Mean value and maximum (minimum) principles (6/6/2018)

Corollary 68.1 (Mean value property). Let $\Omega \subset_{o} \mathbb{C}$ and $f \in H(\Omega)$, then f satisfies the mean value property

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+\rho e^{i \theta}\right) d \theta \tag{68.1}
\end{equation*}
$$

which holds for all z_{0} and $\rho \geq 0$ such that $\overline{D\left(z_{0}, \rho\right)} \subset \Omega$.
Proof. By Cauchy's integral formula and parametrizing $\partial D\left(z_{0}, \rho\right)$ as $z=$ $z_{0}+\rho e^{i \theta}$, we learn

$$
\begin{aligned}
f\left(z_{0}\right) & =\frac{1}{2 \pi i} \int_{\partial D\left(z_{0}, \rho\right)} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+\rho e^{i \theta}\right)}{\rho e^{i \theta}} i \rho e^{i \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+\rho e^{i \theta}\right) d \theta
\end{aligned}
$$

Theorem 68.2 (Mean Value Property for Harmonic Functions). If u : $\overline{D\left(z_{0}, r\right)} \rightarrow \mathbb{R}$ be a continuous function which is harmonic on $D\left(z_{0}, r\right)$, then

$$
\begin{equation*}
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta=\frac{1}{2 \pi i} \oint_{\left|z-z_{0}\right|=r} u(z) \frac{d z}{z} \tag{68.2}
\end{equation*}
$$

Proof. Let v be a harmonic conjugate to u (see Corollary 64.10) so that $f=u+i v$ is analytic on $D\left(z_{0}, r\right)$. For $0<\rho<r$, we take the real part of Eq. 68.1) to find arrive at

$$
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+\rho e^{i \theta}\right) d \theta
$$

We then let $\rho \uparrow t$ to arrive at Eq. 68.2.
Theorem 68.3 (Maximum principle for Harmonic Functions). Suppose that Ω is an open connected region and $u: \Omega \rightarrow \mathbb{R}$ is a harmonic function. If u has a local maximum (minimum) at some point $z_{0} \in \Omega$, then u is constant.

Proof. From Eq. 68.2 and the given assumptions,

$$
0=u\left(z_{0}\right)-\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[u\left(z_{0}\right)-u\left(z_{0}+r e^{i \theta}\right)\right] d \theta
$$

where for r sufficiently small, $u\left(z_{0}\right)-u\left(z_{0}+r e^{i \theta}\right) \geq 0$ and hence we must have

$$
u\left(z_{0}\right)-u\left(z_{0}+r e^{i \theta}\right)=0 \text { for all } \theta \text { and } r \text { small. }
$$

This shows that u is constant near z_{0}. Given another point $z \in \Omega$, we choose an analytic function, f defined on a simply connected region containing z_{0} and z such that $\operatorname{Re} f=u$. By the open mapping theorem and analytioc continuation methods it follows that f is constant on the this region and hence $u(z)=$ $\operatorname{Re} f(z)=\operatorname{Re} f\left(z_{0}\right)=u\left(z_{0}\right)$.

Corollary 68.4 (Harmonic function maximum principle). Let Ω be a bounded region and $u \in C(\bar{\Omega}, \mathbb{R})$ such that $\Delta u(z)=0$ for $z \in \Omega$. Then for all $z \in \Omega$,

$$
\min _{z \in \partial \Omega} u(z) \leq u(z) \leq \max _{z \in \partial \Omega} u(z)
$$

Furthermore if there exists $z_{0} \in \Omega$ such that $u\left(z_{0}\right)$ is either a minimum or a maximum, then u is constant.
Corollary 68.5 (Dirichlet problem uniqueness). Let Ω be a bounded region and $g \in C(\partial \Omega, \mathbb{R})$ be a given function, then there is at most one function $u \in C(\bar{\Omega}, \mathbb{R})$ such that $\Delta u(z)=0$ for $z \in \Omega$ and $u=g$ on $\partial \Omega$.

Proof. If there was another function w then $v=u-w$ would solve $\Delta v=0$ with $v=0$ on $\partial \Omega$ and then by Corollary 68.4 it follows that $v=0$, i.e. $u=w$.

Solving the Dirichlet problems on D

Theorem 69.1 (Change of Variables). Let C be a finite length contour h be an analytic function on a domain, D, such that $C \subset D$, and $f: h \circ C \rightarrow \mathbb{C}$ be a continuous function, then,

$$
\int_{C} f(h(z)) h^{\prime}(z) d z=\int_{h \circ C} f(w) d w
$$

In short, if we let $w=h(z)$, then $d w=h^{\prime}(z) d z$.
Proof. Let $[a, b] \ni t \rightarrow z(t)$ be a parametrization of C and so $w(t):=$ $h(z(t))$ is a parameterization of $h(C)$. Therefore,

$$
\begin{aligned}
\int_{h \circ C} f(w) d w & =\int_{a}^{b} f(w(t)) \dot{w}(t) d t=\int_{a}^{b} f(h(z(t))) h^{\prime}(z(t)) \dot{z}(t) d t \\
& =\int_{C} f(h(z)) h^{\prime}(z) d z
\end{aligned}
$$

Notation 69.2 For the rest of this section, let $D=D(0,1)$ be the open unit disk centered at $0 \in \mathbb{C}$ and \bar{D} be the closed unit disk.

Remark 69.3. If $h(z)=f(z) / g(z)$ where f, g are analytic functions near z_{0}, $g\left(z_{0}\right) \neq 0 \neq f\left(z_{0}\right)$, then

$$
\frac{h^{\prime}(z)}{h(z)}=\frac{f^{\prime}(z)}{f(z)}-\frac{g^{\prime}(z)}{g(z)}
$$

This is easily verified since, by the quotient rule,

$$
\frac{h^{\prime}}{h}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \cdot \frac{1}{h}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \frac{g}{f}=\frac{f^{\prime}}{f}-\frac{g^{\prime}}{g}
$$

Lemma 69.4. If, for $\xi \in D, \varphi_{\xi}$ is the LFT (Möbius transform),

$$
\begin{equation*}
\varphi_{\xi}(z):=\frac{z-\xi}{1-\bar{\xi} z} \tag{69.1}
\end{equation*}
$$

then $\varphi_{\xi}: \bar{D} \rightarrow \bar{D}$ is a homeomorphism, $\varphi_{\xi}: D \rightarrow D$ is a conformal, $\varphi_{\xi}(\partial D)=$ ∂D, and for $|z|=1$,

$$
\begin{align*}
\frac{\varphi_{\xi}^{\prime}(z)}{\varphi_{\xi}(z)} & =\frac{1}{z-\xi}+\frac{\bar{\xi}}{1-\bar{\xi} z} \tag{69.2}\\
& =\frac{1-|\xi|^{2}}{|z-\xi|^{2}} \frac{1}{z} \tag{69.3}
\end{align*}
$$

Moreover, $\theta \rightarrow \varphi_{\xi}\left(e^{i \theta}\right)$ traverses the ∂D in the counter-clockwise direction.
Proof. The stated mapping properties of φ_{ξ} have already been proved in Theorem 59.7 above. From Remark 69.3 ,

$$
\begin{equation*}
\frac{\varphi_{\xi}^{\prime}(z)}{\varphi_{\xi}(z)}=\frac{1}{z-\xi}+\frac{\bar{\xi}}{1-\bar{\xi} z} \text { for }|z|=1 \text { and }|\xi|<1 \tag{69.4}
\end{equation*}
$$

which proves Eq. 69.2. If $|z|=1$ (i.e. $z \bar{z}=1$), we have

$$
\begin{aligned}
\frac{\varphi_{\xi}^{\prime}(z)}{\varphi_{\xi}(z)} & =\frac{1}{z-\xi}+\frac{\bar{\xi}}{1-\bar{\xi} z}=\frac{1-\bar{\xi} z+\bar{\xi}(z-\xi)}{(z-\xi)(1-\bar{\xi} z)} \\
& =\frac{1}{z \bar{z}} \frac{1-|\xi|^{2}}{(z-\xi)(1-\bar{\xi} z)}=\frac{1}{z} \frac{1-|\xi|^{2}}{(1-\bar{z} \xi)(1-\bar{\xi} z)} \\
& =\frac{1}{z} \frac{1-|\xi|^{2}}{|1-\bar{z} \xi|^{2}}=\frac{1}{z} \frac{1-|\xi|^{2}}{|z-\xi|^{2}}
\end{aligned}
$$

from which we deduce Eq. 69.3.
The last assertion is a consequence of the identity,

$$
\begin{aligned}
\frac{d}{d \theta} \varphi_{\xi}\left(e^{i \theta}\right) & =i e^{i \theta} \varphi_{\xi}^{\prime}\left(e^{i \theta}\right)=i e^{i \theta} \frac{1}{e^{i \theta}} \frac{1-|\xi|^{2}}{\left|e^{i \theta}-\xi\right|^{2}} \varphi_{\xi}\left(e^{i \theta}\right) \\
& =i \frac{1-|\xi|^{2}}{\left|e^{i \theta}-\xi\right|^{2}} \varphi_{\xi}\left(e^{i \theta}\right)=i \gamma \varphi_{\xi}\left(e^{i \theta}\right)
\end{aligned}
$$

where $\gamma>0$ and therefore $\frac{d}{d \theta} \varphi_{\xi}\left(e^{i \theta}\right)$ is a tangent vector to ∂D at $\varphi_{\xi}\left(e^{i \theta}\right)$ which points in the counter-clockwise direction.
Proposition 69.5 (Mean value property). If $u: \bar{D} \rightarrow \mathbb{R}$ is continuous function which is harmonic inside of D, then

$$
\begin{equation*}
u(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u\left(e^{i \theta}\right) d \theta=\frac{1}{2 \pi i} \oint_{|w|=1} u(w) \frac{d w}{w} \tag{69.5}
\end{equation*}
$$

Proof. Let v be the Harmonic conjugate to u so that $f=u+i v$ is analytic on D. Then by the Cauchy integral formula we know that

$$
f(0)=\frac{1}{2 \pi i} \oint_{|w|=r} \frac{f(w)}{w} d w=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(r e^{i \theta}\right) d \theta \text { for all } 0<r<1
$$

Taking the real part of this equation then shows

$$
u(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u\left(r e^{i \theta}\right) d \theta
$$

and then letting $r \uparrow 1$ proves Eq. 69.5).
Corollary 69.6 (Representation formula). If $u: \bar{D} \rightarrow \mathbb{R}$ is continuous function which is harmonic inside of D, then, for $|\xi|<1$,

$$
\begin{align*}
u(\xi) & =\frac{1}{2 \pi i} \oint_{\partial D} u\left(\varphi_{-\xi}(w)\right) \frac{d w}{w} \tag{69.6}\\
& =\frac{1}{2 \pi i} \oint_{\partial D} u(z) \frac{\varphi_{\xi}^{\prime}(z)}{\varphi_{\xi}(z)} d z \tag{69.7}\\
& =\frac{1}{2 \pi i} \oint_{\partial D} u(z)\left(\frac{1}{z-\xi}+\frac{\bar{\xi}}{1-\bar{\xi} z}\right) d z \tag{69.8}\\
& =\frac{1}{2 \pi i} \oint_{\partial D} u(z) \frac{1-|\xi|^{2}}{|z-\xi|^{2}} \frac{d z}{z} \tag{69.9}\\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} u\left(e^{i \theta}\right) \frac{1-|\xi|^{2}}{\left|e^{i \theta}-\xi\right|^{2}} d \theta \tag{69.10}
\end{align*}
$$

Proof. Let $\xi \in D$ and $\varphi_{-\bar{\xi}}$ be the LFT as in Eq. 69.1. As we have seen some time ago, $\varphi_{-\xi}: \bar{D} \rightarrow \bar{D}$ is a homeomorphism, $\varphi_{-\xi}: \partial D \rightarrow \partial D$, and $\varphi_{-\xi}: D \rightarrow D$ is conformal. Hence $u \circ \varphi_{-\xi}=\operatorname{Re} f \circ \varphi_{-\xi}$ is still harmonic and is still continuous on \bar{D}. Therefore we may apply the mean value property in Eq. 69.5 with u replaced by $u \circ \varphi_{-\xi}$ shows gives Eq. 69.6 for all $\xi \in D$. Using Theorem 39.4, we make the change of variables, $w=\varphi_{\xi}(z)$, to find with the aid of Lemma ${ }^{1} 69.4$ that Eq. 69.6 may be rewritten as in Eqs. 69.7 69.9) while Eq. 69.10 then follows by definition of the contour integral around ∂D in the counter-clockwise orientation.

$$
\begin{aligned}
u(\xi) & =u \circ \varphi_{-\xi}(0)=\frac{1}{2 \pi i} \oint_{\partial D} u(z) \frac{1-|\xi|^{2}}{|z-\xi|^{2}} \frac{d z}{z} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} u(z) \frac{1-|\xi|^{2}}{\left|e^{i \theta}-\xi\right|^{2}} d \theta
\end{aligned}
$$

[^0]which is Eq. 69.10.
Theorem 69.7 (Solving the Dirichlet Problem). For $g \in C(\partial D, \mathbb{R})$, let
\[

$$
\begin{equation*}
u_{g}(\xi):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g\left(e^{i \theta}\right) \frac{1-|\xi|^{2}}{\left|e^{i \theta}-\xi\right|^{2}} d \theta \text { for }|\xi|<1 \tag{69.11}
\end{equation*}
$$

\]

If we extend u_{g} to the ∂D by setting, $u_{g}=g$ on ∂D, then $u_{g}: \bar{D} \rightarrow \mathbb{R}$ is continuous, $u_{g}=g$ on ∂D, and $\Delta u_{g}=0$ in D.

Proof. As in Corollary 69.6. we may also write $u_{g}(\xi)$ as

$$
\begin{align*}
u_{g}(\xi) & =\frac{1}{2 \pi i} \oint_{\partial D} g(z)\left(\frac{1}{z-\xi}+\frac{\bar{\xi}}{1-\bar{\xi} z}\right) d z \tag{69.12}\\
& =\frac{1}{2 \pi i} \oint_{\partial D} g(z) \frac{1}{z-\xi} d z+\frac{1}{2 \pi i} \oint_{\partial D} g(z) \frac{\bar{\xi}}{1-\bar{\xi} z} d z
\end{align*}
$$

from which it follows that u_{g} is the sum of a holomorphic and anti-holmorphic function and therefore u_{g} is harmonic.

Similarly as in Corollary 69.6 we can also write $u_{g}(\xi)$ as

$$
u_{g}(\xi)=\frac{1}{2 \pi i} \oint_{\partial D} g\left(\varphi_{-\xi}(w)\right) \frac{d w}{w}
$$

We now let $\xi=r v$ with $0 \leq r<1$ and $|v|=1$ and then compute,

$$
\varphi_{-\xi}(w)=\varphi_{-r v}(w)=\frac{w+r v}{1+r \bar{v} w}=v \cdot \bar{v} \frac{w+r v}{1+r \bar{v} w}=v \cdot \frac{\bar{v} w+r}{1+r \bar{v} w}
$$

and so

$$
u_{g}(r v)=\frac{1}{2 \pi i} \oint_{\partial D} g\left(v \cdot \frac{\bar{v} w+r}{1+r \bar{v} w}\right) \frac{d w}{w}=\frac{1}{2 \pi i} \oint_{\partial D} g\left(v \cdot \frac{z+r}{1+r z}\right) \frac{d z}{z}
$$

wherein we made the change of variables $z=\bar{v} w$ in the last equality. Since

$$
\lim _{r \uparrow 1} \frac{z+r}{1+r z}=\left\{\begin{array}{c}
1 \text { if } z \neq-1 \\
-1 \text { if } z=-1
\end{array}\right.
$$

we may conclude (by DCT) that

$$
\lim _{r \uparrow 1} u_{g}(r v)=\frac{1}{2 \pi i} \oint_{\partial D} g(v) \frac{d z}{z}=g(v) .
$$

In fact if we let $\delta_{g}(\eta):=\max _{|v|=1}|g(v \eta)-g(v)|$ which goes to zero as $\eta \rightarrow 1$ by uniform continuity of g on ∂D, we may further conclude

$$
\begin{aligned}
\max _{|v|=1}\left|u_{g}(r v)-g(v)\right| & =\max _{|v|=1}\left|\frac{1}{2 \pi i} \oint_{\partial D}\left[g\left(v \cdot \frac{z+r}{1+r z}\right)-g(v)\right] \frac{d z}{z}\right| \\
& \leq \oint_{\partial D} \delta_{g}\left(\frac{z+r}{1+r z}\right)|d z| \rightarrow 0 \text { as } r \uparrow 1
\end{aligned}
$$

This last assertion easily implies shows that u_{g}, as defined, is in fact continuous on \bar{D}.
Definition 69.8 (Poisson Kernel). For $0 \leq r<1$ and $\theta \in \mathbb{R}$, let

$$
p_{r}(\theta):=\frac{1-r^{2}}{1+r^{2}-2 r \cos (\theta)}
$$

which we referred to as the Poisson kernel.
Corollary 69.9 (Poisson Integral Formula). If $g \in C(\partial D, \mathbb{R}), 0 \leq r<1$, and $\alpha \in \mathbb{R}$, then

$$
\begin{equation*}
u_{g}\left(r e^{i \alpha}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} p_{r}(\alpha-\theta) g\left(e^{i \theta}\right) d \theta \tag{69.13}
\end{equation*}
$$

Proof. If we write $\xi=r e^{i \alpha}$, then

$$
\begin{aligned}
\frac{1-|\xi|^{2}}{\left|e^{i \theta}-\xi\right|^{2}} & =\frac{1-\left|r e^{i \alpha}\right|^{2}}{\left|e^{i \theta}-r e^{i \alpha}\right|^{2}}=\frac{1-r^{2}}{1+r^{2}-2 r \cos (\alpha-\theta)} \\
& =\frac{1-r^{2}}{1+r^{2}-2 r \cos (\theta)}
\end{aligned}
$$

and so Eq. 69.11 is equivalent to Eq. 69.13.
Theorem 69.10 (Fourier series representation). The function u_{g} in Theorem 69.7 has the "Fourier series representation,"

$$
\begin{equation*}
u_{g}\left(r e^{i \alpha}\right)=\sum_{n=-\infty}^{\infty} r^{|n|} \hat{g}(n) e^{i n \alpha} \tag{69.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{g}(n):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g\left(e^{i \theta}\right) e^{-i n \theta} d \theta \tag{69.15}
\end{equation*}
$$

Proof. We start with the expression,

$$
u_{g}(\xi)=\frac{1}{2 \pi i} \oint_{\partial D} g(z)\left(\frac{z}{z-\xi}+\frac{\bar{\xi} z}{1-\bar{\xi} z}\right) \frac{d z}{z} \text { for }|\xi|<1
$$

By geometric series considerations,

This inequality along with the Cauchy-Schwarz inequality, then shows

$$
\begin{aligned}
\sum_{n \in \mathbb{Z} \backslash\{0\}}|\hat{g}(n)| & =\sum_{n \in \mathbb{Z} \backslash\{0\}}|\hat{g}(n)||n| \cdot \frac{1}{|n|} \\
& \leq\left(\sum_{n=-\infty}^{\infty} n^{2}|\hat{g}(n)|^{2}\right)^{1 / 2} \cdot\left(\sum_{n \in \mathbb{Z} \backslash\{0\}} \frac{1}{n^{2}}\right)^{1 / 2}<\infty .
\end{aligned}
$$

This shows the infinite sum in Eq. 69.16) is absolutely (hence uniformly convergent). Thus we pass to the limit as $r \uparrow 1$ in Eq. 69.14 in order to arrive at the equality in Eq. 69.16.

[^0]: ${ }^{1}$ We also use $\varphi_{-\xi}(\partial D)=\partial D=\varphi_{\xi}(\partial D)$ and preserves orientation on the boundary which can be verified directly as we did in Lemma 69.4 or deduced from the fact that $\varphi_{-\xi}$ is conformal and takes D to D.

