MATH 180A: Introduction to Probability

Lecture B00 (Nemish)
www.math.ucsd.edu/~ynemish/teaching/180a

Lecture C00 (Au)
www.math.ucsd.edu/~bau/f20.180a

Today: Expectation

Next: ASV 3.4

Week 3:

- Homework 3 (due Friday October 23)
- Midterm 1 next Wednesday, October 28, lectures 1-8

Poisson D, stribution
A random variable X has the Poisson (λ) distribution if

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \mathbb{P}\left(S_{n, \frac{\lambda}{n}}=k\right)=\mathbb{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \ldots \\
\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} e^{\lambda}=1 \quad V
\end{gathered}
$$

Eg. A loo year storm is a storm magnitude expected to occur in any given year with probability 1/100.
Over the course of a century, how likely is it to see at least 4100 year storms?

$$
\begin{aligned}
& \mathbb{P}\left(S_{\left.100, \frac{1}{100} \geq 4\right)}=\sum_{k=4}^{100} \mathbb{P}\left(S_{100100}-k\right) \approx \sum_{k=4}^{100} e^{-1} \frac{(1)^{k}}{k!}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =0.018374 \quad=1.8988 \%
\end{aligned}
$$

Summary
Sampling independent trials, the most important (discrete) probability distributions are:

- $\operatorname{Ber}(p): \mathbb{P}(X=1)=p, \mathbb{P}(X=0)=1-p \quad 0 \leqslant p \leqslant 1$ (single trial with success probability p)
- $\operatorname{Bin}(n, p): \mathbb{P}\left(S_{n}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad 0 \leqslant k \leqslant n$ (number of successes in n independent trials with rate p)
- $\operatorname{Greom}(p) \quad \mathbb{P}(N=k)=(1-p)^{k-1} p \quad k=0,1,2, \ldots$
(first successful trial in repeated independent trials with rate p)
- Poisson (λ) $\mathbb{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!} \quad k=0,1,2, \ldots \quad \lambda>0$. (Approximates $\operatorname{Bino}(n, \lambda / n)$; number of rare events in many trials)

Expectation
Toss a fair coin 1000 times, and record the sequence of outcomes. 110100011011091011.

Average them. $\frac{1}{1000}(1+1+0+1+0+0+0+1+1+0+1+1 . .$. What size do you expect this number to have?
[About of the outcomes ore 1, about wo a. Averse What if the coin is biased $\mathbb{P}\left(x_{j}=1\right)=p, \mathbb{P}\left(x_{j}=0\right)=1-p$.
Definition: Let X be a discrete random variable with possible values $t_{1}, t_{2}, t_{3}, \ldots$ The expectation or expected value of X is

$$
\mathbb{E}(X):=\sum_{j} t_{j} \mathbb{P}\left(X=t_{j}\right) \quad \begin{gathered}
\text { weighted average } \\
\text { "balance point" }
\end{gathered}
$$

Question: Is the expectation $\mathbb{E}(X)$ the value X is equal to most often?
(a) Yes, always
(b) No, not generally.

Eg. Let X be the number rolled on a fair die. $X \in\{1,2,3,4,6,0\}$

$$
E(x)=\sum_{n=1}^{6} k \cdot \frac{1}{6}=\frac{1}{6}(1+2+2+4+5+6)=\frac{21}{6}=\frac{7}{2} .
$$

Eg. Let Y be $\operatorname{Ber}(p) . \quad \mathbb{E}(Y)=p \cdot 1+(1-p) \cdot 9=p$
Eg. You toss a biased coin (Y) repeatedly until the first heads. How long do yen expect it to take?
$N=$ the time the $1^{\text {st }}$ heads comus up. $\quad N \sim \operatorname{Gesin}(p)$

$$
\begin{aligned}
\mathbb{E}(N)=\sum_{k=1}^{\infty} k \cdot \mathbb{P}(N=k) & =p \sum_{k=1}^{\infty} k(1-p)^{k-1} \quad\left(\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}\right. \\
(1-p)^{k-1} p & =p \cdot \frac{t}{(1-(1-p))^{2}}=\frac{1}{p} \frac{d}{d x} \sum_{k=1}^{\infty} k x^{k}-1=\frac{1}{(1-x)^{2}}
\end{aligned}
$$

Egg. $S_{n} \sim \operatorname{Bin}(n, p) \quad\left(S_{n}=X_{1}+X_{2}+\cdots+X_{n}\right.$ for X_{j} independent $\left.\operatorname{Ber}(p)\right)$

$$
\begin{aligned}
& \mathbb{E}\left(S_{n}\right)=\sum_{k=0}^{n} k \cdot \mathbb{P}\left(S_{n}=k\right)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k}=n p \\
& S_{n}=x_{1}+x_{2}+\cdots+x_{n} \\
& \mathbb{E}\left(X_{1}+\cdots+X_{n}\right) \\
& =\mathbb{E}\left(X_{1}\right)+\mathbb{E}\left(X_{2}\right)+\cdots+\mathbb{I}\left(X_{n}\right) \\
& \mathbb{E}\left(X_{j}\right)=p
\end{aligned}
$$

Eg. $X \sim \operatorname{Poisson}(\lambda)$

$$
\begin{aligned}
& X \sim \text { Poisson }(\lambda) \\
& \mathbb{E}(x)=\sum_{k=1}^{\infty} k \cdot e^{-\lambda} \frac{k}{k!}=e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!} \\
& j=e^{-\lambda-1} \sum_{j=0}^{26} \frac{\lambda^{j}(t)}{j!}=\lambda e^{-\infty}\left(\sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!}\right) \\
& l^{\lambda}
\end{aligned}
$$

\rightarrow Eg. A factory has, on average, 3 accidents per month.
Estimate the probability that there will be exactly 2 accidents this month.
$\left.\begin{array}{rl}x=\text { \#accidents/month } \mathbb{E}(x)=3=\lambda \\ & x\end{array}\right\} \mathbb{P}(x=2)=e^{-3} \frac{3^{2}}{2!}=22.4 \%$

Eg. Toss a fair coin until tails comes up. If this is on the first toss, you win $\$ 2$ and stop. If heads comes up, the pot doubles, and you continue. That is, if the first tails is on the $k^{\text {th }}$ loss, you win 2^{k} dollar.
What is your expected winnings?
$W=\left\{2^{k}\right.$ if the first talks is ante $k^{t h}$ toss $\}$

$$
\mathbb{E}(w)=\sum_{k=1}^{\infty} 2^{k} \cdot \underbrace{\mathbb{P}\left(w=2^{k}\right)}_{\left(\frac{1}{2}\right)^{k-1} \cdot \frac{1}{2}=\frac{1}{2^{k}}}=\sum_{k=1}^{\infty} 2^{k} \cdot \frac{1}{2^{k}}=\infty .
$$

