Math 20E A00 Fall 2021: Homework 3

Instructor: Brian Tran

Due Wednesday, October 20, 11:59 pm.
Remark. Problems written as “Exercise X.Y.Z” are from the textbook, section X.Y exercise Z. For
example, Exercise 5.3.8 denotes exercise 8 of section 5.3. For problems referring to a figure, find the
question in the textbook for the corresponding figure. Make sure to show all of your work and steps;

credit will not be given for just stating an answer.
Although the problem may not ask for it explicitly, it is always helpful to sketch the domain.

Problem 1 Exercise 7.1.24

Compute the path integral of f(x,y) = y? over the graph of y = e*, 2 € [0, 1].
Hint: You can use the result from Problem 12 of Homework 2.

Problem 2 Exercise 7.1.11(a)

Evaluate the path integral fz fds where
f(@,y,2) = exp(V2),
t

oL

Problem 3 Exercise 7.1.14

(a) Show that the path integral of f(z,y) along a path given in polar coordinates by r = (), 6 € [61, 02],
is
" dr\?
f(r(8) cosf,r(0)sinf)4/r(6)% + ( ) do.
01 do

Hint: Think of 6 as “time”.

(b) Using the result from part (a), compute the arclength of the path
r(0) =1+cosb, 6 €[0,2n].
Hint: You should find the half-angle identity 1 + cosf = 2 cos?(6/2) useful for evaluating the integral.

Problem 4 An Elliptic Integral

For the ellipse 22 /a?+y?/b*> = 1 (a > 0,b > 0), we can parameterize this curve as &(0) = (acos 6, bsin6),6 €
[0, 27] which traverses the ellipse counterclockwise. The arclength (or “perimeter”) of an ellipse can be
expressed fgds. Show that the arclength is given by the integral expression

27 2 12
/ds:/ b\/1+(ab2b)sin20d9.
¢ 0
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Hint: During your calculation, use the identity cos? = 1 — sin? 6.

Remark. Do not actually try to evaluate this integral; there is no closed form expression for this integral
(unless a = b in which case we have a circle). This is known as an elliptic integral.

Problem 5 Exercise 7.2.2

Evaluate the line integral [, F - dF where F(x,y) = (y2, 2ay) where C is the entire unit circle 22 42 = 1
parameterized counterclockwise.

Problem 6 Exercise 7.2.4(b),(d)

Evaluate each of the following line integrals
(b) Jzxdz + ydy where &(t) = (cos(nt),sin(nt)),t € [0, 27].

(d) Jza?dx — zydy + dz where € is the parabola z = z%,y = 0 from (—1,0,1) to (1,0,1).

Problem 7 Exercise 7.2.5

Consider the force field F(z,y,z) = (x,y,2). Compute the work done in moving a particle along the
parabola y = 22,2 = 0 for z € [—1,2].

Problem 8 Exercise 7.2.8

Evaluate fé.ﬁ - d7¥ where ﬁ(x, y,2) = (y,2z,y) and the path ¢ is given by &(t) = (¢,12,3), t € [0,1].

Problem 9 Exercise 7.2.6

Let & be a smooth path (running from time ¢; to ¢2).

(a) Suppose ﬁ(é’(t)) is perpendicular to ¢’(t), for each ¢t. Show that

/ﬁ-df’:o.

Remark. In terms of the interpretation of the line integral as the work done on a particle, this is the
statement that if the force is perpendicular to the direction of motion, then no work is done on the
particle.

(b) If F(&t)) is parallel to &(t) for each t, show that

/ﬁ-dF: /Hﬁnds.

That is, when the vector field is parallel to the velocity, the line integral can be interpreted as a path
integral, where the scalar function that we are integrating is the magnitude of the vector field.

Hint: By parallel to &'(t), we mean that F(&(t)) points in the same direction as &'(t), so the angle
0(t) between the vectors F(&(t)) and &’ (t) is zero. Thus,

—

F(&(t) - '(t) = | F@e)lle’ (1) cos 6(t) = [IF(@D) 1" ¢)]I-
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Problem 10 Practice with the FTLI
Let ﬁ(x,y,z) = (2zy?, 3x2y?, cos(z)es"(?)).

(a) Assume that we know that F is a gradient vector field. Find the potential; that is, find f : R?> = R
such that F = Vf.

(b) Using the fundamental theorem of line integrals, evaluate fgﬁ - dF where F is as in part (a) and &
is the line starting at (0,0,0) and ending at (1,1, ).

Problem 11 Exercise 7.2.11

The image of the path t — (cos®¢,sin®t),t € [0, 27] in the plane is shown in Figure 7.2.15 (see textbook).
Evaluate the integral of the vector field F(z,y) = (x,y) around this curve.

Hint: You can use the fundamental theorem of line integrals; find the scalar potential whose gradient
is F.

Problem 12 Exercise 7.2.17

Evaluate the line integral

/ 2ayzdr + x’zdy + 2?ydz
c

where C'is any oriented simple curve connecting (1,1,1) to (1,2,4).
Hint: Use the fundamental theorem of line integrals.
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