Vector functions and space curves

Midterm 1 on Monday, Oct 26
See course website for more details
You will need to know how to use Gradescope!

Complete the practice assignment on the course website (under Announcements) beforehand!.

Functions that you've seen before:
$(: \mathbb{R} \rightarrow \mathbb{R}$ ("scalar-valued function")
$g: A \rightarrow B$, where $A, B \subseteq \mathbb{R}$
For example, $g(x)=\sqrt{x}$ or $g(x)=\log (x)$
Today:

$$
\vec{r}(t)=\langle\{(t), g(t), h(t)\rangle=f(t) \hat{\imath}+g(t) \hat{\jmath}+h(t) \hat{k}
$$

(vecto r-valued function)
$l \cdot g$, and h are called the component functions of \vec{r} these are the kind of functions you're used to

Finding the domain of a vector-valued function just need to make sure EVERY component function con be evaluated (intersection of the domains of the component function) component functions)
Example: $\vec{r}(t)=\left\langle\sqrt{t-2}, \frac{1}{t-4}, \log (5-t)\right\rangle$

$$
\begin{equation*}
f(t) \quad g(t) \tag{t}
\end{equation*}
$$

(t) can only be evaluated for
$g(t)$ can only be evaluated for
$h(t)$ can only be evaluated for
Domain of $\vec{r}(t)$ is

Finding the domain of a vector-valued function just need to make sure EVERY component function con be evaluated (intersection of the domains of the component functions)
Example: $\vec{r}(t)=\left\langle\sqrt{t-2}, \frac{1}{t-4}, \log (5-t)\right\rangle$

$$
\begin{equation*}
f(t) \quad g(t) \tag{t}
\end{equation*}
$$

(t) can only be evaluated for $t \in[2, \infty)$
$g(t)$ can only be evaluated for $t \in \mathbb{R} \backslash\{4\}$
$h(t)$ can only be evaluated for $t \in(-\infty, 5)$
Domain of $\vec{r}(t)$ is $[2,4) \cup(4,5)$

Taking the limit of a vector-valued function just need to take the limits of the components
If $\vec{r}(t)=\langle l(t) \cdot g(t), h(t)\rangle$, then

$$
\lim _{t \rightarrow a} \vec{r}(t)=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} \mid(t)\right\rangle
$$

assuming the limits of the component functions exist

Example: let $\vec{r}(t)=\left\langle t \cos (t), \frac{\sin (t)}{t},(t+1)^{2}\right\rangle$ find $\lim _{t \rightarrow 0} \vec{r}(t)$

Ans:

Example: let $\vec{r}(t)=\left\langle t \cos (t), \frac{\sin (t)}{t},(t+1)^{2}\right\rangle$ find $\lim _{t \rightarrow 0} \vec{r}(t)$
Ans: $\lim _{t \rightarrow 0} t \cos (t)=0 \cdot \cos (0)=0.1=0$

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{\sin (t)}{t}=1 \text { by L'Hôpital's rule } \\
& \lim _{t \rightarrow 0}(t+1)^{2}=(0+1)^{2}=1
\end{aligned}
$$

so $\lim _{t \rightarrow 0} \vec{r}(t)=\langle 0,1,1\rangle$

Continuity of a vector-valued function
$\vec{r}(t)$ is continuous at $t=a$ if $\lim _{t \rightarrow a} \vec{r}(t)=\vec{r}(a) \quad$ "goes to where it's heading"

Continuity of a vector-valued function
$\vec{r}(t)$ is continuous at $t=a$ if $\lim _{t \rightarrow a} \vec{r}(t)=\vec{r}(a) \quad$ "goes to where it's heading"

Continuity of a vector-valued function
$\vec{r}(t)$ is continuous at $t=a$ if $\lim _{t \rightarrow a} \vec{r}(t)=\vec{r}(a) \quad$ "goes to where it's heading"

Since $\lim _{t \rightarrow a} \vec{r}(t)=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle$,
$\vec{r}(t)$ is continuous at $t=a \Leftrightarrow$ its component functions are continuous at $t=a$
"the whole thing goes to where it's heading if and only if each piece does"

Space curves
Suppose that $\vec{r}: I \rightarrow \mathbb{R}^{3}$ is a vector-valued function with I an interval (e.g., $[0,2],(0,1),(3, \infty)$)

The range of this function (the set of all points (x, y, z) in space where $x=f(t), y=g(t)$, and $z=h(t)$ as t varies through I) is called a space curve C The component functions are called the parametric equations of C and t is called a parameter

We think of $\vec{r}(t)$ as giving the position of an object at time t (say an airplane) and the space curve as the path taken by the object

Example: describe the curve defined by

$$
\vec{r}(t)=\langle 2 t,-1+3 t, 4+\pi t\rangle
$$

Example: describe the curve defined by

$$
\vec{r}(t)=\langle 2 t,-1+3 t, 4+\pi t\rangle
$$

Ans: $\quad x=2 t$
$y=-1+3 t$

$$
z=4+\pi t
$$

\Rightarrow line through the point

$$
(0,-1,4)
$$

with parallel vector

$$
\langle 2,3, \pi\rangle
$$

Example: sketch the curve whose vector eqn is

$$
\vec{r}(t)=\langle\cos (t), \sin (t), t\rangle
$$

Example: sketch the curve whose vector eqn is

$$
\vec{r}(t)=\langle\cos (t), \sin (t), t\rangle
$$

Ans: $\langle\cos (t), \sin (t)\rangle \rightarrow$ circle

$$
\langle\cos (t), \sin (t), t\rangle \rightarrow \text { helix }
$$

Example: find a vector eqn that represents the curve of intersection of the cylinder $x^{2}+z^{2}=1$ and the plane $y+z=0$

Example: find a vector eqn that represents the curve of intersection of the cylinder $x^{2}+z^{2}=1$ and the plane $y+z=0$
Ans:

Example: find a vector eqn that represents the curve of intersection of the cylinder $x^{2}+z^{2}=1$ and the plane
Ans:
 $y+z=0$

$$
\begin{aligned}
& x=\cos (t) \\
& z=\sin (t) \\
& y=-\sin (t)
\end{aligned}
$$

$$
0 \leq t \leq 2 \pi
$$

