Tangent planes and linear approximations

Before: tangent line zoom in here and we see

Moral: we can approximate a function by a linear function

Today: tangent plane

Moral: we can approximate a function by a linear function (note: we assume our function has continuous partial derivatives)

Tangent line

$$
y-y_{0}=f_{x}\left(x_{0}\right)\left(x-x_{0}\right)
$$

$\left\langle 1,0,\left(x\left(x_{0}, y_{0}\right)\right\rangle \times\left\langle 0,1,\left(y\left(x_{0}, y_{0}\right)\right\rangle\right.\right.$

$$
=\left\langle-\left\{_{x}\left(x_{0}, y_{0}\right),-f_{y}\left(x_{0}, y_{0}\right), 1\right\rangle\right.
$$

$$
-f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)-f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\left(z-z_{0}\right)=0
$$

$$
\Rightarrow \quad z-z_{0}=l x\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\left(y\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)\right.
$$

Example: find the tangent plane to $z=3 x^{2}+2 y^{2}$ at $(1,1)$

Ans:

Example: find the tangent plane to $z=3 x^{2}+2 y^{2}$ at $(1,1)$

Ans: $\quad x_{0}=1, y_{0}=1, z_{0}=5$

$$
\begin{array}{ll}
f x(x, y)=6 x, & (y(x, y)=4 y \\
f_{x}(1,1)=6, & (y(1,1)=4 \\
z-5=6(x-1)+4(y-1)
\end{array}
$$

Linear approximations

$$
f(x) \approx f\left(x_{0}\right)\left(x-x_{0}\right)+y_{0}
$$

for x near x_{0} approximation

Example: approximate the function $z=3 x^{2}+2 y^{2}$ at $(.9,1.1)$

Ans:

Example: approximate the function $z=3 x^{2}+2 y^{2}$ at $(.9,1.1)$
Ans: tangent plane at $(1,1)$ is

$$
z-5=6(x-1)+4(y-1) \Rightarrow z=6(x-1)+4(y-1)+5
$$

our function $3 x^{2}+2 y^{2} \approx 6(x-1)+4(y-1)+5$ $\begin{array}{lc}\text { near }(1,1) & \text { actually } 4.85 \\ \text { so } & 3(.9)^{2}+2(1.1)^{2} \approx 6(-.1)+4(.1)+5=4.8\end{array}$

Differentials
let $y=f(x)$
suppose x changes from a to $a+\Delta x$
the $\quad \Delta y=f(a+\Delta x)-f(a)$
is the corresponding change in y tangent line $y-f(a)=f_{x}(a)(x-a)$

$$
\text { says } \Delta y \approx f_{x}(a) \Delta x
$$

let $y=f(x)$
suppose x changes from a to $a+\Delta x$
the $\Delta y=(C a+\Delta x)-f(a)$
is the corresponding change in y
tangent line $y-(a)=\{x(a)(x-a)$
says $\Delta y \approx(x(a) \Delta x$
let $z=f(x, y)$ suppose x changes from a to $a+\Delta x$ and y changes
from b to $b+\Delta y$
tangent plane $z-(a, b)=\int x(a, b)(x-a)+f_{y}(a, b)(y-b)$

$$
\text { says } \quad \Delta z \approx\left(x(a, b) \Delta x+f_{y}(a, b) \Delta y\right.
$$

for $\quad z=((x, y)$

$$
\Delta z \approx(x(a, b) \Delta x+(y(a, b) \Delta y
$$

we define the differentials $d x$ and $d y$ the differential $d z$ is called the total diffential and is defined by

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

$$
\begin{gathered}
z=((x, y) \\
\Delta z \approx f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y \\
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y \\
\Delta z \approx d z
\end{gathered}
$$

Example: if $z=\left((x, y)=e^{x}+2 x y^{2}\right.$, find the differential $d z$ if x changes from 0 to .01 and y changes from 1 to .99 compare Δz and $d z$
Ans:

Example: if $z=\left((x, y)=e^{x}+2 x y^{2}\right.$,
find the differential $d z$
if x changes from 0 to .01 and y changes from 1 to .99 compare Δz and $d z$

$$
\begin{aligned}
& \text { Ans: } d z=\left(x(x, y) d x+f_{y}(x, y) d y=\left(e^{x}+2 y^{2}\right) d x+(4 x y) d y\right. \\
& \Delta z=(.01, .99)-\left((0,1)=e^{.01}+2(.01)(.99)^{2}-1 z .0297\right. \\
& d z={ }^{(1+2) .01+(4.0 .1))(.01)=.03} \\
& (x, y)=(0,1)
\end{aligned}
$$

Example: the base radius and height of a cylinder are measured as 5 cm and 10 cm respectively, with a possible error of as much as .1 cm in each dimension use differentials to estimate the maximum error in the calculated volume of the cylinder Ans:

Example: the base radius and height of a cylinder are measured as 5 cm and 10 cm respectively, with a possible error of as much as .1 cm in each
use differentials to estimate the maximum error in the calculated volume of the cylinder
Ans: $z=\left((x, y)=\pi x^{2} y, \quad d z=2 \pi x y d x+\pi x^{2} d y\right.$ $d z=100 \pi(.1)+25 \pi(.1)=12.5 \pi$

Functions of more than two variables single variable $y=f(x) \quad d y=\int x d x$ two variables $z=f(x, y) \quad d z=\left\{x d x+\int y d y\right.$ multivariable $w=f(x, y, z) \quad d w=f x d x+C y d y+\int z d z$ (or $y=\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \quad\left(d y=\left(x_{1} d x_{1}+\left(x_{2} d x_{2}+\cdots+\left(x_{n} d x_{n}\right)\right.\right.\right.$ still a linear approximation to Δy

Example: the dimensions of a rectangular box are measured to be $10 \mathrm{~cm}, 20 \mathrm{~cm}$, and 50 cm with a margin of error of 1 cm in each dimension
use differentials to estimate the largest possible error when the volume of the box is calculated Ans:

Example: the dimensions of a rectangular box are measured to be $10 \mathrm{~cm}, 20 \mathrm{~cm}$, and 50 cm with a margin of error of 1 cm in each dimension
use differentials to estimate the largest possible error when the volume of the box is calculated
Ans: $V=l w h \quad d V=w h d l+l h d w+l w d h$

$$
d V=1000 d l+500 d w+200 d h=100+50+20=170
$$

