Math 20D Summer Session 1 2022: Homework 1

Instructor: Brian Tran

Due Wednesday, July 6, 11:59 pm.

Remark. Problems written as "Exercise X.Y.Z" are from the textbook, section X.Y exercise Z. For example, Exercise 1.2.4 denotes exercise 4 of section 1.2. For problems referring to a figure, find the question in the textbook for the corresponding figure. Make sure to show all of your work and steps; credit will not be given for just stating an answer.

Problem 1 Exercise 1.2.4

Determine whether the given function is a solution to the given differential equation.

$$
x=2 \cos (t)-3 \sin (t), \quad x^{\prime \prime}+x=0
$$

Problem 2 Exercise 1.2.10

Determine whether the given relation is an implicit solution to the given differential equation. Assume that the relation defines y implicitly as a function of x and use implicit differentiation.

$$
y-\ln (y)=x^{2}+1, \quad \frac{d y}{d x}=\frac{2 x y}{y-1}
$$

Problem 3 Exercise 2.2.10

Find the general solution for the given differential equation

$$
\frac{d y}{d x}=\frac{x}{y^{2} \sqrt{1+x}}
$$

Problem 4 Exercise 2.2.18

Solve the IVP

$$
\begin{aligned}
y^{\prime} & =x^{3}(1-y) \\
y(0) & =3
\end{aligned}
$$

Problem 5 Exercise 2.2.24

Solve the IVP

$$
\begin{aligned}
\frac{d y}{d x} & =8 x^{3} e^{-2 y} \\
y(1) & =0
\end{aligned}
$$

Problem 6 Exercise 2.3.10

Obtain the general solution to the equation

$$
x \frac{d y}{d x}+2 y=x^{-3}
$$

Problem 7 Exercise 2.3.18

Solve the IVP

$$
\begin{array}{r}
\frac{d y}{d x}+4 y-e^{-x}=0 \\
y(0)=\frac{4}{3}
\end{array}
$$

Problem 8 Exercise 2.3.20

Solve the IVP

$$
\begin{aligned}
\frac{d y}{d x}+\frac{3 y}{x}+2 & =3 x \\
y(1) & =1
\end{aligned}
$$

Problem 9 First-order Systems

In the first week of class, we focused on first-order differential equations. These are the most important class of differential equations from a theoretical perspective, because every $n^{\text {th }}$-order differential equation can be transformed into a system of n first-order differential equations.

Consider the general form of a second-order differential equation

$$
\frac{d^{2} x}{d t^{2}}=f\left(t, x, \frac{d x}{d t}\right)
$$

By defining a new variable $v=d x / d t$, show that this second-order equation can be transformed into a system of two first-order differential equations of the form

$$
\begin{aligned}
& \frac{d x}{d t}=g(t, x, v) \\
& \frac{d v}{d t}=h(t, x, v)
\end{aligned}
$$

Express g and h in terms of t, x, v, f.
(Optional) Show that a general $n^{t h}$-order differential equation

$$
\frac{d^{n} x}{d t^{n}}=f\left(t, x, \frac{d x}{d t}, \ldots, \frac{d^{n-1} x}{d t^{n-1}}\right)
$$

can be transformed into a system of n first-order differential equations.

Problem 10 Exercise 2.4.10

Determine whether the equation is exact. If it is, then solve it.

$$
(2 x+y) d x+(x-2 y) d y=0
$$

Problem 11 Exercise 2.4.22

Solve the IVP

$$
\begin{array}{r}
\left(y e^{x y}-1 / y\right) d x+\left(x e^{x y}+x / y^{2}\right) d y=0 \\
y(1)=1
\end{array}
$$

Problem 12 Exercise 2.4.24

Solve the IVP

$$
\begin{aligned}
\left(e^{t} x+1\right) d t+\left(e^{t}-1\right) d x & =0 \\
x(1) & =1
\end{aligned}
$$

Problem 13 Exercise 2.5.8

Find the general solution for the equation

$$
\left(3 x^{2}+y\right) d x+\left(x^{2} y-x\right) d y=0
$$

Problem 14 Exercise 2.5.14

Find an integrating factor of the form $x^{n} y^{m}$ and solve the equation

$$
(12+5 x y) d x+\left(6 x y^{-1}+3 x^{2}\right) d y=0
$$

Problem 15 Exercise 4.2.6

Find a general solution to the given differential equation.

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

Problem 16 Exercise 4.2.16

Solve the IVP

$$
\begin{array}{r}
y^{\prime \prime}-4 y^{\prime}-5 y=0 \\
y(-1)=3 \\
y^{\prime}(-1)=9
\end{array}
$$

