Math 20E A00 Fall 2021: Homework 8

Instructor: Brian Tran

Due Wednesday, November 24, 11:59 pm.

Remark. Problems written as "Exercise X.Y.Z" are from the textbook, section X.Y exercise Z. For example, Exercise 5.3.8 denotes exercise 8 of section 5.3. For problems referring to a figure, find the question in the textbook for the corresponding figure. Make sure to show all of your work and steps; credit will not be given for just stating an answer.

Although the problem may not ask for it explicitly, it is always helpful to sketch the domain (when applicable).

Problem 1 Exercise 4.4.23(a)

Let $\vec{F}(x, y, z) = (e^{xz}, \sin(xy), x^5y^3z^2)$.

(a) Find the divergence of \vec{F} .

Problem 2 The Product Rule for the Divergence

Show that the product rule for the divergence holds: for a differentiable scalar function $f: \mathbb{R}^3 \to \mathbb{R}$ and a differentiable vector field $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3$,

$$\nabla \cdot (f\vec{F}) = f\nabla \cdot \vec{F} + (\nabla f) \cdot \vec{F}.$$

Problem 3 Exercise 8.4.2

Verify the divergence theorem for the given region W, boundary ∂W with the induced normal (outward), and vector field \vec{F} :

$$W = [0,1] \times [0,1] \times [0,1]$$

$$\vec{F}(x,y,z) = (zy,xz,xy).$$

That is, verify that the left and right hand sides of the divergence theorem give the same answer:

$$\iint_{\partial W} \vec{F} \cdot d\vec{S} = \iiint_{W} (\nabla \cdot \vec{F}) \, dV.$$

Problem 4 Exercise 8.4.9(b)

Let $\vec{F}(x,y,z)=(y,z,xz)$. Evaluate $\iint_{\partial W} \vec{F} \cdot d\vec{S}$ where $W=\{(x,y,z): x^2+y^2 \leq z \leq 1 \text{ and } x \geq 0\}$.

Problem 5 Exercise 8.4.11

Find the flux of the vector field $\vec{F}(x,y,z) = (x-y^2,y,x^3)$ out of the boundary ∂W , where $W = [0,1] \times [1,2] \times [1,4]$.

Instructor: Brian Tran

Problem 6 Exercise 8.4.14

Let W be the three-dimensional solid enclosed by the surfaces $x=y^2, x=9, z=0, x=z$. Let $S=\partial W$. Use Gauss' theorem to find the flux of $\vec{F}(x,y,z)=(3x-5y,4z-2y,8yz)$ out of $S:\iint_S \vec{F}\cdot d\vec{S}$.

Hint: When you apply Gauss' theorem and end up with a triple integral, evaluate the integrals in the order $dz \to dx \to dy$.

Problem 7 Exercise 8.4.24

Suppose that \vec{F} is tangent to the closed surface $S = \partial W$ for some region $W \subset \mathbb{R}^3$. Prove that

$$\iiint_W (\nabla \cdot \vec{F}) \, dV = 0.$$

Hint: If \vec{F} is tangent to S, what is its relation to the normal vector field \hat{n} of S?

Problem 8 A higher-dimensional analogue of integration by parts

Let f be a (C^1) scalar function and \vec{F} be a (C^1) vector field (on \mathbb{R}^3). Prove that, for any region $W \subset \mathbb{R}^3$,

$$\iiint_W (\nabla f) \cdot \vec{F} \, dV = \iint_{\partial W} f \vec{F} \cdot d\vec{S} - \iiint_W f \nabla \cdot \vec{F} \, dV.$$

Hint: Take the product rule from Problem 2, triple-integrate both sides over the region W, and apply the divergence theorem where appropriate.

Remark. This is a higher-dimensional analogue of integration by parts. Remember from single-variable calculus, integration by parts says that when you are integrating a function times the derivative of some other function, you can move the derivative over if you include a boundary term:

$$\int_{I} u \frac{dv}{dx} dx = uv \Big|_{\partial I} - \int_{I} \frac{du}{dx} v dx.$$

The proof of this fact just uses the single-variable product rule and the FTC I. If you look at the above equation, it is an analogous statement: you can move the derivative on f (the gradient) over to a derivative on \vec{F} (the divergence) if you include an appropriate boundary term. Also, the proof in the higher-dimensional case is analogous, you use the product rule (for the divergence) and the fundamental theorem of calculus for the divergence (aka the divergence theorem).

There are other similar higher-dimensional integrations by parts formulas (for example, for the curl and using Stokes' theorem). These higher-dimensional integration by parts formulas are used extensively in higher level mathematics, especially in the area of partial differential equations (PDEs).