Study Guide for Math 120A Midterm 1 (What you should know)

- 1. $\mathbb{C} := \{z = x + iy : x, y \in \mathbb{R}\}$ with $i^2 = -1$ and $\overline{z} = x iy$. The complex numbers behave much like the real numbers. In particular the quadratic formula holds.
- 2. $|z| = \sqrt{x^2 + y^2} = \sqrt{z\overline{z}}, |zw| = |z||w|, |z+w| \le |z| + |w|, \operatorname{Re} z = \frac{z+\overline{z}}{2},$ In $z = \frac{z-\bar{z}}{2i}$, $|\operatorname{Re} z| \le |z|$ and $|\operatorname{Im} z| \le |z|$. 3. We also have $\overline{zw} = \bar{z}\bar{w}$ and $\overline{z+w} = \bar{z} + \bar{w}$ and $z^{-1} = \frac{\bar{z}}{|z|^2}$.
- 4. $\{z : |z z_0| = \rho\}$ is a circle of radius ρ centered at z_0 . $\{z: |z-z_0| < \rho\}$ is the open disk of radius ρ centered at z_0 . $\{z: |z-z_0| \ge \rho\}$ is every thing outside of the open disk of radius ρ centered at z_0 .
- 5. $e^z = e^x (\cos y + i \sin y)$, every $z = |z| e^{i\theta}$.
- 6. Know that $e^z e^w = e^{z+w}$ for all $z, w \in \mathbb{C}$.
- 7. $|e^z| = e^x = e^{\operatorname{Re} z} \le e^{|z|}$.
- 8. $\arg(z) = \left\{ \theta \in \mathbb{R} : z = |z| e^{i\theta} \right\}$ and $\operatorname{Arg}(z) = \theta$ if $-\pi < \theta \le \pi$ and $z = \theta$ $|z| e^{i\theta}$. Notice that $z = |z| e^{i \arg(z)}$

9.
$$z^{1/n} = \sqrt[n]{|z|} e^{i \frac{\arg(z)}{n}} = \sqrt[n]{|z|} \left\{ e^{i \frac{\arg(z)+k2\pi}{n}} : k = 0, 1, 2, \dots, n-1 \right\}.$$

10. Differentiation of complex functions, z(t) = a(t) + ib(t), of one real variable t. Recall that

$$\dot{z}(t) = \dot{a}(t) + i\dot{b}(t)$$

and that the usual rules hold like

$$\frac{d}{dt}\left[z\left(t\right) + w\left(t\right)\right] = \dot{z}\left(t\right) + \dot{w}\left(t\right)$$

and

$$\frac{d}{dt}\left[z\left(t\right)w\left(t\right)\right] = \dot{z}\left(t\right)w\left(t\right) + z\left(t\right)\dot{w}\left(t\right).$$

11. Integration:

$$\int_{a}^{b} z\left(t\right) dt := \int_{a}^{b} x\left(t\right) dt + i \int_{a}^{b} y\left(t\right) dt$$

All of the usual integration rules hold, like the fundamental theorem of calculus, linearity and integration by parts.

12. Know how to estimate the size of integrals using.

$$\left| \int_{a}^{b} z\left(t\right) dt \right| \leq \int_{a}^{b} \left| z\left(t\right) \right| dt \leq M \cdot (b-a)$$

where M > 0 is any constant such that

$$|z(t)| \le M$$
 for $a \le t \le b$.

- 13. Know how to compute simple limits $\lim_{z\to z_0} f(z) = L$ where $z_0, L \in$ $\mathbb{C} \cup \{\infty\}$. (Usual limit rules hold from real variables.)
- 14. Basic mapping properties of simple complex functions.
- 15. The definition of complex differentiability. Examples, p(z), e^z , $e^{p(z)}$, 1/z, 1/p(z) etc.
- 16. All of the usual derivative formulas hold, in particular product, sum, and chain rules:

$$\frac{d}{dz}f(g(z)) = f'(g(z))g'(z)$$

and

$$\frac{d}{dt}f(z(t)) = f'(z(t))\dot{z}(t)$$

where f, g are analytic and $z(t) \in \mathbb{C}$ is continuously differentiable.

- 17. Re z, Im z, \overline{z} , are nice functions from the real variables point of view but are **not** complex differentiable.
- 18. The Cauchy Riemann (C.R.) equations hold,

 $f_y = if_x$ or equivalently if f = u + iv then $u_y = -v_x$ and $u_x = v_y$

if f is complex differentiable.

19. Conversely, if the C.R. equations hold and the partial derivatives are continuous near some point z then f'(z) exists and $f'(z) = f_x(z) = -if_y(z)$.