Study Guide for Math 120A Midterm 1 (What you should know)

1. $\mathbb{C}:=\{z=x+i y: x, y \in \mathbb{R}\}$ with $i^{2}=-1$ and $\bar{z}=x-i y$. The complex numbers behave much like the real numbers. In particular the quadratic formula holds.
2. $|z|=\sqrt{x^{2}+y^{2}}=\sqrt{z \bar{z}},|z w|=|z||w|,|z+w| \leq|z|+|w|, \operatorname{Re} z=\frac{z+\bar{z}}{2}$, $\operatorname{Im} z=\frac{z-\bar{z}}{2 i},|\operatorname{Re} z| \leq|z|$ and $|\operatorname{Im} z| \leq|z|$.
3. We also have $\overline{z w}=\bar{z} \bar{w}$ and $\overline{z+w}=\bar{z}+\bar{w}$ and $z^{-1}=\frac{\bar{z}}{|z|^{2}}$.
4. $\left\{z:\left|z-z_{0}\right|=\rho\right\}$ is a circle of radius ρ centered at z_{0}. $\left\{z:\left|z-z_{0}\right|<\rho\right\}$ is the open disk of radius ρ centered at z_{0}.
$\left\{z:\left|z-z_{0}\right| \geq \rho\right\}$ is every thing outside of the open disk of radius ρ centered at z_{0}.
5. $e^{z}=e^{x}(\cos y+i \sin y)$, every $z=|z| e^{i \theta}$.
6. Know that $e^{z} e^{w}=e^{z+w}$ for all $z, w \in \mathbb{C}$.
7. $\left|e^{z}\right|=e^{x}=e^{\operatorname{Re} z} \leq e^{|z|}$.
8. $\arg (z)=\left\{\theta \in \mathbb{R}: z=|z| e^{i \theta}\right\}$ and $\operatorname{Arg}(z)=\theta$ if $-\pi<\theta \leq \pi$ and $z=$ $|z| e^{i \theta}$. Notice that $z=|z| e^{i \arg (z)}$
9. $z^{1 / n}=\sqrt[n]{|z|} e^{i \frac{\arg (z)}{n}}=\sqrt[n]{|z|}\left\{e^{i \frac{\operatorname{Arg}(z)+k 2 \pi}{n}}: k=0,1,2, \ldots, n-1\right\}$.
10. Differentiation of complex functions, $z(t)=a(t)+i b(t)$, of one real variable t. Recall that

$$
\dot{z}(t)=\dot{a}(t)+i \dot{b}(t)
$$

and that the usual rules hold like

$$
\frac{d}{d t}[z(t)+w(t)]=\dot{z}(t)+\dot{w}(t)
$$

and

$$
\frac{d}{d t}[z(t) w(t)]=\dot{z}(t) w(t)+z(t) \dot{w}(t)
$$

11. Integration:

$$
\int_{a}^{b} z(t) d t:=\int_{a}^{b} x(t) d t+i \int_{a}^{b} y(t) d t
$$

All of the usual integration rules hold, like the fundamental theorem of calculus, linearity and integration by parts.
12. Know how to estimate the size of integrals using,

$$
\left|\int_{a}^{b} z(t) d t\right| \leq \int_{a}^{b}|z(t)| d t \leq M \cdot(b-a)
$$

where $M \geq 0$ is any constant such that

$$
|z(t)| \leq M \text { for } a \leq t \leq b
$$

13. Know how to compute simple limits $\lim _{z \rightarrow z_{0}} f(z)=L$ where $z_{0}, L \in$ $\mathbb{C} \cup\{\infty\}$. (Usual limit rules hold from real variables.)
14. Basic mapping properties of simple complex functions.
15. The definition of complex differentiability. Examples, $p(z), e^{z}, e^{p(z)}, 1 / z$, $1 / p(z)$ etc.
16. All of the usual derivative formulas hold, in particular product, sum, and chain rules:

$$
\frac{d}{d z} f(g(z))=f^{\prime}(g(z)) g^{\prime}(z)
$$

and

$$
\frac{d}{d t} f(z(t))=f^{\prime}(z(t)) \dot{z}(t)
$$

where f, g are analytic and $z(t) \in \mathbb{C}$ is continuously differentiable.
17. $\operatorname{Re} z, \operatorname{Im} z, \bar{z}$, are nice functions from the real - variables point of view but are not complex differentiable.
18. The Cauchy Riemann (C.R.) equations hold,

$$
f_{y}=i f_{x} \text { or equivalently if } f=u+i v \text { then } u_{y}=-v_{x} \text { and } u_{x}=v_{y}
$$

if f is complex differentiable.
19. Conversely, if the C.R. equations hold and the partial derivatives are continuous near some point z then $f^{\prime}(z)$ exists and $f^{\prime}(z)=f_{x}(z)=-i f_{y}(z)$.

