I.
(a) This is a Bayes' rule calculation.

Let $A=$ event that we selected urn II
$B=$ event thant first red is on third draw
Then

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A) P(B \mid A)}{P(A) P(B \mid A)+P\left(A^{c}\right) P\left(B \mid A^{c}\right)} \\
&=\frac{1}{2} \frac{6}{9} \frac{5}{8} \frac{3}{7} \\
& \frac{1}{2} \frac{6}{8} \frac{3}{7}+\frac{1}{2} \frac{2}{9} \frac{1}{8} \frac{7}{7}
\end{aligned}
$$

I.
(b) This is also a Bayes' rule calculation, but with an obulous answer since urn I only has 2 green balls.

Let $A=$ event that we selected urn II
$B=$ event that first red is on fourth draw
Then

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A) P(B \mid A)}{P(A) P(B \mid A)+P\left(A^{c}\right) P\left(B \mid A^{c}\right)} \\
&=\frac{1}{2} \frac{6}{9} \frac{5}{8} \frac{4}{7} \frac{3}{6} \\
& \frac{1}{2} \frac{6}{9} \frac{5}{8} \frac{4}{7} \frac{3}{6}+\frac{1}{2} 0
\end{aligned}
$$

2.

(a)

$$
\left(x, y(x, y)= \begin{cases}\frac{1}{\operatorname{Area}(T)}=1 & \text { if }(x, y) \in T \\ 0 & \text { if }(x, y) \notin T\end{cases}\right.
$$

the same!

$$
\begin{aligned}
& \mathbb{E}[X Y]=\int_{0}^{1} \int_{x-1}^{1-x} x y d y d x=\int_{0}^{1} x \frac{1}{2}\left((1-x)^{2}-(x-1)^{2}\right) d x \\
&=\int_{0}^{1} 0 d x=0 \\
& \mathbb{E}[Y]=\int_{0}^{1} \int_{x-1}^{1-x} y d y d x=\int_{0}^{1} \frac{1}{2}\left((1-x)^{2}-(x-1)^{2}\right) d x=0
\end{aligned}
$$

for completeness,

$$
\begin{aligned}
\mathbb{E}[x] & =\int_{0}^{1} \int_{x-1}^{1-x} x d y d x \\
& =\int_{0}^{1}(2-2 x) x d x \\
& =x^{2}-\left.\frac{2}{3} x^{3}\right|_{0} ^{1}=\frac{1}{3}
\end{aligned}
$$

So,

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y] \\
& =0-\frac{1}{3} \cdot 0=0
\end{aligned}
$$

2.

(b) X and Y are not independent even though $\operatorname{Cov}(X, Y)=0$

To see this, we can calculate the marginal densities

$$
\begin{aligned}
& \ell x(x)=\int_{x-1}^{1-x} 1 d y=2-2 x
\end{aligned} \begin{aligned}
& \text { if } x \in[0,1] \\
& \left\{y(y)= \begin{cases}\int_{0}^{1-y} 1 d x=1-y & \text { if } y \in[0,1] \\
\int_{0}^{y+1} 1 d x=y+1 & \text { if } y \in[-1,0)\end{cases} \right.
\end{aligned}
$$

Since $\quad\{x(y \neq(x, y$, we conclude that X and Y are not independent
3.

$$
\begin{aligned}
P(x>y) & =\int_{-1}^{1} \int_{y}^{\infty}(x, y(x, y) d x d y \\
& =\int_{-1}^{1} \int_{y}^{\infty} \frac{1}{2} e^{-x} \mathbb{1}\{x \geq 0\} d x d y \\
& \left.=\int_{-1}^{0} \int_{y}^{\infty} \frac{1}{2} e^{-x} \mathbb{I}\{x \geq 0\} d x d y+\int_{0}^{1} \int_{y}^{\infty} \frac{1}{2} e^{-x} \mathbb{I} \sum^{-1} x \geq 0^{1}\right\rangle d x d y \\
& =\int_{-1}^{0} \int_{0}^{\infty} \frac{1}{2} e^{-x} d x d y+\int_{0}^{1} \int_{y}^{\infty} \frac{1}{2} e^{-x} d x d y \\
& =\int_{-1}^{\infty} \frac{1}{2} d y+\int_{0}^{1} \frac{1}{2} e^{-y} d y=\frac{1}{2}+\left(\left.\frac{-1}{2} e^{-y}\right|_{0} ^{1}\right)=1-\frac{1}{2} e^{-1}
\end{aligned}
$$

4. Let E_{i} be the event that none of the rolls before the ith roll was a 6 and the ith roll and the itlst roll match (and aren't equal to 6) Then $\quad X=\sum_{i=1}^{\infty} \mathbb{I}_{E_{i}} \quad$ and

$$
\begin{aligned}
\mathbb{E}[X]=\sum_{i=1}^{\infty} \mathbb{E}\left[\mathbb{I}_{E_{i}}\right] & =\sum_{i=1}^{\infty} P\left(E_{i}\right) \quad 5 \frac{1}{6} \cdot \frac{1}{6} \\
& =\sum_{i=1}^{\infty}\left(\frac{5}{6}\right)^{i-1}\left(\frac{5}{36}\right) \\
& =\frac{5}{36} \sum_{i=0}^{\infty}\left(\frac{5}{6}\right)^{i}=\frac{5}{36} \frac{1}{1-\frac{5}{6}}=\frac{5}{6}
\end{aligned}
$$

5.

(a) This is CLT offer some rearranging.

Let $S_{n}=X_{1}+\cdots+X_{n}$. Then we want

$$
P\left(S_{n} \geq \sqrt{n}+n \mu\right)=P\left(\frac{S_{n}-n \mu}{\sqrt{4 n}} \geq \frac{1}{\sqrt{4}}\right)
$$

By the CLT,

$$
\lim _{n \rightarrow \infty} P\left(\frac{s_{n}-n \mu}{\sqrt{4 n}} \geq \frac{1}{\sqrt{4}}\right)=1-\Phi\left(\frac{1}{\sqrt{4}}\right)
$$

5.

(6) This is WLLN with some subtlety.

If $\mu>0$, then $0<\frac{\mu}{2}<\mu$.
If $\mu<0$, then $0>\frac{\mu}{2}>\mu$.
In (1), $P\left(S_{n} \geq \frac{n \mu}{2}\right)=P\left(\frac{S_{n}-n \mu}{n} \geq \frac{-\mu}{2}\right)$

$$
\geq P\left(\left|\frac{s_{n}-n \mu}{n}\right| \leq \frac{\mu}{2}\right)
$$

By the WLLN, $\lim _{n \rightarrow \infty} P\left(\left|\frac{s_{n}-n \mu}{n}\right| \leqslant \frac{\mu}{2}\right)=1$
so $\lim _{n \rightarrow \infty} P\left(S_{n} \geq \frac{n \mu}{2}\right)=1$

In (2),

$$
\begin{array}{r}
P\left(S_{n} \geq \frac{n \mu}{2}\right)=P\left(\frac{S_{n}-n \mu}{n} \geq \frac{-\mu}{2}\right) \\
\leq P\left(\left|\frac{S_{n}-n \mu}{n}\right| \geq \frac{\mu}{2}\right)
\end{array}
$$

By the WLLN, $\lim _{n \rightarrow \infty} P\left(\left|\frac{s_{n}-n \mu}{n}\right| \geq \frac{\mu}{2}\right)=0$.
So, $\lim _{n \rightarrow \infty} P\left(S_{n} \geq \frac{n \mu}{2}\right)=0$

