Today: CDF and PDF

Next: ASV 2.4, 2.5, 4.4

Video: Prof. Todd Kemp, Fall 2019

Week 3:

- Homework 2 (due Friday, January 22)
- Midterm 1 (Wednesday, January 27) - Lectures 1-7
- Regrades for HW1: Mon, Jan 25 - Tue, Jan 26 (PST) on Gradescope
Cumulative Distribution Function (CDF)

For any random variable \(X \), \(F_X(x) = P(X \leq x), \quad x \in \mathbb{R} \)

1. **Monotone increasing:** \(s \leq t \Rightarrow F_X(s) \leq F_X(t) \)

2. \(\lim_{r \to -\infty} F_X(r) = 0, \quad \lim_{r \to +\infty} F_X(r) = 1 \).

3. The function \(F_X \) is right-continuous: \(\lim_{t \to r^+} F_X(t) = F_X(r) \).

Discrete random variable:
- finite or countable set of values \(t_1, t_2, t_3, \ldots \) with \(\mathbb{P}(X = t_j) > 0 \) and \(\sum_j \mathbb{P}(X = t_j) = 1 \).

Continuous random variable:
- for each real number \(t \), \(\mathbb{P}(X = t) = 0 \).
- Because of (1) & (3) above, this implies that \(F_X \) is continuous.

\[F(t_4) \quad \text{no jumps} \]
\[F(t_5) \quad - - - - - - 0 \]
\[\mathbb{P}(X \in (t_j, t_k]) = F(t_k) - F(t_j) \]
Some continuous random variables have probability densities. This is an infinitesimal version of a probability mass function.

- **Discrete**: \(X \) discrete, \(\epsilon \{ t_1, t_2, t_3, \ldots \} \)

 \[
 p_X(t) = P(X = t)
 \]

 \[
 P(X \in A) = \sum_{t \in A} P(X = t) = \sum_{t \in A} p_X(t)
 \]

 \[p_X(t) \geq 0, \quad \sum_{t} p_X(t) = 1.\]

- **Continuous**: \(X \) continuous

 \[
 P(X = t) = 0 \quad \text{for all} \quad t \in \mathbb{R}.
 \]

 BUT

 Maybe there is an "infinitesimal" prob. mass function \(f_X \).

 \[
 P(X \in A) = \int_{A} f_X(t) \, dt
 \]

 \[\text{i.e.,} \quad A = (-\infty, r] \]

 \[
 P(X \leq r) = \int_{-\infty}^{r} f_X(t) \, dt
 \]

 \[
 P(X \in [a, b]) = \int_{a}^{b} f_X(t) \, dt
 \]

 \[
 \int_{-\infty}^{\infty} f_X(t) \, dt = 1, \quad f_X(t) \geq 0.
 \]
Eg. Shoot an arrow at a circular target of radius 1.

\[Y = \text{distance from center.} \]

\[r \int_{-\infty}^{Y} f(t) \, dt \quad \text{?} \]

\[\mathbb{P}(Y \in (-\infty, r]) = F_Y(r) = \begin{cases} 0, & r \leq 0 \\ r^2, & 0 \leq r < 1 \\ 1, & r \geq 1 \end{cases} \]

"Solve for f" \[\frac{d}{dr} \int_{-\infty}^{r} f(t) \, dt = \frac{d}{dr} \frac{1}{2} r^2 \quad \text{if } r \leq 1 \]

\[f(r) = \begin{cases} 2r, & 0 \leq r \leq 1 \\ 0, & r \geq 1 \end{cases} \]

\[f_Y(r) = \begin{cases} \frac{1}{2}, & 0 \leq r \leq 1 \\ 0, & r \geq 1 \end{cases} \]

\[\mathbb{P}(Y \in [0.1, 0.2] \cup [0.9, 1]) = \int_{0.1}^{0.2} 2r \, dr + \int_{0.9}^{1} 2r \, dr \]

\[0.2 \left(\frac{0.2^2}{2} - \frac{0.1^2}{2} \right) + 1^2 - (0.9)^2 \]
Theorem: If F_X is continuous and piecewise differentiable, then X has a density $f_X = F_X'$.

Proof: FTC. \[\square \]

Eg. Let X be a uniformly random number in $[0,1]$. As we discussed in lecture 2, this means $F_X(r) = \mathbb{P}(X \leq r) = \begin{cases} 0 & r \leq 0 \\ r - 0 & 0 < r \leq 1 \\ 1 & r > 1 \end{cases}$

$\therefore f_X(r) = \frac{d}{dr} F_X(r) = \begin{cases} 0 & r < 0 \\ 1 & 0 \leq r \leq 1 \\ 0 & r > 1 \end{cases}$

$X \sim \text{Unif}([0,1])$

$Z \sim \text{Unif}([a,b]) \Rightarrow f_Z(t) = \begin{cases} 0 & t < a \\ \frac{1}{b-a} & a \leq t \leq b \\ 0 & b > t \end{cases}$
Eg. Let \(f(t) = c\sqrt{b^2 - t^2} \) for \(|t| < b \), 0 otherwise (for some positive constants \(b, c > 0 \)).

Is \(f \) a probability density?

\[f \geq 0 \quad \checkmark \]

\[\int_{-\infty}^{\infty} f(t) \, dt = \int_{-b}^{b} c\sqrt{b^2 - t^2} \, dt = c \int_{-b}^{b} \sqrt{b^2 - t^2} \, dt \]

Subs: \(t = bs \)

\[= c b \int_{-1}^{1} \sqrt{b^2 - (bs)^2} \, bds \]

\[= c b \int_{-1}^{1} \sqrt{1 - s^2} \, ds \]

\[= c b^2 \int_{-1}^{1} \sqrt{1 - s^2} \, ds \]

\[= c b^2 \frac{\pi}{2} \]

Must have \(cb^2 = \frac{\pi}{2} \).

Eg. For any \(b \), \(c = \frac{2}{\pi b^2} \). \(\checkmark \)
E.g. Your car is in a minor accident; the damage repair cost is a random number between $100 and $1500. Your insurance deductible is $500. \(Z = \) your out of pocket expenses.

The random variable \(Z \) is

(a) continuous

(b) discrete

(c) neither

(d) both

\[X \sim \text{Unif}([100, 1500]) \]

\[f_X(t) = \begin{cases} \frac{1}{1500 - 100} & 100 \leq t \leq 1500 \\ 0 & \text{otherwise} \end{cases} \]

\[\text{Pr}(Z=r) = 0, \quad r < 500 \]

\[\text{Pr}(Z=500) = \text{Pr}(X \geq 500) = \int_{500}^{1500} \frac{1}{1400} \, dt = \frac{5}{7} > 0 \]