Math 20E A00 Fall 2021: Homework 8

Instructor: Brian Tran

Due Wednesday, November 24, 11:59 pm.

Remark. Problems written as “Exercise X.Y.Z” are from the textbook, section X.Y exercise Z. For
example, Exercise 5.3.8 denotes exercise 8 of section 5.3. For problems referring to a figure, find the
question in the textbook for the corresponding figure. Make sure to show all of your work and steps;
credit will not be given for just stating an answer.

Although the problem may not ask for it explicitly, it is always helpful to sketch the domain (when
applicable).

Problem 1 Exercise 4.4.23(a)

Let F(z,y,2) = (e*%,sin(zy), #°y322).

(a) Find the divergence of F.

Problem 2 The Product Rule for the Divergence

Show that the product rule for the divergence holds: for a differentiable scalar function f : R3 = R and
a differentiable vector field F : R3 — R3,

V.- (fF)=fV-F+(Vf)-F.

Problem 3 Exercise 8.4.2

Verify the divergence theorem for the given region W, boundary 0W with the induced normal (outward),
and vector field F:

W =10,1] x [0,1] x [0,1]
F(z,y,2) = (zy, 22, xy).

That is, verify that the left and right hand sides of the divergence theorem give the same answer:

ff, 55 s o

Problem 4 Exercise 8.4.9(b)

Let F(z,y,2) = (y, 2, 22). Evaluate Iow F-dS where W = {(2,y,2) : a2+ y*> < z <1 and = > 0}.
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Problem 5 Exercise 8.4.11

Find the flux of the vector field ﬁ(x,y,z) = (x — y?,y,2%) out of the boundary W, where W =
[0,1] x [1,2] x [1,4].

Problem 6 Exercise 8.4.14

Let W be the three-dimensional solid enclosed by the surfaces z = y?,2 = 9,2 = 0,2 = 2. Let S = OW.
Use Gauss’ theorem to find the flux of ﬁ(m, y,z) = (3x — by, 4z — 2y,8yz) out of S: [[ F-ds.

Hint: When you apply Gauss’ theorem and end up with a triple integral, evaluate the integrals in
the order dz — dx — dy.

Problem 7 Exercise 8.4.24

Suppose that Fis tangent to the closed surface S = W for some region W C R3. Prove that

///W(v-ﬁ)dvzo.

Hint: If F is tangent to S, what is its relation to the normal vector field n of S?

Problem 8 A higher-dimensional analogue of integration by parts

Let f be a (C?) scalar function and F be a (C) vector field (on R3). Prove that, for any region W C R3,

///W(Vf).ﬁdvz /6Wfﬁ-d§—///WfV«ﬁdV.

Hint: Take the product rule from Problem 2, triple-integrate both sides over the region W, and apply
the divergence theorem where appropriate.

Remark. This is a higher-dimensional analogue of integration by parts. Remember from single-variable
calculus, integration by parts says that when you are integrating a function times the derivative of some
other function, you can move the derivative over if you include a boundary term:

dv du
/Iu%dx = uv‘al — /I %vdaﬂ.

The proof of this fact just uses the single-variable product rule and the FTC I. If you look at the
above equation, it is an analogous statement: you can move the derivative on f (the gradient) over to
a derivative on F (the divergence) if you include an appropriate boundary term. Also, the proof in the
higher-dimensional case is analogous, you use the product rule (for the divergence) and the fundamental
theorem of calculus for the divergence (aka the divergence theorem).

There are other similar higher-dimensional integrations by parts formulas (for example, for the curl
and using Stokes’ theorem). These higher-dimensional integration by parts formulas are used extensively
in higher level mathematics, especially in the area of partial differential equations (PDEs).
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