of T relative to the monomial basis \mathcal{B}. Then, find the eigenvalues and eigenvectors of the matrix $[T]_{\mathcal{B}}$, which as discussed in lecture, tells you the eigenvalues and eigenvectors of T.

Problem 4 Exercise 6.1.10

Find a unit vector in the direction of

$$
\left[\begin{array}{c}
3 \\
6 \\
-3
\end{array}\right]
$$

Problem 5 Exercise 6.1.14

Find the distance between the vectors

$$
\vec{u}=\left[\begin{array}{c}
0 \\
-5 \\
2
\end{array}\right] \text { and }\left[\begin{array}{c}
-4 \\
-1 \\
4
\end{array}\right]
$$

Problem 6 The Orthogonal Complement is a Subspace

Let W be a subspace of \mathbb{R}^{n}. Show that the orthogonal complement W^{\perp}, i.e., the set of all vectors orthogonal to W, is a subspace of \mathbb{R}^{n}.

Hint. As usual, you need to check 3 properties: the zero vector is in W^{\perp}, W^{\perp} is closed under vector addition (if you take two vectors orthogonal to every vector in W, show that their sum is also orthogonal to every vector in W), and W^{\perp} is closed under scalar multiplication (if you take a vector orthogonal to every vector in W, show that if you multiply that vector by a scalar, it is still orthogonal to every vector in W).

Problem 7 Exercise 6.2.2

Determine if the set of vectors is orthogonal.

$$
\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-5 \\
-2 \\
1
\end{array}\right] .
$$

Problem 8 Exercise 6.2.8

Show that $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ is an orthogonal basis for \mathbb{R}^{2}. Then, express \vec{x} as a linear combination of $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.

$$
\vec{u}_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
-2 \\
6
\end{array}\right], \text { and } \vec{x}=\left[\begin{array}{c}
-4 \\
3
\end{array}\right]
$$

Problem 9 Exercise 6.3.4

Verify that $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ is an orthogonal set and then find the orthogonal projection of \vec{y} onto $\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.

$$
\vec{u}_{1}=\left[\begin{array}{l}
3 \\
4 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
-4 \\
3 \\
0
\end{array}\right], \vec{y}=\left[\begin{array}{c}
4 \\
3 \\
-2
\end{array}\right] .
$$

Problem 10 Exercise 6.3.8

Let W be the subspace spanned by \vec{u}_{1} and \vec{u}_{2}. Write \vec{y} as the sum of a vector in W and a vector orthogonal to W, i.e., in the form $\vec{y}=\vec{y}_{\|}+\vec{y}_{\perp}$ where $\vec{y}_{\|} \in W, \vec{y}_{\perp} \in W^{\perp}$.

$$
\vec{y}=\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right], \vec{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right]
$$

Problem 11 The Sum of a Subspace and its Orthogonal Complement

Let U and V be subspaces of \mathbb{R}^{n}. We define the sum of these two subspaces, $U+V$, as the set of all sums of vectors in U with vectors in V, i.e.,

$$
U+V=\{\vec{u}+\vec{v}: \vec{u} \in U, \vec{v} \in V\}
$$

Show that $U+V$ is a subspace of \mathbb{R}^{n}.
Now, let W be a subspace of \mathbb{R}^{n} and let W^{\perp} be its orthogonal complement. Explain why $W+W^{\perp}=$ \mathbb{R}^{n}. Furthermore, show that $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}\left(\mathbb{R}^{n}\right)$.

Hint. To show $U+V$ is a subspace, check the usual three properties required.
To see why $W+W^{\perp}=\mathbb{R}^{n}$, use the orthogonal decomposition theorem.
To show that $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}\left(\mathbb{R}^{n}\right)$, let $\left\{\vec{x}_{1}, \ldots, \vec{x}_{p}\right\}$ be an orthogonal basis for W and let $\left\{\vec{y}_{1}, \ldots, \vec{y}_{r}\right\}$ be an orthogonal basis for W^{\perp}. Consider the set of vectors given by combining these bases together:

$$
\mathcal{B}=\left\{\vec{x}_{1}, \ldots, \vec{x}_{p}, \vec{y}_{1}, \ldots, \vec{y}_{r}\right\} .
$$

Show that \mathcal{B} is an orthogonal set (i.e., all of the vectors in \mathcal{B} are orthogonal to each other). Use this to argue that \mathcal{B} is a linearly independent set of vectors. Then, explain why \mathcal{B} spans \mathbb{R}^{n} (use the orthogonal decomposition theorem). This shows that \mathcal{B} is a basis for \mathbb{R}^{n}. Use this to conclude that $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}\left(\mathbb{R}^{n}\right)$.

Problem 12 Practice with Orthogonal Matrices

Consider the 4×4 matrix

$$
U=\left[\begin{array}{cccc}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 & 0 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0 & 0 \\
0 & 0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & 0 & -1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

Verify that U is an orthogonal matrix, i.e., that the columns of U are orthonormal (i.e., check that the columns $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}$ of U satisfy $\vec{u}_{i} \cdot \vec{u}_{j}$ equals 0 if $i \neq j$ and equals 1 if $i=j$).

Then, since U is orthogonal, we know that its inverse is equal to its transpose, $U^{-1}=U^{T}$. Use this to solve the linear system $U \vec{x}=\vec{y}$ where

$$
\vec{y}=\left[\begin{array}{c}
\sqrt{2} \\
0 \\
-\sqrt{2} \\
1
\end{array}\right] .
$$

Problem 13 Exercise 6.4.4

Let $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ be a basis for a subspace W, where

$$
\vec{v}_{1}=\left[\begin{array}{c}
3 \\
-4 \\
5
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-3 \\
14 \\
-7
\end{array}\right]
$$

Use the Gram-Schmidt process to produce an orthogonal basis for W.

Problem 14 More practice with the Gram-Schmidt process

Consider the set of vectors in \mathbb{R}^{3} given by

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right] .
$$

Show that $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}.

Then, use the Gram-Schmidt process to find an orthogonal basis of $\mathbb{R}^{3},\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$, with the property

$$
\begin{aligned}
\operatorname{span}\left\{\vec{v}_{1}\right\} & =\operatorname{span}\left\{\vec{u}_{1}\right\} \\
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\} & =\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\} \\
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} & =\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\} .
\end{aligned}
$$

