4/9/2018

43.1 Classification of Singularities without Laurent

Theorem 43.1 (Classification of singularities without Laurent). If f : $D^{\prime}\left(z_{0}, \varepsilon\right) \rightarrow \mathbb{C}$ is an analytic function with an isolated singularity at z_{0}, then;

1. f has a removable singularity at z_{0} iff f is bounded near z_{0}.
2. f has a pole at z_{0} iff $\lim _{z \rightarrow z_{0}} f(z)=\infty$.
3. f has an essential singularity at z_{0} iff $\lim _{z \rightarrow z_{0}} f(z)$ does not exists in \mathbb{C}_{∞} iff $f\left(D^{\prime}\left(z_{0}, \delta\right)\right)$ is dense in \mathbb{C} for all $0<\delta<\varepsilon$.
[Item 3. is referred to as the Casorati-Weierstrass theorem.]
Proof. For notational simplicity we assume that $z_{0}=0$. If f has a removable singularity then $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ and we see that if we define $f(0)=a_{0}$, then f is analytic at z_{0} and hence bounded there. Conversely if f is bounded near 0 , then for $n \in \mathbb{N}$,

$$
\left|a_{-n}\right|=\left|\frac{1}{2 \pi i} \oint_{|z|=\delta} \frac{f(z)}{z^{-n+1}} d z\right| \leq \frac{1}{2 \pi} \delta^{n-1} M \cdot 2 \pi \delta \rightarrow 0 \text { as } \delta \downarrow 0
$$

and hence the Laurent series of f has zero principle part.
If $f\left(D^{\prime}\left(z_{0}, \delta\right)\right)$ is not dense in \mathbb{C} for some $0<\delta<\varepsilon$, then there exists $w \in \mathbb{C}$ and $\rho>0$ such that $|f(z)-w| \geq \rho$ for all $z \in D^{\prime}\left(z_{0}, \delta\right)$ and hence $g(z):=\frac{1}{f(z)-w}$ is bounded for z near z_{0} and therefore we may make g analytic in a neighborhood of z_{0} by setting $g\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} g(z)$. Assuming f is not constant we know that g has a zero of order $n \in \mathbb{N}_{0}$ at z_{0} and hence we may write

$$
\frac{1}{f(z)-w}=g(z)=\left(z-z_{0}\right)^{n} \psi(z)
$$

where ψ is analytic near z_{0} with $\psi\left(z_{0}\right) \neq 0$. Thus it follows that

$$
f(z)=w+\frac{1}{\left(z-z_{0}\right)^{n} \psi(z)}
$$

showing that f has a pole of order n at z_{0}. So we have shown if f is not constant and $f\left(D^{\prime}\left(z_{0}, \delta\right)\right)$ is not dense in \mathbb{C} for some $0<\delta<\varepsilon$, then f has a pole or a removable singularity at z_{0}. Conversely if f has a pole at
z_{0}, then $\lim _{z \rightarrow \infty} f\left(z_{0}\right)=\infty$ or if f has a removable singularity at z_{0} then $\lim _{z \rightarrow \infty} f\left(z_{0}\right)=L \in \mathbb{C}$. In either case, $f\left(D^{\prime}\left(z_{0}, \delta\right)\right)$ is not dense in \mathbb{C}.

Thus there is only one possibility left to consider, i.e. where $f\left(D^{\prime}\left(z_{0}, \delta\right)\right)$ is dense in \mathbb{C}. This last possibility necessarily must correspond to the case where f has an essential singularity at z_{0}. This case may be distinguished by checking that $\lim _{z \rightarrow z_{0}} f(z)$ does not exists in \mathbb{C}_{∞}.

Example 43.2. To illustrate item 3. of Theorem 43.1 above consider $f(z)=e^{1 / z}$ which has an essential singularity at 0 . Note if $0 \neq w=r e^{i \theta}=e^{\ln r+i \theta}$, then $e^{1 / z}=w=e^{\ln r+i \theta}$ iff

$$
\frac{1}{z}=\ln r+i \theta+i 2 \pi k \text { for some } k \in \mathbb{Z} \Longleftrightarrow z=z_{k}:=\frac{1}{\ln r+i \theta+i 2 \pi k} .
$$

Since $z_{k} \rightarrow 0$ as $k \rightarrow \infty$ from which it follows $f\left(D^{\prime}(0, \delta)\right)=\mathbb{C} \backslash\{0\}$ for all $\delta>0$. This example illustrated Great Picard's Theorem.
Theorem 43.3 (Great Picard's Theorem). If an analytic function f has an essential singularity at a point z_{0}, then on any punctured neighborhood of $z_{0}, f(z)$ takes on all possible complex values, with at most a single exception, infinitely often.

43.2 The Theory of Partial Fractions

Let us give a complex variables interpretation of the theory behind partial fractions.

Example 43.4. If

$$
f(z)=\frac{z}{(z-1)(z-3)^{2}}
$$

then f has a pole of order 2 at 3 and so there exists $a, b \in \mathbb{C}$ so that

$$
g(z)=f(z)-\left[\frac{a}{z-3}+\frac{b}{(z-3)^{2}}\right]
$$

where $\frac{a}{z-3}+\frac{b}{(z-3)^{2}}$ is the principle part of f near 3. The function $g(z)$ has removable singularity at 3 and hence may be extended to an analytic on $\mathbb{C} \backslash$
$\{1\}$. This function satisfies, $\lim _{z \rightarrow \infty} g(z)=0$ and has a pole of order 1 at 1 . Following the same logic let $\frac{c}{z-1}$ be the principle part of g near 1 , then

$$
h(z)=g(z)-\frac{c}{z-1}
$$

is analytic on \mathbb{C} and moreover

$$
\lim _{z \rightarrow \infty} h(z)=\lim _{z \rightarrow \infty}\left[g(z)-\frac{c}{z-1}\right]=0
$$

It now follows that h is a bounded entire function and hence $h(z)$ is constant by Louiville's theorem. Since $\lim _{z \rightarrow \infty} h(z)=0$, the constant value of h must be 0 , i.e. $h(z)=0$ for all $z \in \mathbb{C}$. Thus we have shown there exists $a, b, c \in \mathbb{C}$ such that

$$
0=g(z)-\frac{c}{z-1}=f(z)-\left[\frac{a}{z-3}+\frac{b}{(z-3)^{2}}\right]-\frac{c}{z-1},
$$

i.e. the following partial fraction expansion holds;

$$
\begin{equation*}
\frac{z}{(z-1)(z-3)^{2}}=f(z)=\frac{a}{z-3}+\frac{b}{(z-3)^{2}}+\frac{c}{z-1} . \tag{43.1}
\end{equation*}
$$

We can further find the coefficients using

$$
\begin{aligned}
& c=\operatorname{res}_{z=1} \frac{z}{(z-1)(z-3)^{2}}=\frac{1}{(1-3)^{2}}=\frac{1}{4} \\
& a=\operatorname{res}_{z=3} \frac{z}{(z-1)(z-3)^{2}}=\left.\frac{1}{1!} \frac{d}{d z}\right|_{z=3} \frac{z}{z-1}=\frac{1}{1!} \cdot \frac{3-1-3}{(3-1)^{2}}=-\frac{1}{4}
\end{aligned}
$$

Lastly,

$$
b=\operatorname{res}_{3}\left[\frac{z}{(z-1)(z-3)^{2}}(z-3)\right]=\frac{3}{3-1}=\frac{3}{2}
$$

and we have shown,

$$
\frac{z}{(z-1)(z-3)^{2}}=\frac{1}{4} \frac{1}{z-1}+\frac{3}{2} \frac{1}{(z-3)^{2}}-\frac{1}{4} \frac{1}{z-3}
$$

The fact that the coefficients of the $\frac{1}{1-z}$ and $\frac{1}{z-3}$ terms sum to 0 is a consequence of the fact that $f(z)=O\left(\frac{1}{z^{2}}\right)$ as $z \rightarrow \infty$. This sort of statement holds more generally.

Theorem 43.5 (Integrals of rational functions). For any rational function, $f(x)=p(x) / q(x)$ (where $p(x)$ and $q(x)$ are polynomials with possibly complex coefficients), one can always find an indefinite integral, $F(x)=$ $\int f(x) d x$.

Proof. By dividing q into p if necessary, there is not loss in generality assuming that $\operatorname{deg} p<\operatorname{deg} q$. To complete the proof, we decompose f into its partial fraction decomposition in Eq. (??) which reduces the problem to finding anti-derivatives for $(x-w)^{-k}$ for $k \in \mathbb{N}$ which is easy to do, namely

$$
\int(x-w)^{-k} d x=\left\{\begin{array}{cl}
\frac{1}{1-k}(x-w)^{-k+1} & \text { if } k>1 \\
\log (x-w) & \text { if } k=1
\end{array}\right.
$$

if $k=1$ provided w is not real. If w is real we take $\int(x-w)^{-1} d x=\ln |x-w|+$ C as usual.

Example 43.6. If

$$
f(x)=\frac{1}{1+x^{2}}=\frac{1}{2 i} \frac{1}{x-i}-\frac{1}{2 i} \frac{1}{x+i}=\frac{1}{2 i}\left(\frac{1}{x-i}-\frac{1}{x+i}\right)
$$

and hence

$$
\int f(x) d x=\frac{1}{2 i}[\log (x-i)-\log (x+i)]+C
$$

Referring to Figure 43.1, we see that

Fig. 43.1. The geometry involved with computing the logarithms.

$$
\begin{aligned}
\log (x-i)-\log (x+i) & =[\ln |x-i|-i \theta]-[\ln |x+i|+i \theta] \\
& =-2 i \theta=-2 i(\pi / 2-\alpha)=2 i\left(\tan ^{-1}(x)-\pi / 2\right)
\end{aligned}
$$

and hence

$$
\int f(x) d x=\frac{1}{2 i} 2 i\left(\tan ^{-1}(x)-\pi / 2\right)+C=\tan ^{-1}(x)+C
$$

as is we all know to be the case.
Remark 43.7. If $p(x)$ and $q(x)$ are polynomials with complex coefficients such $q(x) \neq 0$ for all $x \in \mathbb{R}$ and $\operatorname{deg} q \geq \operatorname{deg} p+2$, then

$$
\frac{p(x)}{q(x)}=\sum_{z: q(z)=0}\left(\operatorname{res}_{z} \frac{p}{q}\right) \cdot \frac{1}{x-z}+g(x)
$$

where $g(x)$ is a linear combination of terms for the form $\left(\frac{1}{x-w}\right)^{k}$ with $k \in$ $\{2,3,4, \ldots\}=\mathbb{N} \backslash\{1\}$ and $w \in \mathbb{C} \backslash \mathbb{R}$. Since

$$
\int_{-\infty}^{\infty}(x-w)^{-k} d x=\left.\frac{1}{1-k}(x-w)^{-k+1}\right|_{-\infty} ^{\infty}=0 \text { for } k \geq 2
$$

we conclude that

$$
\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} d x=\int_{-\infty}^{\infty}\left[\sum_{z: q(z)=0}\left(\operatorname{res}_{z} \frac{p}{q}\right) \cdot \frac{1}{x-z}\right] d x
$$

As hinted at the end of Example 43.4 we know that

$$
\sum_{z: q(z)=0} \operatorname{res}_{z} \frac{p}{q}=0
$$

a fact that also follows by computing residues at ∞ (see homework problem) or by showing

$$
\oint_{|z|=R} \frac{p(z)}{q(z)} d z=O\left(\frac{1}{R}\right) \rightarrow 0 \text { as } R \rightarrow \infty
$$

Thus with some work one shows that

$$
\begin{aligned}
\int_{-\infty}^{\infty} & {\left[\sum_{z: q(z)=0} \operatorname{res}_{z=0} \frac{p(z)}{q(z)} \frac{1}{x-z}\right] d x } \\
& =\left.\lim _{R \rightarrow \infty} \sum_{z: q(z)=0} \operatorname{res}_{z} \frac{p}{q} \cdot \log (x-z)\right|_{-R} ^{R} \\
& =\sum_{\operatorname{Im} z>0} r e s_{z} \frac{p}{q} \cdot i \pi-i \pi \sum_{\operatorname{Im} z<0} \operatorname{res}_{z} \frac{p}{q} \\
& =i 2 \pi \cdot \sum_{\operatorname{Im} z>0} r e s_{z} \frac{p}{q}=-i 2 \pi \cdot \sum_{\operatorname{Im} z<0} \operatorname{res}_{z} \frac{p}{q}
\end{aligned}
$$

which is a result we will again easily prove below. However, partial fractions is basically applicable in all situations but may be more work than is necessary in special cases of interest.

