Study Guide for Math 120A Final (What you should know)

1. \(\mathbb{C} := \{ z = x + iy : x, y \in \mathbb{R} \} \) with \(i^2 = -1 \) and \(\bar{z} = x - iy \). The complex numbers behave much like the real numbers. In particular the quadratic formula holds.

2. \[|z| = \sqrt{x^2 + y^2} = \sqrt{z \bar{z}}, \quad |zw| = |z||w|, \quad |z + w| \leq |z| + |w|, \quad \text{Re} \, z = \frac{z + \bar{z}}{2}, \quad \text{Im} \, z = \frac{z - \bar{z}}{2i}, \quad \text{Re} \, \bar{z} \leq |z| \quad \text{and} \quad |\text{Im} \, z| \leq |z|. \]

3. \(\{ z : |z - z_0| = \rho \} \) is a circle of radius \(\rho \) centered at \(z_0 \).

4. \(e^z = e^x \cos y + i \sin y \), \quad |e^z| = e^x \leq e^{|z|} \quad \text{and} \quad z = |z|e^{i\theta} \) for some \(\theta \in \mathbb{R} \) for every \(z \in \mathbb{C} \).

5. \(\arg(z) = \{ \theta \in \mathbb{R} : z = |z|e^{i\theta} \} \) and \(\text{Arg}(z) = \theta \) if \(-\pi < \theta \leq \pi \quad \text{and} \quad z = |z|e^{i\theta} \).

6. \(z^{1/n} = \sqrt[n]{|z|}e^{\frac{i\arg(z)}{n}} \).

7. More generally if \(c \in \mathbb{C} \) we set \(z^c := e^{c \log(z)} \) and if \(\ell \) is a branch of \(\log \), the we define \(z^\ell := e^{\ell(z)} \) to be a branch of \(z^c \). With this notation we have

\[\frac{d}{dz} z^\ell = cz^{\ell-1}. \]

8. \(\lim_{z \to z_0} f(z) = L \). Usual limit rules hold from real variables.

10. The definition of complex differentiable \(f(z) \). Examples, \(p(z), e^z, e^{p(z)}, 1/z, 1/p(z) \) etc.

11. Key points of \(e^z \) are \(\frac{d}{dz} e^z = e^z \) and \(e^z e^w = e^{z+w} \).

12. All of the usual derivative formulas hold, in particular product, sum, and chain rules:

\[\frac{d}{dz} f(g(z)) = f'(g(z)) g'(z) \]

and

\[\frac{d}{dt} f(z(t)) = f'(z(t)) \dot{z}(t). \]

13. \(\text{Re} \, z, \text{Im} \, z, \bar{z} \), are nice functions from the real - variables point of view but are not complex differentiable.

14. Integration:

\[\int_a^b z(t) \, dt := \int_a^b x(t) \, dt + i \int_a^b y(t) \, dt. \]

All of the usual integration rules hold, like the fundamental theorem of calculus, linearity and integration by parts.

15. You should know; if \(f \) is complex differentiable at \(z_0 \), then Cauchy Riemann (C.R.) equations hold at a point \(z_0 \in \mathbb{C} \), i.e.

\[f_y = i f_x \quad \text{or equivalently if} f = u + iv \quad \text{then} u_y = -v_x \quad \text{and} \quad u_x = v_y \quad \text{at} \ z_0. \]

Conversely, if the C.R. equations hold and the partial derivatives are continuous near some point \(z \) then \(f'(z) \) exists and \(f'(z) = f_x(z) = -if_y(z) \).

16. You should understand and be able to use the following analytic functions:

- a) \(e^z = e^x \cos y + i \sin y = \sum_{n=0}^{\infty} \frac{1}{n!} z^n \).
- b) \(\frac{1}{z} = \sum_{n=0}^{\infty} z^n \) for \(|z| < 1 \).
- c) \(\log z = \ln |z| + i \arg \, z \) and its branches, \(\ell(z) \). That is \(\ell \) is continuous and satisfies \(e^{\ell(z)} = z \) for \(z \) in the domain of \(\ell \). No matter the branch we have \(\frac{d}{dz} \ell(z) = \frac{1}{z} \).
- d) If Log is the principal branch of Log we have seen,

\[\text{Log} \, (1 - z) = -\sum_{n=0}^{\infty} \frac{1}{n+1} z^{n+1} \quad \text{if} |z| < 1. \]

- e) \(\sin(z) := \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \).
- f) \(\cos(z) := \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} \).
- g) \(\sinh(z) := \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \).
- h) \(\cosh(z) := \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!} \).
- i) \(\tan(z) := -i \sum_{n=0}^{\infty} \frac{(-1)^n \frac{z^{2n+1}}{(2n+1)!} \frac{1}{2^{2n+1}}} \).
- j) \(\tanh(z) := \sum_{n=0}^{\infty} \frac{z^{2n+1}}{e^{2n+1} - e^{-2n+1}} \).

17. Be able to parametrize simple contours.

18. Be able to compute contour integrals by parametrizing the contour to get

\[\int_C f(z) \, dz = \int_a^b f(z(t)) \dot{z}(t) \, dt. \]
19. Be able to estimate contour integrals using
\[\left| \int_C f(z) \, dz \right| \leq \max_{z \in C} |f(z)| \cdot \text{length}(C). \]

20. Be able to compute contour integrals using the fundamental theorem of calculus: if \(f \) is analytic on a neighborhood of a contour \(C \), then
\[\int_C f'(z) \, dz = f(C_{\text{end}}) - f(C_{\text{begin}}). \]

21. Be able to use the Cauchy-Goursat theorem to argue that \(\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz \) when \(C_1 \) and \(C_2 \) are appropriately homotopic in the domain of definition of the analytic function, \(f \).

22. Be able to compute residues of \(h \) at \(z_0 \),
\[\text{res}_{z=z_0} h(z) := \lim_{\rho \to 0} \frac{1}{2\pi i} \oint_{|z-z_0| = \rho} h(z) \, dz, \]
and use the residue theorem for computing contour integrals. The basic methods we have learned for computing residues are (assuming \(f \) and \(g \) are analytic near \(z_0 \));
 a) If \(h(z) = \frac{f(z)}{z-z_0} \), then \(\text{res}_{z=z_0} h(z) = \text{res}_{z=z_0} \frac{f(z)}{z-z_0} = f(z_0) \) or more generally,
 b) If \(h(z) = \frac{f(z)}{(z-z_0)^{n+1}} \), then \(\text{res}_{z=z_0} h(z) = \text{res}_{z=z_0} \frac{f(z)}{(z-z_0)^{n+1}} = \frac{1}{n!} f^{(n)}(z_0) \),
 c) If \(h(z) = \frac{f(z)}{g(z)} \), then \(\text{res}_{z=z_0} h(z) = \text{res}_{z=z_0} \frac{f(z)}{g(z)} = \frac{f(z_0)}{g'(z_0)} \) provided \(g(z_0) = 0 \) and \(g'(z_0) \neq 0 \). **Warning:** this formula is not valid if \(g(z_0) \neq 0 \) or if \(g'(z_0) = 0 \).
 d) If \(h(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n \) then \(\text{res}_{z=z_0} h(z) = a_{-1} \).

23. Be able to use complex techniques to compute real integrals similar to those that have appeared in the homework problems and/or in class.

24. Be able to compute Taylor series and Laurent series expansions (in simple cases) of a function \(f \) centered at a point \(z_0 \in \mathbb{C} \). **Hint:** If \(z_0 \neq 0 \), write \(z = z_0 + h \) and then do the expansion in \(h \) about \(h = 0 \). At the end replace \(h \) by \(z - z_0 \).