6.2 Taylor's Theorem Problems

Theorem 6.8 (Taylor's at order 1 and 2). If $f(t)$ for $0 \leq t \leq 1$ is twice continuously differentiable, then

$$
\begin{gathered}
f(1)=f(0)+\int_{0}^{1} \dot{f}(t) d t \text { and } \\
f(1)=f(0)+\frac{\dot{f}(0)}{1!}+\frac{1}{1!} \int_{0}^{1} \ddot{f}(t)(1-t) d t .
\end{gathered}
$$

Proof. The first assertion follows by the fundamental theorem of calculus

$$
f(1)-f(0)=\int_{0}^{1} \dot{f}(t) d t
$$

For the second we integrate by parts as follows;

$$
\int_{0}^{1} \dot{f}(t) d t=-\int_{0}^{1} \dot{f}(t) d(1-t)=-\left.\dot{f}(t)(1-t)\right|_{0} ^{1}+\int_{0}^{1} \ddot{f}(t)(1-t) d t
$$

and therefore

$$
f(1)=f(0)+\int_{0}^{1} \dot{f}(t) d t=f(0)+\frac{\dot{f}(0)}{1!}+\frac{1}{1!} \int_{0}^{1} \ddot{f}(t)(1-t) d t
$$

Exercise 6.1. If $f: \mathbb{R} \rightarrow \mathbb{C}$ is a function which is differentiable to all orders, show for all $N \in \mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ that

$$
f(1)=\sum_{k=0}^{N} \frac{1}{k!} f^{(k)}(0)+\frac{1}{N!} \int_{0}^{1} f^{(N+1)}(t)(1-t)^{N} d t
$$

Hint: use integration by parts and induction with Theorem 6.8 providing the case $N=0$ and $N=1$.
Exercise 6.2. Recall the if we define $e^{z}:=e^{x}(\cos y+i \sin y)$ where $z=x+i y$, then $\frac{d}{d t} e^{t z}=z e^{t z}$. Use Exercise 6.1 with $f(t)=e^{t z}$ to conclude;

$$
\begin{equation*}
e^{z}=f(1)=\sum_{k=0}^{N} \frac{z^{k}}{k!}+R_{N}(z) \tag{6.4}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{N}(z)=\frac{z^{N+1}}{N!} \int_{0}^{1} e^{t z}(1-t)^{N} d t \tag{6.5}
\end{equation*}
$$

Then show that $\lim _{N \rightarrow \infty}\left|R_{N}(z)\right|=0$ for all $z \in \mathbb{C}$ and use this to conclude

$$
e^{z}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \text { for all } z \in \mathbb{C}
$$

