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43.1 Classification of Singularities without Laurent

Theorem 43.1 (Classification of singularities without Laurent). If f :
D′ (z0, ε)→ C is an analytic function with an isolated singularity at z0, then;

1. f has a removable singularity at z0 iff f is bounded near z0.
2. f has a pole at z0 iff limz→z0 f (z) =∞.
3. f has an essential singularity at z0 iff limz→z0 f (z) does not exists in C∞

iff f (D′ (z0, δ)) is dense in C for all 0 < δ < ε.

[Item 3. is referred to as the Casorati–Weierstrass theorem.]

Proof. For notational simplicity we assume that z0 = 0. If f has a removable
singularity then f (z) =

∑∞
k=0 akz

k and we see that if we define f (0) = a0, then
f is analytic at z0 and hence bounded there. Conversely if f is bounded near
0, then for n ∈ N,

|a−n| =

∣∣∣∣∣ 1

2πi

∮
|z|=δ

f (z)

z−n+1
dz

∣∣∣∣∣ ≤ 1

2π
δn−1M · 2πδ → 0 as δ ↓ 0

and hence the Laurent series of f has zero principle part.
If f (D′ (z0, δ)) is not dense in C for some 0 < δ < ε, then there exists

w ∈ C and ρ > 0 such that |f (z)− w| ≥ ρ for all z ∈ D′ (z0, δ) and hence
g (z) := 1

f(z)−w is bounded for z near z0 and therefore we may make g analytic

in a neighborhood of z0 by setting g (z0) = limz→z0 g (z) . Assuming f is not
constant we know that g has a zero of order n ∈ N0 at z0 and hence we may
write

1

f (z)− w
= g (z) = (z − z0)

n
ψ (z)

where ψ is analytic near z0 with ψ (z0) 6= 0. Thus it follows that

f (z) = w +
1

(z − z0)
n
ψ (z)

showing that f has a pole of order n at z0. So we have shown if f is not
constant and f (D′ (z0, δ)) is not dense in C for some 0 < δ < ε, then f
has a pole or a removable singularity at z0. Conversely if f has a pole at

z0, then limz→∞ f (z0) = ∞ or if f has a removable singularity at z0 then
limz→∞ f (z0) = L ∈ C. In either case, f (D′ (z0, δ)) is not dense in C.

Thus there is only one possibility left to consider, i.e. where f (D′ (z0, δ)) is
dense in C. This last possibility necessarily must correspond to the case where
f has an essential singularity at z0. This case may be distinguished by checking
that limz→z0 f (z) does not exists in C∞.

Example 43.2. To illustrate item 3. of Theorem 43.1 above consider f (z) = e1/z

which has an essential singularity at 0. Note if 0 6= w = reiθ = eln r+iθ, then
e1/z = w = eln r+iθ iff

1

z
= ln r + iθ + i2πk for some k ∈ Z ⇐⇒ z = zk :=

1

ln r + iθ + i2πk
.

Since zk → 0 as k → ∞ from which it follows f (D′ (0, δ)) = C \ {0} for all
δ > 0. This example illustrated Great Picard’s Theorem.

Theorem 43.3 (Great Picard’s Theorem). If an analytic function f has
an essential singularity at a point z0, then on any punctured neighborhood of
z0, f (z)takes on all possible complex values, with at most a single exception,
infinitely often.

43.2 The Theory of Partial Fractions

Let us give a complex variables interpretation of the theory behind partial
fractions.

Example 43.4. If

f (z) =
z

(z − 1) (z − 3)
2

then f has a pole of order 2 at 3 and so there exists a, b ∈ C so that

g (z) = f (z)−

[
a

z − 3
+

b

(z − 3)
2

]

where a
z−3 + b

(z−3)2
is the principle part of f near 3. The function g (z) has

removable singularity at 3 and hence may be extended to an analytic on C \
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{1} . This function satisfies, limz→∞ g (z) = 0 and has a pole of order 1 at 1.
Following the same logic let c

z−1 be the principle part of g near 1, then

h (z) = g (z)− c

z − 1

is analytic on C and moreover

lim
z→∞

h (z) = lim
z→∞

[
g (z)− c

z − 1

]
= 0.

It now follows that h is a bounded entire function and hence h (z) is constant
by Louiville’s theorem. Since limz→∞ h (z) = 0, the constant value of h must
be 0, i.e. h (z) = 0 for all z ∈ C. Thus we have shown there exists a, b, c ∈ C
such that

0 = g (z)− c

z − 1
= f (z)−

[
a

z − 3
+

b

(z − 3)
2

]
− c

z − 1
,

i.e. the following partial fraction expansion holds;

z

(z − 1) (z − 3)
2 = f (z) =

a

z − 3
+

b

(z − 3)
2 +

c

z − 1
. (43.1)

We can further find the coefficients using

c = resz=1
z

(z − 1) (z − 3)
2 =

1

(1− 3)
2 =

1

4

a = resz=3
z

(z − 1) (z − 3)
2 =

1

1!

d

dz
|z=3

z

z − 1
=

1

1!
· 3− 1− 3

(3− 1)
2 = −1

4
.

Lastly,

b = res3

[
z

(z − 1) (z − 3)
2 (z − 3)

]
=

3

3− 1
=

3

2

and we have shown,

z

(z − 1) (z − 3)
2 =

1

4

1

z − 1
+

3

2

1

(z − 3)
2 −

1

4

1

z − 3
.

The fact that the coefficients of the 1
1−z and 1

z−3 terms sum to 0 is a consequence

of the fact that f (z) = O
(

1
z2

)
as z → ∞. This sort of statement holds more

generally.

Theorem 43.5 (Integrals of rational functions). For any rational func-
tion, f (x) = p (x) /q (x) (where p (x) and q (x) are polynomials with possi-
bly complex coefficients), one can always find an indefinite integral, F (x) =∫
f (x) dx.

Proof. By dividing q into p if necessary, there is not loss in generality
assuming that deg p < deg q. To complete the proof, we decompose f into its
partial fraction decomposition in Eq. (??) which reduces the problem to finding

anti-derivatives for (x− w)
−k

for k ∈ N which is easy to do, namely∫
(x− w)

−k
dx =

{
1

1−k (x− w)
−k+1

if k > 1

Log (x− w) if k = 1

if k = 1 provided w is not real. If w is real we take
∫

(x− w)
−1
dx = ln |x− w|+

C as usual.

Example 43.6. If

f (x) =
1

1 + x2
=

1

2i

1

x− i
− 1

2i

1

x+ i
=

1

2i

(
1

x− i
− 1

x+ i

)
and hence ∫

f (x) dx =
1

2i
[Log (x− i)− Log (x+ i)] + C.

Referring to Figure 43.1, we see that

0 Re

i

−i

Im

x

θ

−θ

α

x− i

x+ i

Fig. 43.1. The geometry involved with computing the logarithms.

Log (x− i)− Log (x+ i) = [ln |x− i| − iθ]− [ln |x+ i|+ iθ]

= −2iθ = −2i (π/2− α) = 2i
(
tan−1 (x)− π/2

)
and hence
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∫
f (x) dx =

1

2i
2i
(
tan−1 (x)− π/2

)
+ C = tan−1 (x) + C

as is we all know to be the case.

Remark 43.7. If p (x) and q (x) are polynomials with complex coefficients such
q (x) 6= 0 for all x ∈ R and deg q ≥ deg p+ 2, then

p (x)

q (x)
=

∑
z:q(z)=0

(
resz

p

q

)
· 1

x− z
+ g (x)

where g (x) is a linear combination of terms for the form
(

1
x−w

)k
with k ∈

{2, 3, 4, . . . } = N \ {1} and w ∈ C \ R. Since∫ ∞
−∞

(x− w)
−k
dx =

1

1− k
(x− w)

−k+1 |∞−∞ = 0 for k ≥ 2

we conclude that∫ ∞
−∞

p (x)

q (x)
dx =

∫ ∞
−∞

 ∑
z:q(z)=0

(
resz

p

q

)
· 1

x− z

 dx.
As hinted at the end of Example 43.4 we know that∑

z:q(z)=0

resz
p

q
= 0,

a fact that also follows by computing residues at ∞ (see homework problem)
or by showing ∮

|z|=R

p (z)

q (z)
dz = O

(
1

R

)
→ 0 as R→∞.

Thus with some work one shows that∫ ∞
−∞

 ∑
z:q(z)=0

resz=0
p (z)

q (z)

1

x− z

 dx
= lim
R→∞

∑
z:q(z)=0

resz
p

q
· Log (x− z) |R−R

=
∑

Im z>0

resz
p

q
· iπ − iπ

∑
Im z<0

resz
p

q

= i2π ·
∑

Im z>0

resz
p

q
= −i2π ·

∑
Im z<0

resz
p

q

which is a result we will again easily prove below. However, partial fractions
is basically applicable in all situations but may be more work than is necessary
in special cases of interest.
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