Differentiability (2.6); Quiz 1

Differentiability requires continuity. A function \(f \) is differentiable at \(x = a \) if
\[
\lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
\]
exists. The value of the derivative at \(x = a \) is equal to the value of the limit, i.e.,
\[
\lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = f'(a),
\]
and is equal to the slope of the tangent line of \(f \) at \(x = a \). A function fails to be differentiable at a point when this limit does not exist.

Example: Let \(y = \frac{x^2}{x} \). DRAW graph. Note \(y \) is discontinuous at \(x = 0 \). Therefore, \(y \) is not differentiable when \(x = 0 \), because \(\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} \) does not exist. WHY?

A function must be continuous at a point if the function has a derivative at that point. *But is continuity enough for a function to be differentiable?*

Continuity does not imply differentiability.

Example: DRAW graph of \(y = |x| \). IS this function continuous and differentiable at \(x = 0 \)? The LH limit of the derivative function is equal to
\[
\lim_{h \to 0^-} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0^-} \frac{|0 + h| - |0|}{h} = \lim_{h \to 0^-} \frac{-h}{h} = -1.
\]
But the RH limit of the derivative function is equal to
\[
\lim_{h \to 0^+} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0^+} \frac{|0 + h| - |0|}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1.
\]
Therefore, the limit of the derivative function at \(x = 0 \), \(f'(0) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} \), does not exist. DRAW graph. Therefore, \(y \) is continuous but not differentiable.

IS the following function continuous and differentiable at \(x = 1 \)?
\[
f = \begin{cases}
 x, & \text{for } x < 1 \\
 x^2, & \text{for } x \geq 1
\end{cases}
\]

DRAW graph. SHOW \(f \) is continuous at \(x = 1 \), i.e., show the LH and RH limits of \(f \) are both equal to 1. But for \(f \) to be differentiable at \(x = 1 \) the *slopes* on the left and the right must be equal at \(x = 1 \). Clearly, the slope of the LH side is equal to 1; but the slope of the RH side is equal to 2 (SHOW using definition of derivative at a point.) Therefore, \(f \) is continuous but not differentiable.

DRAW graph of \(y = x^{1/3} \). The graph appears to have a vertical tangent at the point \((0, 0)\). SHOW the limit does not exist. Therefore, the function does not have a derivative at \(x = 0 \).

WHAT values of \(a \) and \(b \) make the following function continuous and differentiable everywhere? \(g = \begin{cases}
 ax + 2, & \text{for } x < 0 \\
 b(x - 1)^2, & \text{for } x \geq 0
\end{cases} \)

To be continuous, we must have \(a \cdot 0 + 2 = b(0 - 1)^2 \). So \(b = 2 \). To be differentiable, the slopes must be equal when \(x = 0 \). The slope of the LH side is equal to \(a \); the slope of the RH side is equal to -4 (SHOW using definition of derivative at a point.) Therefore, \(a = -4 \), \(b = 2 \).