- Midterm 2 will be available today at 12 noon until 11:59 pm. 90 minute timer once viewed; view before 10:29 pm for full time.

Problem 1 (20 points)

Let the surface S be the graph of the function $z = g(x,y) = y^3/3 + 1$ over $(x,y) \in [-1,1] \times [0,1]$. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x, y, z) = xy^2$. Evaluate

$$\iint_{S} f \, dS.$$

Solution:

Parametrize graph

 $\Phi(x,y) = (x,y,g(x,y)) = (x,y,\frac{y^3}{3}+1), D \in [-1,1] \times [0,1]$

 $\vec{T}_{x} = (1,0,39/3x) = (1,6,0)$ $\vec{T}_{x} \times \vec{T}_{y} = (0,1,39/3y) = (0,1,4^{2})$ $\vec{T}_{y} = (0,1,39/3y) = (0,1,4^{2})$

 $||\vec{f}_{x} \times \vec{f}_{y}|| = \sqrt{1 + y^{4}}$ $||\vec{f}_{x} \times \vec{f}_{y}|| = \sqrt{1 + (2g/3 \times)^{2} + (2g/3y)^{2}}$

SS fdS = SS f(\(\phi(x,y)\))|\(\frac{1}{1}\times \tau_y\) | dA dydx if D x-simple

D \(\phi(x,y)\)|\(\frac{1}{1}\times \tau_y\) | dA

= [] xy2 / [+y4 dydx

= [| x dx [y 2 / 1+ y 4 dy

Problem 2 (20 points)

Let S be the closed surface which is the union of three surfaces, $S = S_1 \cup S_2 \cup S_3$, where S_1 is the curved part of the cylinder,

$$S_1 = \{(x, y, z) : x^2 + y^2 = 1 \text{ and } 0 \le z \le 1\},$$

 S_2 is the bottom "lid" of the cylinder,

$$S_2 = \{(x, y, z) : x^2 + y^2 \le 1 \text{ and } z = 0\},\$$

and S_3 is the top "lid" of the cylinder,

$$S_3 = \{(x, y, z) : x^2 + y^2 \le 1 \text{ and } z = 1\}.$$

Let S be oriented with the outward normal. Let $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $\vec{F}(x,y,z) = (x,y,z)$. Evaluate

Solution:
$$\frac{1}{2}\int_{0}^{1}\frac{1}{3}\int_{0}^{1}\frac{$$

$$|S_{S}| = |S_{S}| |S$$

Problem 3 (20 points)

Let \mathbb{S}^2 be the surface of the unit sphere, $\blacksquare = \{(x,y,z) : x^2 + y^2 + z^2 = 1\}$, oriented with the outward normal. Let $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $\vec{F}(x,y,z) = (y^2,z-xy,-y)$. Evaluate

$$\iint_{\mathbb{S}^2} \vec{F} \cdot d\vec{S}.$$

Hint: While you can in principle evaluate this directly by parametrizing S (e.g., with spherical coordinates), it is easier to use the geometric formula for the surface integral: what is the unit normal vector field to \mathbb{S}^2 and what is its dot product with \vec{F} ?

Problem 4 (20 points)

Let C be the following closed curve in the xy plane: C goes from (0,0) to (0,2) along a straight line, from (0,2) to (2,2) along a straight line, from (2,2) to (2,0) along a straight line, and from (2,0) back to (0,0) along a straight line.

Let $P(x,y) = 2xy + \sin(x^4)$, $Q(x,y) = \sin(y^3) + x$. Evaluate the line integral

$$\int_C Pdx + Qdy.$$

Hint: Use Green's theorem.

Solution:
$$(0,2)$$

$$(2,2)$$

$$(2,0)$$

$$(2,0)$$

$$(2,0)$$

$$(2,0)$$

$$(2,0)$$

$$(2,0)$$

$$(3Q - \frac{\partial P}{\partial x}) dA$$

$$\int_{C} P(x,y) dx + Q(x,y) dy = -\iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA$$

$$= -\iint_{D} (1 - 2x) dA$$

$$= -\int_{C} 2 (1 - 2x) dy dx$$

$$= -2 \int_{C} 2 (1 - 2x) dx = -2 (x - x^{2}) \Big|_{D} 2$$

$$= -2 (2 - 4) = 4.$$

Problem 5 (Extra Credit: 10 points)

Prove the following statement:

Let the surface S be the graph of a differentiable function z = g(x,y) over the domain $(x,y) \in [-a,a] \times [b,c]$ (where a,b,c are fixed constants satisfying a>0 and c>b). Furthermore, assume that g only depends on y; that is, it can be expressed g(x,y)=h(y) for some differentiable function of one variable h. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a (continuous) function that is odd with respect to the x variable; i.e., f(-x,y,z)=-f(x,y,z) for all (x,y,z). Then,

$$\iint_S f dS = 0.$$

Hint: Parametrize the surface using the usual parametrization of a graph,

$$\Phi(x, y) = (x, y, g(x, y)) = (x, y, h(y)).$$

The domain of Φ is $D = [-a, a] \times [b, c]$. Use the definition of the surface integral to write $\iint_S f dS$ as a double integral over D. Split the domain into two pieces, $D_+ = [0, a] \times [b, c]$ and $D_- = [-a, 0] \times [b, c]$ so that $D = D_+ \cup D_-$. Then, split the double integral over D into two double integral over the two pieces, D_+ and D_- . For the D_- double integral, make a change of variable $x \to -x$, and you will see that the D_+ double integral and the D_- double integral exactly cancel each other, using the fact that f is odd with respect to x.

example: Problem 1

$$= \iint_{a}^{a} f(x,y,h(y)) \sqrt{1+h'(y)^{2}} dxdy$$

$$= \int_{a}^{a} f(x,y,h(y)) \sqrt{1+h'(y)^{2}} dxdy$$

