MATH 180A - INTRODUCTION TO PROBABILITY
 PRACTICE MIDTERM \#1

FALL 2020

Name (Last, First):
Student ID: \qquad
REMEMBER THIS EXAM IS GRADED BY A HUMAN BEING. WRITE YOUR SOLUTIONS NEATLY AND COHERENTLY, OR THEY RISK NOT RECEIVING FULL CREDIT.

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
(a) Suppose that $A, B \in \mathcal{F}$ satisfy

$$
\mathbb{P}(A)+\mathbb{P}(B)>1
$$

Making no further assumptions on A and B, prove that $A \cap B \neq \emptyset$.
(b) Prove that A is independent from itself if and only if $\mathbb{P}(A) \in\{0,1\}$.
2. Roll two fair dice repeatedly. If the sum is ≥ 10, then you win.
(a) What is the probability that you start by winning 3 times in a row?
(b) What is the probability that after rolling the pair of dice 5 times you win exactly 3 times?
(c) What is the probability that the first time you win is before the tenth roll (of the pair), but after the fifth?
3. A box contains 3 coins, two of which are fair and the third has probability $3 / 4$ of coming up heads. A coin is chosen randomly from the box and tossed 3 times.
(a) What is the probability that all 3 tosses are heads?
(b) Given that all three tosses are heads, what is the probability that the biased coin was chosen?
4. Let X be a discrete random variable taking the values $\{1,2, \ldots, n\}$ all with equal probability. Let Y be another discrete random variable taking values in $\{1,2, \ldots, n\}$. Assume that X and Y are independent. Show that $\mathbb{P}(X=Y)=\frac{1}{n}$. (Hint: you do not need to know the distribution of Y to calculate this.)
5. Consider a point $P=(X, Y)$ chosen uniformly at random inside of the triangle in \mathbb{R}^{2} that has vertices $(1,0),(0,1)$, and $(0,0)$. Let $Z=\max (X, Y)$ be the random variable defined as the maximum of the two coordinates of the point. For example, if $P=\left(\frac{1}{2}, \frac{1}{3}\right)$, then $Z=\max (X, Y)=\frac{1}{2}$. Determine the cumulative distribution function of Z. Determine if Z is a continuous random variable, a discrete random variable, or neither. If continuous, determine the probability density function of Z. If discrete, determine the probability mass function of Z. If neither, explain why.
(Hint: Draw a picture.)

