Dot product

Last time: vectors
This time: relationship between vectors
For example, suppose we have two vectors \vec{v} and \vec{w}. We know that \vec{v} and \vec{v} point in the same direction if $c>0$. How do we quantify the extent to which \vec{v} and \vec{w} point in the same direction? Perpendicular?

Motivation: consider tossing an object and measuring the distance it has traveled in a particular
 direction

Classic example: the work W done by a constant force F in moving an object through a distance d is $W=F d$
Caveat: formula only applies when the force is directed along the line of motion

$$
W=|\vec{D}||\vec{F}| \cos (\theta)
$$

The dot product of two vectors \vec{a} and \vec{b} is $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos (\theta)$, where $\theta \in[0, \pi]$ is the angle between them

Example: A wagon is pulled a distance of 50 m along a horizontal path by a constant force of 70 N .
The handle of the wagon is held at angle $\frac{\pi}{3}$ Find the work done by the force.

$$
\begin{aligned}
W & =50 \mathrm{~m} \cdot 70 \mathrm{~N} \cdot \cos \left(\frac{\pi}{3}\right) \\
& =1750 \mathrm{~N} \cdot \mathrm{~m}=1750 \mathrm{~J}
\end{aligned}
$$

Two vectors \vec{a}, \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b}=0 \quad(\vec{a} \perp \vec{b})$

Note: $\quad \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos (\theta)$
assume $\vec{a}, \vec{b} \neq \overrightarrow{0}$
then $|\vec{a}|,|\vec{b}|>0$
so, $\vec{a} \cdot \vec{b}=0$ forces $\cos (\theta)=0$.
which means $\theta=\frac{\pi}{2}$

In general, if $\vec{a}, \vec{b} \neq \overrightarrow{0} \quad \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos (\theta)$ $\vec{a} \cdot \vec{b}>0$ means $\quad \theta \in\left[0, \frac{\pi}{2}\right)$

acute angle
$\vec{a} \cdot \vec{b}<0 \quad$ means $\theta \in\left(\frac{\pi}{2}, \pi\right]$

obtuse angle

Extreme cases:
if $\theta=0, \quad \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|$
what does $\theta=0$ mean?

if $\theta=\pi, \quad \vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|$
what does $\theta=\pi$ mean?

Components
Computing dot products w/ components:

$$
\text { if } \begin{aligned}
\vec{a} & =\left\langle a_{1}, a_{2}, a_{3}\right\rangle \\
\vec{b} & =\left\langle b_{1}, b_{2}, b_{3}\right\rangle
\end{aligned}
$$

$$
\frac{\text { Law of cosines }}{|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos (\theta)}
$$

$$
\vec{a} \cdot \vec{b}=\frac{1}{2}\left(|\vec{a}|^{2}+|\vec{b}|^{2}-|\vec{a}-\vec{b}|^{2}\right)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

If $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$
then $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos (\theta)
$$

Example: What is the angle $\theta \in[0, \pi]$ between $\langle 1,1,0\rangle$ and $\langle 0,1,-1\rangle$?

Ans:

$$
\begin{aligned}
& \therefore \quad|\langle 1,1,0\rangle|=\sqrt{2} \quad\langle 1,1,0\rangle \cdot\langle 0,1,-1\rangle=1 \\
& |\langle 0,1,-1\rangle|=\sqrt{2} \\
& \mid=\langle 1,1,0\rangle \cdot\langle 0,1,-1\rangle=\sqrt{2} \cdot \sqrt{2} \cdot \cos (\theta) \\
& \quad \cos (\theta)=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}
\end{aligned}
$$

Example: A force $\vec{F}=\langle 4,3,2\rangle$ moves a particle from $P=(1,1,1)$ to $Q=(5,2,3)$. Find the work done by the force. (assume distance io in $\begin{aligned} & \text { meters, fores in } \mathrm{N} \text {) }\end{aligned}$ meters, fore in N
Ans: displacement $\vec{D}=\overrightarrow{P Q}=\langle 4,1,2\rangle$

$$
\vec{F} \cdot \vec{D}=4 \cdot 4+3 \cdot 1+2 \cdot 2=23 \mathrm{~J}
$$

Example: find a unit vector that is orthogonal to both $\hat{\imath}+\hat{\jmath}$ and $\hat{\jmath}+\hat{k}$

Ans: if $\underset{\substack{a \\\langle 1,1,0\rangle}}{=}\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ is sit.

$$
\vec{a} \perp\left(\begin{array}{c}
\langle\hat{i}+1,0\rangle \\
\langle 0,1,1\rangle
\end{array} \text {, then } a_{1}+a_{2}=0\right.
$$

$$
\vec{a} \perp\left(\hat{j}+\hat{h_{1}}\right) \text {, then } a_{2}+a_{3}=0
$$

so, $a_{1}=-a_{2}=a_{3}$
$\begin{array}{ll}\text { so, } a_{1}=-a_{2}=a_{3} \\ \text { need } \quad|\vec{a}|=1, & \text { so } \\ a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=3 a_{1}^{2}=1 \quad a_{1} \approx \pm \frac{1}{\sqrt{3}}\end{array}$ can choose $\hat{a}=\left\langle\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle$
if $\vec{a}, \vec{b}, \vec{e}$ are three-dimensional vectors and $k \in \mathbb{R}$, then

1. $\vec{a} \cdot \vec{a}=|a|^{2}$
2. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
3. $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
4. $\overrightarrow{0} \cdot \vec{a}$
5. $(k \vec{a}) \cdot \vec{b}=k(\vec{a} \cdot \vec{b})=\vec{a}$.
($k \vec{\zeta}$)

$$
=\langle 0,0,0\rangle \cdot\left\langle a_{1}, a_{2}\right\rangle
$$

$=0.03$
$=0+070=0$
5. $\overrightarrow{0} \cdot \vec{a}=0$

$$
\text { s. }(\vec{a} \cdot \vec{b}) \cdot \vec{c}=\vec{a} \cdot(\vec{b} \cdot \vec{c})
$$

Try proving these by writing out the definitions

Note: dot product makes sense in \mathbb{R}^{2}

$$
\begin{aligned}
& \vec{a}=\left\langle a_{1}, a_{2}\right\rangle \\
& \vec{b}=\left\langle b_{1}, b_{2}\right\rangle \\
& \vec{a} \cdot \vec{b}
\end{aligned}=|\vec{a} \| \vec{b}| \cos (\theta) \quad \begin{aligned}
& =a_{1} b_{1}+a_{2} b_{2}
\end{aligned}
$$

why? think of the $x y$-plane in \mathbb{R}^{3}

Show that if $\vec{u}+\vec{v} \perp \vec{u}-\vec{v}$ then $|\vec{u}|=|\vec{v}|$.
Ans: $(\vec{u}+\vec{v}) \cdot(\vec{u}-\vec{v})=0$ know this by assumption

$$
\begin{aligned}
L H S & =\vec{u} \cdot(\vec{u}-\vec{v})+\vec{v} \cdot(\vec{u}-\vec{v}) \\
& =\vec{u} \cdot \vec{u}-\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{u}-\vec{v} \cdot \vec{v} \\
& =|\vec{u}|^{2}-\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{v}-|\vec{v}|^{2} \\
& =|\vec{u}|^{2}-|\vec{v}|^{2}=0 \Rightarrow|\vec{u}|^{2}=|\vec{v}|^{2} \\
& \Rightarrow|\vec{u}|=|\vec{v}|
\end{aligned}
$$

Suppose that we are given \vec{u}, \vec{v}.
If $\vec{u} \cdot \vec{w}=\vec{v} \cdot \vec{w}$ for any \vec{w}, then $\quad \vec{u}=\vec{v}$

$$
\begin{aligned}
& \vec{u} \cdot \vec{w}=\vec{v} \cdot \vec{w} \Rightarrow \vec{u} \cdot \vec{w}-\vec{v} \cdot \vec{w}=0 \\
& \Rightarrow \text { let }{ }^{(\vec{u}-\vec{\omega})} \cdot \vec{\omega}=0
\end{aligned}
$$

Moral: think of this as testing in a certain direction if we test in every direction and get the came result, we must have the same thing to begin with $(\vec{u}-\vec{v}) \cdot(\vec{u} \cdot \vec{v})=0$

$$
|\vec{A}-\vec{a}|^{2}=0
$$

Note: testing in one direction is not $u-\hat{v}=0$ enough (e.g., $\hat{\imath} \cdot \hat{k}=\hat{\jmath} \cdot \hat{k}$ but $\hat{i} \neq \hat{\jmath}$)

Suppose the vectors $\vec{u}, \vec{v}, \vec{w}$ are unit vectors that can be arranged into an equilateral triangle

what is

$$
\begin{aligned}
& \vec{u} \cdot \vec{w}=|\vec{u}||\vec{w}| \cos (\theta)=(1)(1) \cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \\
& \vec{v} \cdot \vec{w}=(1)(1) \cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \\
& \vec{u} \cdot \vec{v}=(1)(1) \cos \left(\frac{2 \pi}{3}\right)=\frac{-1}{2}
\end{aligned}
$$

Use vectors to decide whether or not the triangle with vertices $(1,-3,-2)$, $(2,0,-4)$, and $(6,-2,-5)$ is a right triangle

Ans:

$$
p=(1,-3,2)
$$

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle 1,3,-2\rangle \\
& \overrightarrow{Q R}=\langle 4,-2,-1\rangle \\
& \overrightarrow{P R}=\langle 5,1,-3\rangle \\
& \overrightarrow{P Q} \cdot \overrightarrow{Q R}=4-6+2=0
\end{aligned}
$$

For which values of b are the vectors $\langle-6, b, 2\rangle$ and $\left\langle b, b^{2}, b\right\rangle$ orthogonal)?

Ans:

$$
\begin{aligned}
\langle-6, b, 2\rangle \cdot\left\langle b, b^{2}, b\right\rangle & =-6 b+b^{3}+2 b \\
& =b^{3}-4 b \\
& =b\left(b^{2}-4\right) \\
b\left(b^{2}-4\right)=0 \Leftrightarrow b & =0, \pm 2
\end{aligned}
$$

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos (\theta) \\
|\vec{b}| \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=\frac{\vec{a}}{|\vec{a}|} \cdot \vec{b}
\end{gathered}
$$

this is whet we wont
the scalar projection of \vec{b} onto \vec{a} is comp $(\vec{a})=\frac{\vec{a}}{|\vec{a}|} \cdot \vec{b}$
informally, how far does \vec{b} travel in the direction of \vec{a} (note: can be negative)

$$
\operatorname{comp}_{\vec{a}}(\vec{b})=\frac{\vec{a}}{|\vec{a}|} \cdot \vec{b}
$$

informally, how far does \vec{b} travel in the direction $f \vec{a}$
Recall, $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
In general, $\operatorname{comp}_{\vec{a}}(\vec{b}) \neq \operatorname{comp}_{\vec{b}}(\vec{a})$
Example:

$$
\vec{\alpha} \prod_{\vec{b}}^{\vec{a}}
$$

$\operatorname{comp}_{\vec{a}}(\vec{b})$ is a scalar quantity, not
a vector
the vector projection is

$$
\begin{aligned}
& \operatorname{proj}_{\vec{a}}(\vec{b})=\operatorname{comp}_{\vec{a}}(\vec{b}) \frac{\vec{a}}{|\vec{a}|} \quad \text { snot } q \\
&=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \frac{\vec{a}}{|\vec{a}|}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a} \\
& \text { scar vector }
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \vec{a}=\langle 0,1,2\rangle \\
& \vec{b}=\langle 3,5,-7\rangle \\
& \text { scal } \vec{a}(\vec{b})=\frac{\vec{a}}{|\vec{a}|} \cdot \vec{b}=\frac{5-14}{\sqrt{1+4}}=\frac{-9}{\sqrt{5}} \\
& \operatorname{proj}_{\vec{a}}(\vec{b})=\text { scala }_{\vec{a}}(\vec{b}) \frac{\vec{a}}{|\vec{a}|}=\frac{-9}{5}\langle 0,1,2\rangle
\end{aligned}
$$

at home: try $\operatorname{scal}_{\vec{b}}(\vec{a})=$?

$$
\operatorname{proj}_{\vec{b}}(\vec{a})=?
$$

