Lecture 24 - The Divergence Theorem

- I have my usual OH this week (right after this lecture and Thursday from 11 to 12)
- HW7 is due Thursday 11/18 at 11:59 pm
- Read section 8.4 (the divergence theorem)

Midterm 2 Solutions:

Problem 1 (20 points)

Let the surface S be the graph of the function $z = g(x,y) = 1 - x^2$ over $(x,y) \in [0,1] \times [0,1]$. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be given by f(x, y, z) = xy. Evaluate

$$\iint_{S} f \, dS.$$

Solution. Parametrize S via the usual parametrization for a graph, $\Phi: D \to S$,

$$\Phi(x,y) = (x,y,g(x,y)) = (x,y,1-x^2), \ D = [0,1] \times [0,1].$$

We need $f(\Phi(x,y)) = xy$ and

$$\iint_{S} f \, dS.$$

$$S \text{ via the usual parametrization for a graph, } \Phi: D \to S,$$

$$\Phi(x,y) = (x,y,g(x,y)) = (x,y,1-x^{2}), \ D = [0,1] \times [0,1].$$

$$Ty = \frac{\partial \Phi}{\partial y} = (0,1), \ \mathcal{I}_{y} = \frac{\partial \Phi}{\partial y} = (0,1), \ \mathcal{I}_{$$

Then,

$$\iint_{S} f \, dS = \iint_{D} f(\Phi(x,y)) \|\vec{T}_{x} \times \vec{T}_{y}\| \, dx dy = \int_{0}^{1} \int_{0}^{1} xy \sqrt{1 + 4x^{2}} \, dx dy$$
$$= \int_{0}^{1} y \, dy \int_{0}^{1} x \sqrt{1 + 4x^{2}} \, dx = \frac{1}{2} \int_{0}^{1} x \sqrt{1 + 4x^{2}} \, dx$$
$$= \frac{1}{16} \int_{1}^{5} u^{1/2} \, du = \frac{1}{16} \left(\frac{2}{3} u^{3/2}\right) \Big|_{1}^{5} = \frac{1}{24} (5^{3/2} - 1),$$

where we used the substitution $u = 1 + 4x^2$, du = 8xdx to do the x-integral.

Problem 2 (20 points)

Let S be the closed surface which is the union of two surfaces, $S = S_1 \cup S_2$, where S_1 is the upper half of the unit sphere,

$$S_1 = \{(x, y, z) : x^2 + y^2 + z^2 = 1 \text{ and } z \ge 0\},\$$

and S_2 is the unit disk in the plane z=0.

$$S_2 = \{(x, y, z) : x^2 + y^2 \le 1 \text{ and } z = 0\}.$$

Let S be oriented with the outward normal. Let $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $\vec{F}(x,y,z) = (0,0,z+1)$. Evaluate

$$\iint_{S} \vec{F} \cdot d\vec{S}.$$

Solution. Split the surface integral into the sum of the two pieces,

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S_{\bullet}} \vec{F} \cdot d\vec{S} + \iint_{S_{\bullet}} \vec{F} \cdot d\vec{S}.$$

Since S is oriented with the outward normal, S_1 is oriented with the upward normal (in the positive z direction) and S_2 is oriented with the downward normal (in the negative z direction).

Let's calculate the surface integral for S_1 first. Parametrize S_1 via the usual spherical coordinate surface parametrization,

$$\Phi(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi),$$

where $(\theta, \phi) \in D = [0, 2\pi] \times [0, \pi/2]$ (here, ϕ ranges from 0 to $\pi/2$ since we only want the upper half of the sphere). The normal vector field is

$$\vec{T}_{\phi} \times \vec{T}_{\theta} = (\cos \theta \sin^2 \phi, \sin \theta \sin^2 \phi, \sin \phi \cos \phi)$$

(we take $\vec{T}_{\phi} \times \vec{T}_{\theta}$ and not $\vec{T}_{\theta} \times \vec{T}_{\phi}$ because we want the upward pointing normal; see HW 6 Problem 1).

Solution. Split the surface integral into the sum of the two pieces,

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S_{1}} \vec{F} \cdot d\vec{S} + \iint_{S_{2}} \vec{F} \cdot d\vec{S}.$$

Since S is oriented with the outward normal, S_1 is oriented with the upward normal (in the positive z direction) and S_2 is oriented with the downward normal (in the negative z direction).

Let's calculate the surface integral for S_1 first. Parametrize S_1 via the usual spherical coordinate surface parametrization,

$$\Phi(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi),$$

where $(\theta, \phi) \in D = [0, 2\pi] \times [0, \pi/2]$ (here, ϕ ranges from 0 to $\pi/2$ since we only want the upper half of the sphere). The normal vector field is

$$\vec{T}_{\phi} \times \vec{T}_{\theta} = (\cos \theta \sin^2 \phi, \sin \theta \sin^2 \phi, \sin \phi \cos \phi)$$

(we take $\vec{T}_{\phi} \times \vec{T}_{\theta}$ and not $\vec{T}_{\theta} \times \vec{T}_{\phi}$ because we want the upward pointing normal; see HW 6 Problem 1). The vector field \vec{F} on S_1 is

$$\vec{F}(\Phi(\theta,\phi)) = (0,0,\cos\phi + 1).$$

Hence,

$$\begin{split} \iint_{S_1} \vec{F} \cdot d\vec{S} &= \iint_D \vec{F}(\Phi(\theta,\phi)) \cdot (\vec{T}_\phi \times \vec{T}_\theta) \, d\theta d\phi \\ &= \int_0^{\pi/2} \int_0^{2\pi} (\cos \phi + 1) \sin \phi \cos \phi \, d\theta d\phi \\ &= 2\pi \int_0^{\pi/2} (\sin \phi \cos^2 \phi + \sin \phi \cos \phi) d\phi \\ &= 2\pi \Big(\frac{-\cos^3 \phi}{3} - \frac{\cos^2 \phi}{2} \Big) \Big|_0^{\pi/2} = \frac{5}{3}\pi. \end{split}$$

Now, let's calculate the surface integral for S_2 . You could parametrize it directly, but I will use the geometric formula for the surface integral. Observe that S_2 is contained in the plane z=0, so its normal vector is just $\hat{n}=-\hat{k}=(0,0,-1)$ (pointing downward because S is oriented with the outward normal). Then along the surface, $\vec{F} \cdot \hat{n} = -(z+1) = -1$, where we used that z=0 on S_2 . Using the geometric formula for surface integrals,

$$\iint_{S_2} \vec{F} \cdot d\vec{S} = \iint_{S_2} \vec{F} \cdot \hat{n} \, dS = \iint_{S_2} (-1) dS = -\operatorname{Area}(S_2) = -\pi.$$

Adding these two results together.

$$\iint_S \vec{F} \cdot d\vec{S} = \iint_{S_1} \vec{F} \cdot d\vec{S} + \iint_{S_2} \vec{F} \cdot d\vec{S} = \frac{5}{3}\pi - \pi = \frac{2}{3}\pi.$$

In the coming lectures, we will see a much easier way to do this problem using the divergence theorem. \Box

Problem 3 (20 points)

Let S be the part of the plane z = 2 - x - y over $x^2 + y^2 \le 1$, equipped with the upward pointing normal (i.e., in the positive z direction). Let $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $\vec{F}(x,y,z) = (x,2x,-3x)$. Evaluate

$$\iint_{S} \vec{F} \cdot d\vec{S}.$$

Hint: You can evaluate this directly by parametrizing S as the graph of a function of (x, y), but it is easier to use the geometric formula for the surface integral: what is the unit normal vector field to S and what is its dot product with \vec{F} ?

Solution. S is contained in the plane z=2-x-y, which can be written as $\underline{x+y+z}=2$. From the equation for a plane $\vec{n} \cdot (x,y,z)=c$, this means that a normal vector to S is (1,1,1); so the unit normal vector field along S is $\hat{n}=(1,1,1)/\sqrt{3}$ (the $1/\sqrt{3}$ factor is just so \hat{n} has unit length). Observe that

$$\vec{F} \cdot \hat{n} = (x, 2x, -3x) \cdot \frac{(1, 1, 1)}{\sqrt{3}} = \frac{(x + 2x - 3x)}{\sqrt{3}} = 0.$$

Hence, using the geometric formula for the surface integral,

$$\iint_S \vec{F} \cdot d\vec{S} = \iint_S \vec{F} \cdot \hat{n} dS = \iint_S 0 \, dS = 0.$$

Solution. S is contained in the plane z=2-x-y, which can be written as $\underline{x+y+z}=2$. From the equation for a plane $\vec{n} \cdot (x,y,z)=c$, this means that a normal vector to S is (1,1,1); so the unit normal vector field along S is $\hat{n}=(1,1,1)/\sqrt{3}$ (the $1/\sqrt{3}$ factor is just so \hat{n} has unit length). Observe that

$$\vec{F} \cdot \hat{n} = (x, 2x, -3x) \cdot \frac{(1, 1, 1)}{\sqrt{3}} = \frac{(x + 2x - 3x)}{\sqrt{3}} = 0.$$

Hence, using the geometric formula for the surface integral,

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \hat{n} dS = \iint_{S} 0 \, dS = 0.$$

Problem 4 (20 points)

Let C be the following closed curve in the xy plane: C connects the point (2,0) to the point (-2,0) along the upper half of the circle $x^2 + y^2 = 4$, and then travels from (-2,0) back to (2,0) along the x-axis. This is shown in the figure below.

Let $P(x,y) = y + e^{x^2}$, $Q(x,y) = \sin(y^2) - x$. Evaluate the line integral

$$\int_C Pdx + Qdy.$$

Hint: Use Green's theorem.

Solution. Let D be the region contained inside the closed curve C (i.e., $\partial D = C$). Since C is oriented counterclockwise, Green's theorem gives

$$\int_C Pdx + Qdy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy = \iint_D (-1 - 1) dxdy = -2 \iint_D dxdy = -2 \operatorname{Area}(D) = -4\pi,$$

where we used that the area of a half-disk of radius R is $\pi R^2/2$; here, the radius R=2 so the area is $\text{Area}(D)=\pi(2)^2/2=2\pi$.

Problem 5 (Extra Credit: 10 points)

Let S be an oriented (regular) surface with unit normal vector field \hat{n} . Let \vec{F} be a (continuous) vector field defined over S. Prove the following two statements:

(a) If \vec{F} is orthogonal to \hat{n} along S, then

$$\iint_{S} \vec{F} \cdot d\vec{S} = 0.$$

Solution. \vec{F} is orthogonal to \hat{n} along S; i.e., $\vec{F} \cdot \hat{n} = 0$ at all points on S. Hence, by the geometric formula for surface integrals,

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \underbrace{\vec{F} \cdot \hat{n}}_{S} dS = \iint_{S} 0 \, dS = 0.$$

An example of where this theorem applies is Problem 3 above.

(b) If \vec{F} is parallel to \hat{n} along S (that is, they point in the same direction), then

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} ||\vec{F}|| \, dS.$$

$$\Phi(x,y) = (x,y, 2-x-y)$$

 $(x,y) \in D = \{x^2 + y^2 \le 1\}$

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \|\vec{F}\| \, dS.$$

Solution. \vec{F} is parallel to \hat{n} along S; i.e., the angle θ between them is zero at all points on S. Hence, along S, we have $\vec{F} \cdot \hat{n} = \|\vec{F}\| \|\hat{n}\| \cos \theta = \|\vec{F}\|$

(since the unit normal vector field has magnitude one $\|\hat{n}\| = 1$ and $\cos \theta = \cos(0) = 1$). Then, by the geometric formula for surface integrals,

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \hat{n} \, dS = \iint_{S} ||\vec{F}|| \, dS.$$

Remark. You proved a similar result for line integrals in HW3 Problem 9, where instead of the normal vector field which you need for surface integrals, you consider the velocity vector of the curve \vec{c}' .

Properties of the divergence: (i) Linearity: V. (0F+6G) a, b & R F, G differentiable = a V.F + b V.G dot prod. (ii) Product rule V. (fF) = f V.F + (Vf).F f diff. scalar function F diff. vector freld Proof: HW8 (111) Curls have zero clivergence for any C2 vector field F. $\nabla \cdot (\nabla \times \vec{F}) = 0$ $\nabla \times \vec{F} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \end{bmatrix}$ = (3F3 - 3F7) 3F7 3F7 3F7 3F7 3F7 V. (VxF) = 2 () + 3 () + 3 ($= \frac{\partial^2 F_3}{\partial x^2} - \frac{\partial^2 F_2}{\partial x^2} + \frac{\partial^2 F_1}{\partial x^2} - \frac{\partial^2 F_2}{\partial x^2} + \frac{\partial^2 F_2}{\partial x^2}$

=
$$\frac{\partial^2 F_3}{\partial x \partial y} - \frac{\partial^2 F_2}{\partial x \partial z} + \frac{\partial^2 F_3}{\partial y \partial x} + \frac{\partial^2 F_2}{\partial z \partial x} - \frac{\partial^2 F_3}{\partial z \partial y}$$

= O.

Then

If G is a C' vector field, then

 $G = \nabla x \overrightarrow{F} \iff \nabla \cdot \overrightarrow{G} = O$

Scalar frields frields frields

Points < Come surface volumes

The Divergence Theorem

A closed surface S is a surface whose boundary is empty, $\partial S = \emptyset$

Continuard

Continuard

e.g.

Let $W \subset \mathbb{R}^3$ be some volume (in 3d space).

Then, ∂W is a closed surface, equipped with the outward normal (induced orientation).

B, =
$$\frac{2}{5}(x,y,z)$$
: $x^2+y^2+z^2 \le 1\frac{7}{3}$

S, = $\frac{1}{3}B_1 = \frac{7}{3}(x,y,z)$: $x^2+y^2+z^2=1\frac{7}{3}$

Theorem (Grauss' Divergence Theorem)

Let WC R³ be a 3d-region and let $\frac{1}{3}W$ denote its boundary by the induced orientation (outward normal)

Let F be a C' vector field on W, F: W > R³.

Then, $\frac{1}{3}F \cdot dS = \frac{1}{3}(\frac{1}{3}\sqrt{r}) dV$

Proof sketch: (see textbook)

Start cut elementary region (x & y & \frac{1}{3}

