MATH 10C - MIDTERM #2

Name (Last, First):

Student ID:

REMEMBER THIS EXAM IS GRADED BY A HUMAN BEING. WRITE YOUR SOLUTIONS NEATLY AND COHERENTLY, OR THEY RISK NOT RECEIVING FULL CREDIT.

THIS EXAM WILL BE SCANNED. MAKE SURE YOU WRITE ALL SOLUTIONS ON THE PAPER PROVIDED. DO NOT REMOVE ANY OF THE PAGES.

THE EXAM CONSISTS OF 4 QUESTIONS. YOUR ANSWERS SHOULD BE CAREFULLY JUSTIFIED.
1. (20 points) Let $f(x, y, z) = xe^y + ye^z + ze^x$.

(a) (10 points) Find the gradient of the function f at the point $(0, 0, 0)$. Find the directional derivative of the function f at the point $(0, 0, 0)$ in the direction $\vec{v} = (1, 2, 3)$.

\[
\nabla f(x, y, z) = \left< x, y, z \right> = \left< e^y + ze^x, xe^y + e^z, ye^z + e^x \right>
\]

\[
\nabla f(0, 0, 0) = \left< 1, 1, 1 \right>
\]

Let $\vec{u} = \frac{\vec{v}}{||\vec{v}||}$

Then we want

\[
D_{\vec{u}} f(0, 0, 0) = \nabla f(0, 0, 0) \cdot \frac{\vec{v}}{||\vec{v}||}
\]

\[
= \left< 1, 1, 1 \right> \cdot \left< \frac{1}{\sqrt{1^2 + 2^2 + 3^2}}, \frac{2}{\sqrt{1^2 + 2^2 + 3^2}}, \frac{5}{\sqrt{1^2 + 2^2 + 3^2}} \right>
\]

\[
= \frac{6}{\sqrt{1^2 + 2^2 + 3^2}}
\]
(b) (10 points) Find the direction of the maximal rate of decrease for the function f at the point $(0, 0, 0)$. What is this value of this decrease?

$$D_{\mathbf{u}} f(0, 0, 0) = \langle 1, 1, 1 \rangle \cdot \mathbf{u} = \| \langle 1, 1, 1 \rangle \| \cdot \| \mathbf{u} \| \cdot \cos(\theta)$$

$$= \| \langle 1, 1, 1 \rangle \| \cdot \cos(\theta)$$

Want this to be as small as possible,

so $\theta = \pi$

The only vector of unit length that makes an angle of π with $\langle 1, 1, 1 \rangle$ is

$$\frac{-\langle 1, 1, 1 \rangle}{\| \langle 1, 1, 1 \rangle \|} = \left\langle \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}} \right\rangle = \mathbf{u}$$

The value of this decrease is

$$\langle 1, 1, 1 \rangle \cdot \mathbf{u} = \langle 1, 1, 1 \rangle \cdot \left(\frac{-\langle 1, 1, 1 \rangle}{\| \langle 1, 1, 1 \rangle \|} \right)$$

$$= -\frac{\| \langle 1, 1, 1 \rangle \|^2}{\| \langle 1, 1, 1 \rangle \|} = -\| \langle 1, 1, 1 \rangle \|$$

$$= -\sqrt{3}$$
2. (10 points) Use the Chain Rule to find the partial derivatives $\frac{\partial R}{\partial u}$ and $\frac{\partial R}{\partial v}$ for

$$R = xe^{yz^3},$$

where $x = 2uv$, $y = u - v$, and $z = u + v$.

$$\frac{\partial x}{\partial u} = 2v \quad \frac{\partial x}{\partial u} = 1 \quad \frac{\partial x}{\partial u} = 1$$
$$\frac{\partial x}{\partial v} = 2u \quad \frac{\partial x}{\partial u} = -1 \quad \frac{\partial x}{\partial v} = 1$$

$$\frac{\partial R}{\partial x} = e^{yz^3} \quad \frac{\partial R}{\partial y} = xe^{yz^3} \quad \frac{\partial R}{\partial z} = xe^{yz^3}(3yz^2)$$

$$\frac{\partial R}{\partial u} = \frac{\partial R}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial R}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial R}{\partial z} \frac{\partial z}{\partial u}$$
$$= (e^{yz^3})(2v) + (xe^{yz^3}(2yz^3))(1) + (xe^{yz^3}(3yz^2))(1)$$

$$\frac{\partial R}{\partial v} = \frac{\partial R}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial R}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial R}{\partial z} \frac{\partial z}{\partial v}$$
$$= (e^{yz^3})(2u) + (xe^{yz^3}(2yz^3))(-1) + (xe^{yz^3}(3yz^2))(1)$$
3. (10 points) Find the tangent plane to the function \(f(x, y) = \sqrt{x + e^{4y}} \) at the point (3, 0).

\[
\begin{align*}
 f'(3, 0) &= \sqrt{3 + 1} = 2 \\
 f_x(x, y) &= \frac{1}{2} (x + e^{4y})^{-1/2} \\
 f_y(x, y) &= \frac{1}{2} (x + e^{4y})^{-1/2} (e^{4y})(4) \\
 f_x(3, 0) &= \frac{1}{2} (3 + 1)^{-1/2} = \frac{1}{4} \\
 f_y(3, 0) &= \frac{1}{2} (3 + 1)^{-1/2} (1)(4) = 1 \\
\end{align*}
\]

Plane: \[z - 2 = \frac{1}{4} (x - 3) + 1(y - 0) \]
4. (10 points) Suppose that \(\mathbf{r}(t) = \langle t, e^t, te^t \rangle \). What is the domain of this function? Find the unit tangent vector to this curve at time \(t = 0 \).

The domain of all three coordinate functions \(t, e^t, te^t \) is \(\mathbb{R} \), so the domain of \(\mathbf{r}(t) \) is also \(\mathbb{R} \).

\[
\mathbf{r}'(t) = \langle 1, e^t, te^t + e^t \rangle
\]

\[
\mathbf{r}'(0) = \langle 1, 1, 1 \rangle
\]

The unit vector is

\[
\text{unit vector is } \frac{\mathbf{r}'(0)}{|| \mathbf{r}'(0) ||} = \frac{\langle 1, 1, 1 \rangle}{\sqrt{3}}
\]

\[
= \langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \rangle
\]
(ADDITIONAL SPACE FOR WORK, CLEARLY INDICATE THE PROBLEM YOU ARE WORKING ON)
(ADDITIONAL SPACE FOR WORK, CLEARLY INDICATE THE PROBLEM YOU ARE WORKING ON)