Lecture 23 - Midterm 2 Review

- Midterm 2 will be available today at 12 noon until 11:59 pm. 90
minute timer once viewed; view before 10:29 pm for full time.

Problem 1 (20 points)

Let the surface S be the graph of the function| z = g(z,y) = y*/3 + 1 over (z,y)
f:R?® = R be given by f(z,y,z) = zy?. Evaluate
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Problem 2 (20 points)

Let S be the closed surface which is the union of three surfaces, S = S; US; U S3, where S7 is the curved
part of the cylinder,
S1={(z,y,2) s a2 —I—y2 =land 0 <z <1},

Sy is the bottom “lid” of the cylinder,

Sy ={(2,9,2) : 2> +y* <1 and z =0},
and S3 is the top “lid” of the cylinder,

S3 = {(z,9,2) sz +y2 <1landz=1}.

Let S be oriented with the outward normal. Let F : R3 — R3 be given by F (z,v,2) = (z,y,2). Evaluate
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Problem 3 (20 points) gt

Let S? be the surface of the unit sphere, # = {(z,y,2) : 2% +y* + 22 = 1}, oriented with the outward
normal. Let F : R® — R? be given by F(z,v,2) = (y%, z — 2y, —y). Evaluate
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Hint: While you can in principle evaluate this directly by parametrizing S (e.g., with spherical coordi-
nates), it is easier to use the geometric formula for the surface integral: what is the unit normal vector

field to S? and what is its dot product with F? /
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Problem 4 (20 points)

Let C' be the following closed curve in the zy plane: C goes from (0,0) to (0,2) along a straight line,
from (0,2) to (2,2) along a straight line, from (2,2) to (2,0) along a straight line, and from (2,0) back
to (0,0) along a straight line.

Let P(z,y) = 2xy + sin(z?), Q(x, y) = sin(y®) + x. Evaluate the line integral

/ Pdz + Qdy.
c

Hint: Use Green’s theorem.

SolwAwen C QD = C

Y




bV Q7
Sc?(x,y)c]x+@(x,y\d'] - - D(,-% ;% dA

= - (1-2x) 4 A
D #
= (0%

o "o

- = 2(\~lx3&x = -2 (x-x?)
(o 0

= -r(2-4) =14,

Problem 5 (Extra Credit: 10 points)

Prove the following statement:

Let the surface S be the graph of a differentiable function z = g(z,y) over the domain (z,y) €
[—a,a] x [b,c] (where a,b,c are fixed constants satisfying @ > 0 and ¢ > b). Furthermore, assume that
g only depends on y; that is, it can be expressed g(z,y) = h(y) for some differentiable function of one
variable h. Let f : R®> — R be a (continuous) function that is odd with respect to the z variable; i.e.,
f(=z,y,2) = —f(z,y,2) for all (z,y,z). Then,

[ ras =o.

Hint: Parametrize the surface using the usual parametrization of a graph,

O(z,y) = (=,y.9(z,y)) = (z,y,h(y)).

The domain of ® is D = [—a,a] x [b,c]. Use the definition of the surface integral to write [[; fdS as a
double integral over D. Split the domain into two pieces, Dy = [0,a] x [b,c] and D_ = [—a,0] x [b, ] so
that D = Dy U D_. Then, split the double integral over D into two double integral over the two pieces,
Dy and D_. For the D_ double integral, make a change of variable z — —z, and you will see that the
D4 double integral and the D_ double integral exactly cancel each other, using the fact that f is odd
with respect to x.
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