
6.2 Taylor’s Theorem Problems

Theorem 6.8 (Taylor’s at order 1 and 2). If f (t) for 0 ≤ t ≤ 1 is twice
continuously differentiable, then

f (1) = f (0) +

∫ 1

0

ḟ (t) dt and

f (1) = f (0) +
ḟ (0)

1!
+

1

1!

∫ 1

0

f̈ (t) (1− t) dt.

Proof. The first assertion follows by the fundamental theorem of calculus

f (1)− f (0) =

∫ 1

0

ḟ (t) dt.

For the second we integrate by parts as follows;∫ 1

0

ḟ (t) dt = −
∫ 1

0

ḟ (t) d (1− t) = −ḟ (t) (1− t) |10 +

∫ 1

0

f̈ (t) (1− t) dt

and therefore

f (1) = f (0) +

∫ 1

0

ḟ (t) dt = f (0) +
ḟ (0)

1!
+

1

1!

∫ 1

0

f̈ (t) (1− t) dt.

Exercise 6.1. If f : R→ C is a function which is differentiable to all orders,
show for all N ∈ N0 = {0, 1, 2, 3, . . . } that

f (1) =

N∑
k=0

1

k!
f (k) (0) +

1

N !

∫ 1

0

f (N+1) (t) (1− t)N dt.

Hint: use integration by parts and induction with Theorem 6.8 providing the
case N = 0 and N = 1.

Exercise 6.2. Recall the if we define ez := ex (cos y + i sin y) where z = x+ iy,
then d

dte
tz = zetz. Use Exercise 6.1 with f (t) = etz to conclude;

ez = f (1) =

N∑
k=0

zk

k!
+RN (z) (6.4)

where

RN (z) =
zN+1

N !

∫ 1

0

etz (1− t)N dt. (6.5)

Then show that limN→∞ |RN (z)| = 0 for all z ∈ C and use this to conclude

ez =

∞∑
k=0

zk

k!
for all z ∈ C.
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