1. Math 120B Homework $\# 9$ Added Problems

Let $D=D(0,1)$ be the unit disk centered at $0 \in \mathbb{C}$ and

$$
C=\partial D=\{z=x+i y \in \mathbb{C}:|z|=1\}
$$

be the unit circle in \mathbb{C} which is the boundary of D. Our goal is to solve the following Dirichlet problem.

A Dirichlet problem on D. Given a polynomial function of (x, y),

$$
p(x, y)=\sum_{m=0}^{M} \sum_{n=0}^{N} c_{m, n} x^{m} y^{n} \text { with } c_{m, n} \in \mathbb{R}
$$

we wish to find a harmonic function, $u: D \rightarrow \mathbb{R}$ such that $u=p$ on the boundary of D, i.e. $\Delta u(x, y)=0$ with

$$
u(x, y)=p(x, y) \text { when }|x+i y|=1, \text { i.e. for } z=x+i y \in C .
$$

Here are three steps to follow in order solve this problem.
(1) By expressing x and y as

$$
x=\frac{1}{2}(z+\bar{z}) \text { and } y=\frac{1}{2 i}(z-\bar{z})
$$

we can find $C_{m, n} \in \mathbb{C}$ so that

$$
\begin{equation*}
p(x, y)=P(z, \bar{z})=\sum_{m=0}^{M} \sum_{n=0}^{N} C_{m, n} z^{m} \bar{z}^{n} . \tag{1.1}
\end{equation*}
$$

(2) Since $z \cdot \bar{z}=1$ for $z \in C:=\partial D$, it follows that

$$
z^{m} \bar{z}^{n}=\left\{\begin{array}{lll}
z^{m-n} & \text { if } \quad m \geq n \\
\bar{z}^{n-m} & \text { if } n \geq m
\end{array} \text { for } z \in C .\right.
$$

Using this result in Eq. (1.1), we can find $a_{m}, b_{n} \in \mathbb{C}$ so that

$$
p(x, y)=\sum_{k=0}^{M} a_{m} z^{k}+\sum_{n=0}^{N} b_{n} \bar{z}^{n} \text { for } z=x+i y \in C
$$

(3) From Exercise 1 below and the fact that real parts of analytic functions are harmonic, we conclude that

$$
u(x, y):=\operatorname{Re}\left[\sum_{k=0}^{M} a_{k} z^{k}+\sum_{n=0}^{N} b_{n} \bar{z}^{n}\right]=\operatorname{Re} \sum_{k=0}^{M} a_{k} z^{k}+\operatorname{Re} \sum_{n=0}^{N} b_{n} \bar{z}^{n}
$$

is a harmonic function such that $u=p$ on $C=\partial D$.

Example 1. Let us find a harmonic function, $u(x, y)$, such that $u(x, y)=x^{2}$ when $|x+i y|=1$. To do this we use, for $|z|=1$, that

$$
\begin{aligned}
x^{2} & =\left(\frac{z+\bar{z}}{2}\right)^{2}=\frac{1}{4}\left[z^{2}+2 z \bar{z}+\bar{z}^{2}\right] \\
& =\frac{1}{4}\left[z^{2}+2+\bar{z}^{2}\right] .
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
u(x, y) & =\operatorname{Re} \frac{1}{4}\left[z^{2}+\bar{z}^{2}+2\right]=\frac{1}{4}\left[2\left(x^{2}-y^{2}\right)+2\right] \\
& =\frac{1}{2}\left[1+x^{2}-y^{2}\right]
\end{aligned}
$$

Note that when $|z|=1$ we have $1-y^{2}=x^{2}$ and so it is easy to see that $u(x, y)=x^{2}$ when $(x, y) \in C$. Moreover this function is easily seen to be harmonic.

Exercise 1. If $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic, show

$$
u(x, y)=\operatorname{Re}[f(\bar{z})]=\operatorname{Re}[f(x-i y)]
$$

is harmonic.

Exercise 2. Find a harmonic function, $u(x, y)$, such that $u(x, y)=$ $p(x, y)$ when $|x+i y|=1$ where;
(1) $p(x, y)=x^{2} y$,
(2) $p(x, y)=x^{3}$.

