Common Mistakes in Midterm 2

The following are common mistakes seen in the first and last problems of Midterm #2. The wrong things are in red.

1. Finding derivatives

 (a) Misunderstanding notation for trigonometric functions

 Right: \(\sin^2 t = (\sin t)^2 \)
 Wrong: \(\sin^2 t = \sin(t^2) \)
 Wrong: \(\cos(t^2) = (\cos t)^2 \)

 (b) No thing special

 (c) At some point, we need to find derivative of \(\frac{\ln x - x}{e^{2x}} \) using quotient rule where \(f = \ln x - x \) and \(g = e^{2x} \).

 Here is the most common incorrect result:
 \[
 \frac{\frac{1}{x} - 1, e^{2x} - \ln x - x.2, e^{2x}}{(e^{2x})^2}.
 \]

 The right result should be
 \[
 \frac{(\frac{1}{x} - 1), e^{2x} - (\ln x - x).2, e^{2x}}{(e^{2x})^2}.
 \]

 So do not forget to put parentheses around complicated functions when you applying rules.

 (d) At some point, people need to find \(\frac{d}{dy} (xy) \)

 Right: \(\frac{d}{dx} (xy) = y + x \frac{dy}{dx} \), product rule and then chain rule.
 Wrong: \(\frac{d}{dx} (xy) = xy \frac{dy}{dx} \)

4. • In this problem, when finding critical points people need to solve the equation:
 \[e^{-x}(1 - x) = 0. \]

 A lot of people got the solution \(x = 0 \). I guess people had problem dealing with \(e^{-x} = 0 \). One way to go over this is to remember that \(e^a > 0 \), where you can put anything in the \(a \) . The same thing holds if you replace \(e \) by some positive number \(a \), namely \(a^a > 0 \). So \(e^{-x} = 0 \) has no solution.

 • Also to classify the critical point (in this case \(x = 1 \)) using the first derivative test, testing derivative of \(f'(x) \) at 0 and 2 is mathematically not enough (1pts off).