
Math 18 Summer Session 1 2023: Homework 4

Instructor: Brian Tran

Due Wednesday, August 2, 11:59 pm.

Remark. Problems written as “Exercise X.Y.Z” are from the textbook, section X.Y exercise Z. For
example, Exercise 1.2.4 denotes exercise 4 of section 1.2. For problems referring to a figure, find the
question in the textbook for the corresponding figure. Make sure to show all of your work and steps;
credit will not be given for just stating an answer.

Problem 1 Exercise 5.3.14

Determine whether the matrix A is diagonalizable. If it is, diagonalize it, i.e., find an invertible matrix
P and a diagonal matrix D such that A = PDP−1.

A =

4 0 2
2 3 4
0 0 3

 .
Problem 2 Polynomial Functions of Similar Matrices

The usual way we think of polynomials is as taking in an input of a number x, taking nonnegative integer
powers of that number, multiplying those powers by some coefficients, and adding them together, i.e.,

p(x) = c0 + c1x+ · · ·+ cnx
n.

Note the 0th power of a number x is just x0 = 1, which corresponds to the constant term above in p(x).
We are going to extend this idea to matrices. We know how to add matrices of the same dimension.

We also know how to multiply matrices. In particular, for two n× n matrices, we know their product is
an n × n matrix. Thus, if A is an n × n matrix, we can define its kth power, where k is a nonnegative
integer, as multiplying it by itself k times:

Ak = A · · ·A︸ ︷︷ ︸
k times

,

where we define A0 = I (a square matrix raised to the 0th power is the identity matrix, in analogy to
numbers raised to the 0th power being 1), and for example, A1 = A, A2 = AA, A3 = AAA, etc.

Since we know how to add and take powers of square matrices, this means we can define polynomials
as functions of square matrices, which take in a square matrix and returns a square matrix. A polynomial
function of a square matrix A has the form

p(A) = c0I + c1A+ c2A
2 + · · ·+ cnA

n.

Let A and B be similar, i.e., there exists an invertible P such that B = PAP−1. Let p(A) be a
polynomial function on square matrices. Show that

p(B) = Pp(A)P−1,
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i.e., that p(B) and p(A) are also similar, with the same similarity relation as B and A.
Additionally, use this to evaluate the polynomial function p(A) = A8, where

A =

[
1 −1
−1 1

]
.

Hint. For the first part of the problem, by linearity, it suffices to prove it for the monomials, i.e., that
the kth monomial pk(A) = Ak satisfies pk(B) = Ppk(A)P−1 for every nonnegative integer k. You can
show this by induction. Show that it holds for the base case k = 0, where p0(A) = I (i.e., the monomial
p0 of degree 0 outputs I regardless of its input). Then, assume that pk(B) = Ppk(A)P−1 holds for a
nonnegative integer k. Show that it holds for the next nonnegative integer k+1, pk+1(B) = Ppk+1(A)P−1.

For the second part of the problem, diagonalize the matrix A so that it has the form A = PDP−1.
Then, use the previous part that you proved, noting that for a diagonal matrix

D =

[
d1 0
0 d2

]
,

its kth power is just given by raising each of the entries to that power:

Dk =

[
dk1 0
0 dk2

]
.

Problem 3 Practice with Finding Eigenvalues and Eigenvectors
of Linear Transformations

Let B = {1, t, t2} be the monomial basis of P2. Let T : P2 → P2 be the linear transformation defined by

T (c0 + c1t+ c2t
2) = (c0 − 2c1 + c2) + (c0 + 2c1 + c2)t2.

Find the eigenvalues of T and one eigenvector corresponding to each eigenvalue. That is, for each
eigenvalue λ of T , find a nonzero polynomial of degree at most two, p(t) ∈ P2, such that

T (p(t)) = λp(t).

Hint. This is similar to the example we did in lecture. Instead of working on the abstract vector space P2,
find the matrix representation [T ]B of T relative to the monomial basis B. Then, find the eigenvalues and
eigenvectors of the matrix [T ]B, which as discussed in lecture, tells you the eigenvalues and eigenvectors
of T .

Problem 4 Exercise 6.1.10

Find a unit vector in the direction of  3
6
−3

 .
Problem 5 Exercise 6.1.14

Find the distance between the vectors

~u =

 0
−5
2

 and

−4
−1
4

 .
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Problem 6 The Orthogonal Complement is a Subspace

Let W be a subspace of Rn. Show that the orthogonal complement W⊥, i.e., the set of all vectors
orthogonal to W , is a subspace of Rn.

Hint. As usual, you need to check 3 properties: the zero vector is in W⊥, W⊥ is closed under vector
addition (if you take two vectors orthogonal to every vector in W , show that their sum is also orthogonal
to every vector in W ), and W⊥ is closed under scalar multiplication (if you take a vector orthogonal to
every vector in W , show that if you multiply that vector by a scalar, it is still orthogonal to every vector
in W ).

Problem 7 Exercise 6.2.2

Determine if the set of vectors is orthogonal. 1
−2
1

 ,
0

1
2

 ,
−5
−2
1

 .
Problem 8 Exercise 6.2.8

Show that {~u1, ~u2} is an orthogonal basis for R2. Then, express ~x as a linear combination of {~u1, ~u2}.

~u1 =

[
3
1

]
, ~u2 =

[
−2
6

]
, and ~x =

[
−4
3

]
.

Problem 9 Exercise 6.3.4

Verify that {~u1, ~u2} is an orthogonal set and then find the orthogonal projection of ~y onto span{~u1, ~u2}.

~u1 =

3
4
0

 , ~u2 =

−4
3
0

 , ~y =

 4
3
−2

 .
Problem 10 Exercise 6.3.8

Let W be the subspace spanned by ~u1 and ~u2. Write ~y as the sum of a vector in W and a vector
orthogonal to W , i.e., in the form ~y = ~y‖ + ~y⊥ where ~y‖ ∈W,~y⊥ ∈W⊥.

~y =

−1
4
3

 , ~u1 =

1
1
1

 , ~u2 =

−1
3
−2

 .
Problem 11 The Sum of a Subspace and its Orthogonal Com-
plement

Let U and V be subspaces of Rn. We define the sum of these two subspaces, U + V , as the set of all
sums of vectors in U with vectors in V , i.e.,

U + V = {~u+ ~v : ~u ∈ U,~v ∈ V }.
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Show that U + V is a subspace of Rn.
Now, let W be a subspace of Rn and let W⊥ be its orthogonal complement. Explain why W +W⊥ =

Rn. Furthermore, show that dim(W ) + dim(W⊥) = dim(Rn).

Hint. To show U + V is a subspace, check the usual three properties required.
To see why W +W⊥ = Rn, use the orthogonal decomposition theorem.
To show that dim(W ) + dim(W⊥) = dim(Rn), let {~x1, . . . , ~xp} be an orthogonal basis for W and let

{~y1, . . . , ~yr} be an orthogonal basis for W⊥. Consider the set of vectors given by combining these bases
together:

B = {~x1, . . . , ~xp, ~y1, . . . , ~yr}.

Show that B is an orthogonal set (i.e., all of the vectors in B are orthogonal to each other). Use
this to argue that B is a linearly independent set of vectors. Then, explain why B spans Rn (use the
orthogonal decomposition theorem). This shows that B is a basis for Rn. Use this to conclude that
dim(W ) + dim(W⊥) = dim(Rn).

Problem 12 Practice with Orthogonal Matrices

Consider the 4× 4 matrix

U =


1/
√

2 −1/
√

2 0 0

1/
√

2 1/
√

2 0 0

0 0 1/
√

2 1/
√

2

0 0 −1/
√

2 1/
√

2

 .
Verify that U is an orthogonal matrix, i.e., that the columns of U are orthonormal (i.e., check that the
columns ~u1, ~u2, ~u3, ~u4 of U satisfy ~ui · ~uj equals 0 if i 6= j and equals 1 if i = j).

Then, since U is orthogonal, we know that its inverse is equal to its transpose, U−1 = UT . Use this
to solve the linear system U~x = ~y where

~y =


√

2
0

−
√

2
1

 .

Problem 13 Exercise 6.4.4

Let {~v1, ~v2} be a basis for a subspace W , where

~v1 =

 3
−4
5

 , ~v2 =

−3
14
−7

 .
Use the Gram–Schmidt process to produce an orthogonal basis for W .

Problem 14 More practice with the Gram–Schmidt process

Consider the set of vectors in R3 given by

~v1 =

1
1
0

 , ~v2 =

 2
1
−1

 , ~v3 =

1
0
3

 .
Show that {~v1, ~v2, ~v3} is a basis for R3.

4



Math 18 Summer Session 1 2023: Homework 4 Instructor: Brian Tran

Then, use the Gram–Schmidt process to find an orthogonal basis of R3, {~u1, ~u2, ~u3}, with the property

span{~v1} = span{~u1}
span{~v1, ~v2} = span{~u1, ~u2},

span{~v1, ~v2, ~v3} = span{~u1, ~u2, ~u3}.
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