The Chain Rule and Inverse Functions (3.6)

Review inverse functions and Chain Rule. Recall that for inverse functions

\[f^{-1}(f(x)) = f^{-1}(f(x)) = x. \]

And, the Chain Rule states

\[\frac{d}{dx} \left(g(f(x)) \right) = f'(x) \cdot g'(f(x)). \]

Derivative of \(\sqrt{x} \).

We have already used the Power Rule to find the derivative of \(f(x) = \sqrt{x} \),

\[f'(x) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}}. \]

We can also use the Chain Rule to find its derivative.

Using the Chain Rule, we can write

\[\frac{d}{dx} \left((\sqrt{x})^2 \right) = 2\sqrt{x} \cdot \frac{d}{dx} (\sqrt{x}), \]

where

\[g(x) = x^2 \quad \text{and} \quad f(x) = \sqrt{x}. \]

But \(\frac{d}{dx} \left((\sqrt{x})^2 \right) = \frac{d}{dx} (x) = 1. \) Therefore, \(2\sqrt{x} \cdot \frac{d}{dx} (\sqrt{x}) = 1. \)

Solving for \(\frac{d}{dx} (\sqrt{x}) \), we get \(\frac{d}{dx} (\sqrt{x}) = \frac{1}{2\sqrt{x}}. \)

Derivative of \(\ln x \).

Since \(e^{\ln x} = x \), we must have \(\frac{d}{dx} \left(e^{\ln x} \right) = \frac{d}{dx} (x) = 1. \) Using the Chain Rule,

\[\frac{d}{dx} \left(e^{\ln x} \right) = \frac{d}{dx} (\ln x) \cdot e^{\ln x} = \frac{d}{dx} (\ln x) \cdot x, \]

where \(g(x) = e^x \) and \(f(x) = \ln x \). Therefore,

\[\frac{d}{dx} (\ln x) \cdot x = 1 \quad \text{and} \quad \frac{d}{dx} (\ln x) = \frac{1}{x}. \]

SOLVE 3.6.9. \(j(x) = \ln(e^{ax} + b) \). Using the Chain Rule,

\[\frac{d}{dx} \left(\ln(e^{ax} + b) \right) = \frac{d}{dx} (e^{ax} + b) \cdot \frac{1}{e^{ax} + b} = a e^{ax} \cdot \frac{1}{e^{ax} + b} = \frac{ae^{ax}}{e^{ax} + b}, \]

where \(g(x) = \ln x \) and \(f(x) = e^{ax} + b \).

FIND the tangent line to \(y = \ln(x^2 - 3) \) at \((2,0) \). \(y' = 2x \cdot \frac{1}{x^2 - 3} = \frac{2x}{x^2 - 3} \),

where \(g(x) = \ln x \) and \(f(x) = x^2 - 3 \). So \(y'(2) = \frac{2 \cdot 2}{2^2 - 3} = \frac{4}{4 - 3} = 4 \), and the tangent line at \((2,0) \) is \(y = 4(x - 2) + 0 = 4x - 8 \).

Derivative of \(a^x \).

Since \(\ln(a^x) = x \ln a \), we must have \(\frac{d}{dx} \left(\ln(a^x) \right) = \frac{d}{dx} (x \ln a) = \ln a. \) Using the Chain Rule,

\[\frac{d}{dx} \left(\ln(a^x) \right) = \frac{d}{dx} (a^x) \cdot \frac{1}{a^x}, \]

where \(g(x) = \ln x \) and \(f(x) = a^x \). Therefore,

\[\frac{1}{a^x} \cdot \frac{d}{dx} (a^x) = \ln a \quad \text{and} \quad \frac{d}{dx} (a^x) = (\ln a)(a^x). \]

FIND \(\frac{d}{dx} (2\sin x). \)

\[\frac{d}{dx} (2\sin x) = \cos x \cdot (\ln 2) \cdot 2\sin x, \]

where \(g(x) = 2^x \) and \(f(x) = \sin x. \).
Derivative of \(\sin^{-1} x \).

Since \(\sin(\sin^{-1} x) = x \), we must have \(\frac{d}{dx} \left[\sin(\sin^{-1} x) \right] = \frac{d}{dx} (x) = 1 \). Using the Chain Rule, \(\frac{d}{dx} \left[\sin(\sin^{-1} x) \right] = \frac{d}{dx} (\sin^{-1} x) \cdot \cos(\sin^{-1} x) \), where \(g(x) = \sin x \) and \(f(x) = \sin^{-1} x \). So \(\frac{d}{dx} (\sin^{-1} x) \cdot \cos(\sin^{-1} x) = 1 \) and \(\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\cos(\sin^{-1} x)} \). But what is \(\cos(\sin^{-1} x) \) equal to? Recall that \(\sin^{-1} x \) represents an angle, say \(\theta \), whose sine is equal to the number \(x \). DRAW. Using the Pythagorean Theorem, we can calculate that the remaining side is equal to \(\sqrt{1-x^2} \). Therefore, the \(\cos(\sin^{-1} x) = \cos \theta = \sqrt{1-x^2} \).

Finally, \(\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}} \).

SOLVE 3.6.24. \(\frac{d}{dx} \left[\cos(\sin^{-1} x) \right] = \frac{d}{dx} (\sin^{-1} x) \cdot [\sin(\sin^{-1} x)] = \frac{1}{\sqrt{1-x^2}} \cdot [\sin(\sin^{-1} x)] \), where \(g(x) = \cos x \) and \(f(x) = \sin^{-1} x \). But \(\sin(\sin^{-1} x) = x \), so \(\frac{d}{dx} \left[\cos(\sin^{-1} x) \right] = -\frac{x}{\sqrt{1-x^2}} \).

SOLVE 3.6.54. Given that \(f(x) = x^3 \).

a. Find \(f'(2) \). \(f'(x) = 3x^2 \), \(f'(2) = 3 \cdot 2^2 = 12 \).

b. Find \(f^{-1}(x) \). \(f^{-1}(x) = \sqrt[3]{x} = x^{1/3} \).

c. Use your answer from part (b) to find \((f^{-1})'(8) \). Since \((f^{-1})'(x) = \frac{d}{dx} x^{1/3} = \frac{1}{3} x^{-2/3} \), \((f^{-1})'(8) = \frac{1}{3} (8)^{-2/3} = \frac{1}{3} (8^{1/3})^{-2} = \frac{1}{3} (2)^{-2} = \frac{1}{3} \left(\frac{1}{2} \right)^2 = \frac{1}{3} \left(\frac{1}{4} \right) = \frac{1}{12} \).

d. How could you have used your answer from part (a) to find \((f^{-1})'(8) \)? Since \(f \left(f^{-1}(x) \right) = x \), we can use the Chain Rule to take derivatives of both sides, \((f^{-1})'(x) \cdot f' \left(f^{-1}(x) \right) = 1 \) or \((f^{-1})'(x) = \frac{1}{f' \left(f^{-1}(x) \right)} \). So \((f^{-1})'(8) = \frac{1}{f'(f^{-1}(8))} = \frac{1}{f'(8)} = \frac{1}{f'(2)} = \frac{1}{12} \).