MATH 180A - INTRODUCTION TO PROBABILITY PRACTICE MIDTERM #1

FALL 2020

Name (Last, First):

Student ID: _____

- **1.** Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
 - (a) Suppose that $A, B \in \mathcal{F}$ satisfy

$$\mathbb{P}(A) + \mathbb{P}(B) > 1.$$

Making no further assumptions on A and B, prove that $A \cap B \neq \emptyset$.

- (b) Prove that A is independent from itself if and only if $\mathbb{P}(A) \in \{0, 1\}$.
- **2.** Roll two fair dice repeatedly. If the sum is ≥ 10 , then you win.
 - (a) What is the probability that you start by winning 3 times in a row?
 - (b) What is the probability that after rolling the pair of dice 5 times you win exactly 3 times?
 - (c) What is the probability that the first time you win is before the tenth roll (of the pair), but after the fifth?

3. A box contains 3 coins, two of which are fair and the third has probability 3/4 of coming up heads. A coin is chosen randomly from the box and tossed 3 times.

- (a) What is the probability that all 3 tosses are heads?
- (b) Given that all three tosses are heads, what is the probability that the biased coin was chosen?

4. Let X be a discrete random variable taking the values $\{1, 2, ..., n\}$ all with equal probability. Let Y be another discrete random variable taking values in $\{1, 2, ..., n\}$. Assume that X and Y are independent. Show that $\mathbb{P}(X = Y) = \frac{1}{n}$. (Hint: you do not need to know the distribution of Y to calculate this.)

5. Consider a point P = (X, Y) chosen uniformly at random inside of the triangle in \mathbb{R}^2 that has vertices (1,0), (0,1), and (0,0). Let $Z = \max(X,Y)$ be the random variable defined as the maximum of the two coordinates of the point. For example, if $P = (\frac{1}{2}, \frac{1}{3})$, then $Z = \max(X,Y) = \frac{1}{2}$. Determine the cumulative distribution function of Z. Determine if Z is a continuous random variable, a discrete random variable, or neither. If continuous, determine the probability density function of Z. If discrete, determine the probability mass function of Z. If neither, explain why.

(Hint: Draw a picture.)