MATH 180A - INTRODUCTION TO PROBABILITY
PRACTICE MIDTERM #2

FALL 2018

Name (Last, First):
Student ID:
TA:

<table>
<thead>
<tr>
<th>SO AS TO NOT DISTURB OTHER STUDENTS, EVERY-ONE MUST STAY UNTIL THE EXAM IS COMPLETE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSWERS TO THE TRUE/FALSE QUESTIONS DO NOT NEED TO BE JUSTIFIED; HOWEVER, INCORRECT ANSWERS TO THE TRUE/FALSE QUESTIONS ARE PENALIZED. IN PARTICULAR, A CORRECT ANSWER IS WORTH 5 POINTS, AN INCORRECT ANSWER IS WORTH -5 POINTS, AND A BLANK ANSWER IS WORTH 0 POINTS.</td>
</tr>
<tr>
<td>REMEMBER THIS EXAM IS GRADED BY A HUMAN BEING. WRITE YOUR SOLUTIONS NEATLY AND COHERENTLY, OR THEY RISK NOT RECEIVING FULL CREDIT.</td>
</tr>
<tr>
<td>THIS EXAM WILL BE SCANNED. MAKE SURE YOU WRITE ALL SOLUTIONS IN THE SPACES PROVIDED.</td>
</tr>
<tr>
<td>THE ACTUAL MIDTERM EXAM CONSISTS OF 5 TRUE/FALSE QUESTIONS AND 3 LONGER FORMAT QUESTIONS. YOUR ANSWERS TO THE LONGER FORMAT QUESTIONS SHOULD BE CAREFULLY JUSTIFIED. YOU ARE ALLOWED TO USE RESULTS FROM THE TEXTBOOK, HOMEWORK, AND LECTURE.</td>
</tr>
</tbody>
</table>
1. (25 points) Label the following statements as true or false. Any ambiguous answer (for example, resembling a hybrid of T and F) will be treated as an incorrect answer.

(a) ________ The median of a continuous random variable is unique.

(b) ________ If $X \sim \text{Exp}(\lambda)$ and $s, t > 0$, then $\mathbb{P}(X < s \mid X < s + t) = \mathbb{P}(X < t)$.

(c) ________ If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E}[X^2] = \sigma^2 + \mu^2$.

(d) ________ If a random variable is not discrete, then it is continuous.

(e) ________ If X is a continuous random variable and F_X is its CDF, then for $s, t \in \mathbb{R}$ such that $s < t$, we have the equality $F_X(t) - F_X(s) = \mathbb{P}(s < X < t)$.

(f) ________ If $X \sim \text{Exp}(\lambda)$ and $Y \sim \text{Exp}(\eta)$ are independent, then $\min(X, Y) \sim \text{Exp}(\lambda + \eta)$.
2. (25 points) You are trying to get to a party, which is 30 minutes away by bus. Suppose that the waiting time for a bus is distributed according to an exponential distribution with a rate of two buses every hour. If you wait longer than 30 minutes for a bus, you decide to give up and take a taxi to the party. The taxi ride to the party only takes 15 minutes. Let Y be the amount of time it takes for you to get to the party, which includes BOTH the wait time and the travel time.

 (a) (15 pts) Calculate the CDF of Y. You may choose to write Y in terms of hours or in terms of minutes.
(b) (10 pts) Calculate the expected value $\mathbb{E}[Y]$. Again, you may choose to write Y in terms of hours or in terms of minutes.
3. Let X and Y be independent continuous random variables with CDFs F_X and F_Y respectively. We also use the notation f_X and f_Y to denote their respective densities.

(a) (10 pts) Compute the density of the random variable $Z = \min(X, Y) = \begin{cases} X & \text{if } X \leq Y \\ Y & \text{if } X > Y \end{cases}$ in terms of the functions F_X, F_Y, f_X, f_Y.
(b) (15 pts) Compute the density of the random variable $Z = X + Y$. Your answer should be in terms of the densities f_X and f_Y of X and Y respectively.
4. Let $P = (X,Y)$ be a uniform random point in the rectangle

$$R = [0, 1] \times [0, 2] = \{(x, y) : 0 \leq x \leq 1, 0 \leq y \leq 2\}.$$

(a) (10 pts) What is the joint density $f_{(X,Y)}(x, y)$ of P? What is the marginal density $f_X(x)$ of X? What is the marginal density $f_Y(y)$ of Y? Are X and Y independent?
(b) (15 pts) Let $Z = X + Y$ be the sum of the coordinates of the random point P. Determine the CDF of Z. Compute the expectation $E[Z]$.
5. Suppose that the joint density of the random variables X, Y is given by the function

$$f_{(X,Y)}(x, y) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-y)^2}{2}} & \text{if } x \in \mathbb{R} \text{ and } y > 0, \\ 0 & \text{otherwise}. \end{cases}$$

Find the marginal density of X. Your answer should be in terms of the CDF Φ of the standard normal distribution.
(ADDITIONAL SPACE FOR WORK, CLEARLY INDICATE THE PROBLEM YOU ARE WORKING ON)
(ADDITIONAL SPACE FOR WORK, CLEARLY INDICATE THE PROBLEM YOU ARE WORKING ON)