MATH 180A: Introduction to Probability

Lecture B00 (Nemish)
www.math.ucsd.edu/~ynemish/teaching/180a

Lecture C00 (Au)
www.math.ucsd.edu/~bau/f20.180a

Today: Confidence Intervals. Poisson Approximation

Next: ASV 4.5
Video: Prof. Todd Kemp, Fall 2019

Week 6:

- Homework 5 (due Friday, November 13, 11:59 PM)

Example
Flip a fair coin n times. How does S.01\%

Suppose after 10,000 flips, there are 5,001 Heads. $\}$ 1- $\Phi(9,02)$ Should we doubt that the coin is really fair?
Sm 21000 $\geqslant(4, \% \%)$
$(\mathbb{0}(0.2)\{$ What if, after $1,000,000$ flips, there are 500,100 Heads. Now how confident should we be that the coin is really fair?

$$
\begin{aligned}
& S_{n}=\text { \# Heads } \sim \operatorname{Bin}\left(n, \frac{1}{2}\right) \\
& \begin{aligned}
\mathbb{P}\left(\frac{S_{n}}{n} \geq \frac{1}{2}+\varepsilon\right)= & \mathbb{P}\left(\frac{S_{n}-\frac{1}{2} n}{\lambda^{n}} \geq \varepsilon\right)=\mathbb{P}\left(\frac{S_{n}-\frac{1}{2}}{\sqrt{m / 2}} \geqslant 2 \varepsilon \sqrt{n}\right) \\
& \approx \mathbb{P}(X \geq 2 \sqrt{n} \varepsilon) \\
& =1-\mathbb{P}(x<2 \varepsilon \sqrt{n}) \\
& =1-\Phi(2 \varepsilon \sqrt{m})
\end{aligned}
\end{aligned}
$$

Confidence
Suppose we have a cain that is biased by some unknown amount;

$$
X \sim \operatorname{Ber}(p) \sim \text { unknown } p!
$$

Hew can we figure out what p is?
Use the law of large numbers: $p=\lim _{n \rightarrow \infty} \frac{S_{n}}{w}$
We cant actually wait around for $n \rightarrow \infty$. Instead, we estimate

$$
p \approx \hat{p}:=\frac{S_{n}}{n} \text { for some large } n \text {. }
$$

The question is: how good an estimate is this for given n ? Or, turning it around: how big must you take n to get an estimate of a certain accuracy?

$$
\begin{aligned}
& |\hat{p}-p|<\varepsilon \mid=0.01) \\
& \mathbb{P}(|\hat{p}-p|<\varepsilon) \geqslant 95 \%
\end{aligned} \int \begin{aligned}
& 1 \hat{p} \text { is withe margin } \\
& 0^{\text {berar }} \varepsilon \text { of } p_{10} w \\
& \text { probabi, } 1 \text { ty } 9 \text { 9 sc. }
\end{aligned}
$$

A Maximum Likelihood Estimate
Want to find n large enough that (with $\hat{p}=\operatorname{Sn} / n$)

$$
\mathbb{P}(|\hat{p}-p|<\varepsilon) \geqslant \text { (high probability) }
$$

chosen tolerance

$$
\begin{aligned}
& \mathbb{P}(|\hat{p}-p|<\varepsilon)=\mathbb{P}\left(\frac{\rho_{n}-n p}{\rho_{n}^{n}}<\varepsilon\right)=\mathbb{P}\left(\frac{\left|S_{n}-n p\right|}{\sqrt{n p \mid-p})}<\frac{\varepsilon \sqrt{n}}{\sqrt{p(1-p)}}\right) \approx \mathbb{P}\left(|X|<\frac{\varepsilon \sqrt{n}}{\sqrt{\sqrt{p \mid-p}}}\right) \\
& \frac{5 n}{n} \quad \frac{\lambda^{n}}{\sqrt{n p(1-p)}} \\
& =\Phi\left(\frac{c \sqrt{n}}{\sqrt{p+n}}\right)-\Phi(-\cdots \cdots) \\
& \mathbb{P}(|\hat{p}-p|<\varepsilon) \approx 2 \Phi(\varepsilon \sqrt{n} / \sqrt{p(1-p)})-1 . \\
& 0 \leqslant p \leqslant 1 \quad \frac{1}{\sqrt{p(1-p)}} \geqslant 2 \\
& \begin{array}{l}
p(1-p) \leqslant \frac{1}{4} \\
p=\frac{1}{2}
\end{array} \Phi \uparrow
\end{aligned}
$$

Conclusion: $\mathbb{P}(|\hat{p}-p|<\varepsilon) \underset{(\approx)}{\geqslant 2}(2 \varepsilon \sqrt{n})-1$.

Example: How many times should we flip a coin, biased an unknown (of the Beast) amount p, so that the estimate $\hat{p}=S_{n} / n$ is within a tolerance of 0.05 of the true value p, with probability $\geqslant 99 \%$?

Want n large enough that

$$
\mathbb{P}(|\hat{p}-p|<0.05) \geq 996 / 0
$$

We know $\mathbb{P}(|\hat{p}-p|<0.05) \geq 2 \Phi(2(0.05) \sqrt{n})-1 \geqslant 99 \%$

$$
\begin{aligned}
\Phi(\underbrace{2(0.05) \sqrt{n}}) & \geqslant 0.995 \\
\therefore \quad 2(0.05) \sqrt{n} & \geqslant 2.58 \\
\sqrt{n} & \geqslant 25.8 \\
n & \geqslant 665.64
\end{aligned}
$$

Confidence Intervals
Turning this around: if we cant control n, we would like b say how accurate the sample mean is as an estimate of the true mean, for a given number n of samples.

Eg. A coin (of unknown bias p) is tossed 1000 times. 450 Heads come up. Within what tolerance can we say we know the true value of p with probability $\geqslant 95 \%$?
Estimate $p \approx \hat{p}=\frac{S_{1000}}{1000}=0.45$
want $\mathbb{P}(|p-\hat{p}|<\varepsilon) \geqslant 95 \%$
know: $\mathbb{P}(|p-\hat{p}|<\varepsilon) \geqslant 2 \Phi(2 \varepsilon \sqrt{1000})-1 \geq 0.9 S$

$$
\begin{aligned}
& \uparrow(2 \varepsilon \sqrt{1000}) \geqslant 0.975 \\
& \text { S\%\% } 2 \varepsilon \sqrt{1000} \geqslant 1.96 \sim \varepsilon \geqslant \frac{1.96}{2 \sqrt{1000}} \div 0.031
\end{aligned}
$$

$\left.\begin{array}{l}\text { Ie. } \quad|p-0.45|<0.03 \mid w \mathbb{P} \geq 95 \rho \% \\ 0.45-0.03|<p<0.45+0.03|\end{array}\right\}$ $0.45-0.031<p<0.45+0.031 \quad \int p \in[0.419,0.481] \omega \mathbb{P} \geq 95 \%$ rise confidence mterval

If an experiment is repeated in many independent trials, and the preceding (normal approximation) estimates yield

$$
\mathbb{P}(|\hat{p}-p|<\varepsilon) \geqslant 95 \%
$$

we say $[\hat{p}-\varepsilon, \hat{p}+\varepsilon]$ is the 95% confidence interval for p.
The same statement might be given as " $p=\hat{p}$ with margin of error ε

Margin of error: 4.7%
(95 times out of $10 n$)".
Pol conducted Oct 25-3e of 439 In wa Democratic caucusgoers.

$$
\begin{aligned}
& \mathbb{P}(|p-\hat{p}|<\varepsilon) \geqslant 2 \Phi(2 \varepsilon \sqrt{439})-1 \\
&(\approx) \geqslant 0.95 \\
& \text { is. } 2 \varepsilon \sqrt{43.9} \geqslant 1.96 \\
& \varepsilon \geqslant 4.684
\end{aligned}
$$

Poisson vs. Normal Approximation - Quantitative
Theorem. Let

$$
\begin{aligned}
& S_{n} \sim \operatorname{Bin}(n, p) \\
& X \sim P_{\text {oisson }}(n p) \\
& Y \sim \mathcal{N}(0,1)
\end{aligned}
$$

For any subset $A \subseteq \mathbb{N}$,

$$
\int \begin{aligned}
& \text { if } p=\frac{\lambda}{n^{\circ 5 s}}(\lambda>0) \\
& n p^{2}=h\left(\frac{\lambda}{\left.n_{0}\right)^{2}}\right)^{2}=\frac{\lambda}{n^{\prime 2}}
\end{aligned}
$$

$$
\underset{\substack{\rightarrow \rightarrow \infty \\ \rightarrow \infty}}{ }
$$

$O T O H$, for any $x \in \mathbb{R}$,

Upshot: if $n p^{2}$ is small, use Poisson Approximation.
if up (1-p) is quite large, use Normal Approximation.

Beyond independent trials:

* The normal approximation breaks down gickly if the trials are dependent.
* The Poisson approximation holds up well under "weak dependence"

Example. A factory experiences 3 accidents per month, on average. What is the probability there will be 3 accidents this month?
$X=$ \# accidents in a grison month.

$$
X \sim P_{\text {Bison }}(\lambda)
$$

$$
3=\mathbb{E}(x)=\lambda
$$

$$
\begin{aligned}
& \mathbb{P}(x=3)=e^{-3} \frac{3^{3}}{3!}=22.4 \% \\
& \mathbb{P}(x=2)=e^{-3} \frac{3^{2}}{2!}=22.4 \%
\end{aligned}
$$ by a Poisson

$$
\frac{3^{3}}{3!}=\frac{3^{2} \cdot 2}{3 \cdot 2-1}=\frac{3^{2}}{2!}
$$

