
68

Mean value and maximum (minimum) principles (6/6/2018)

Corollary 68.1 (Mean value property). Let Ω ⊂o C and f ∈ H(Ω), then
f satisfies the mean value property

f(z0) =
1

2π

∫ 2π

0

f(z0 + ρeiθ)dθ (68.1)

which holds for all z0 and ρ ≥ 0 such that D(z0, ρ) ⊂ Ω.

Proof. By Cauchy’s integral formula and parametrizing ∂D(z0, ρ) as z =
z0 + ρeiθ, we learn

f(z0) =
1

2πi

∫
∂D(z0,ρ)

f(z)

z − z0
dz =

1

2πi

∫ 2π

0

f(z0 + ρeiθ)

ρeiθ
iρeiθdθ

=
1

2π

∫ 2π

0

f(z0 + ρeiθ)dθ.

Theorem 68.2 (Mean Value Property for Harmonic Functions). If u :
D (z0, r)→ R be a continuous function which is harmonic on D (z0, r) , then

u (z0) =
1

2π

∫ 2π

0

u
(
z0 + reiθ

)
dθ =

1

2πi

∮
|z−z0|=r

u (z)
dz

z
. (68.2)

Proof. Let v be a harmonic conjugate to u (see Corollary 64.10) so that
f = u+ iv is analytic on D (z0, r) . For 0 < ρ < r, we take the real part of Eq.
(68.1) to find arrive at

u (z0) =
1

2π

∫ 2π

0

u(z0 + ρeiθ)dθ.

We then let ρ ↑ t to arrive at Eq. (68.2).

Theorem 68.3 (Maximum principle for Harmonic Functions). Suppose
that Ω is an open connected region and u : Ω → R is a harmonic function. If u
has a local maximum (minimum) at some point z0 ∈ Ω, then u is constant.

Proof. From Eq. (68.2) and the given assumptions,

0 = u (z0)− 1

2π

∫ 2π

0

u
(
z0 + reiθ

)
dθ =

1

2π

∫ 2π

0

[
u (z0)− u

(
z0 + reiθ

)]
dθ

where for r sufficiently small, u (z0)−u
(
z0 + reiθ

)
≥ 0 and hence we must have

u (z0)− u
(
z0 + reiθ

)
= 0 for all θ and r small.

This shows that u is constant near z0. Given another point z ∈ Ω, we choose an
analytic function, f defined on a simply connected region containing z0 and z
such that Re f = u. By the open mapping theorem and analytioc continuation
methods it follows that f is constant on the this region and hence u (z) =
Re f (z) = Re f (z0) = u (z0) .

Corollary 68.4 (Harmonic function maximum principle). Let Ω be a
bounded region and u ∈ C(Ω,R) such that ∆u (z) = 0 for z ∈ Ω. Then for all
z ∈ Ω,

min
z∈∂Ω

u (z) ≤ u (z) ≤ max
z∈∂Ω

u (z) .

Furthermore if there exists z0 ∈ Ω such that u (z0) is either a minimum or a
maximum, then u is constant.

Corollary 68.5 (Dirichlet problem uniqueness). Let Ω be a bounded re-
gion and g ∈ C (∂Ω,R) be a given function, then there is at most one function
u ∈ C(Ω,R) such that ∆u (z) = 0 for z ∈ Ω and u = g on ∂Ω.

Proof. If there was another function w then v = u−w would solve ∆v = 0
with v = 0 on ∂Ω and then by Corollary 68.4 it follows that v = 0, i.e. u = w.
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Theorem 69.1 (Change of Variables). Let C be a finite length contour h be
an analytic function on a domain, D, such that C ⊂ D, and f : h ◦ C → C be
a continuous function, then,∫

C

f (h (z))h′ (z) dz =

∫
h◦C

f (w) dw.

In short, if we let w = h (z) , then dw = h′ (z) dz.

Proof. Let [a, b] 3 t → z (t) be a parametrization of C and so w (t) :=
h (z (t)) is a parameterization of h (C) . Therefore,∫

h◦C
f (w) dw =

∫ b

a

f (w (t)) ẇ (t) dt =

∫ b

a

f (h (z (t)))h′ (z (t)) ż (t) dt

=

∫
C

f (h (z))h′ (z) dz.

Notation 69.2 For the rest of this section, let D = D (0, 1) be the open unit
disk centered at 0 ∈ C and D̄ be the closed unit disk.

Remark 69.3. If h (z) = f (z) /g (z) where f, g are analytic functions near z0,
g (z0) 6= 0 6= f (z0) , then

h′ (z)

h (z)
=
f ′ (z)

f (z)
− g′ (z)

g (z)
.

This is easily verified since, by the quotient rule,

h′

h
=
f ′g − fg′

g2
· 1

h
=
f ′g − fg′

g2

g

f
=
f ′

f
− g′

g
.

Lemma 69.4. If, for ξ ∈ D, ϕξ is the LFT (Möbius transform),

ϕξ (z) :=
z − ξ
1− ξ̄z

, (69.1)

then ϕξ : D̄ → D̄ is a homeomorphism, ϕξ : D → D is a conformal, ϕξ (∂D) =
∂D, and for |z| = 1,

ϕ′ξ (z)

ϕξ (z)
=

1

z − ξ
+

ξ̄

1− ξ̄z
(69.2)

=
1− |ξ|2

|z − ξ|2
1

z
. (69.3)

Moreover, θ → ϕξ
(
eiθ
)

traverses the ∂D in the counter-clockwise direction.

Proof. The stated mapping properties of ϕξ have already been proved in
Theorem 59.7 above. From Remark 69.3,

ϕ′ξ (z)

ϕξ (z)
=

1

z − ξ
+

ξ̄

1− ξ̄z
for |z| = 1 and |ξ| < 1, (69.4)

which proves Eq. (69.2). If |z| = 1 (i.e. zz̄ = 1), we have

ϕ′ξ (z)

ϕξ (z)
=

1

z − ξ
+

ξ̄

1− ξ̄z
=

1− ξ̄z + ξ̄ (z − ξ)
(z − ξ)

(
1− ξ̄z

)
=

1

zz̄

1− |ξ|2

(z − ξ)
(
1− ξ̄z

) =
1

z

1− |ξ|2

(1− z̄ξ)
(
1− ξ̄z

)
=

1

z

1− |ξ|2

|1− z̄ξ|2
=

1

z

1− |ξ|2

|z − ξ|2

from which we deduce Eq. (69.3).
The last assertion is a consequence of the identity,

d

dθ
ϕξ
(
eiθ
)

= ieiθϕ′ξ
(
eiθ
)

= ieiθ
1

eiθ
1− |ξ|2

|eiθ − ξ|2
ϕξ
(
eiθ
)

= i
1− |ξ|2

|eiθ − ξ|2
ϕξ
(
eiθ
)

= iγϕξ
(
eiθ
)

where γ > 0 and therefore d
dθϕξ

(
eiθ
)

is a tangent vector to ∂D at ϕξ
(
eiθ
)

which points in the counter-clockwise direction.

Proposition 69.5 (Mean value property). If u : D̄ → R is continuous
function which is harmonic inside of D, then

u (0) =
1

2π

∫ π

−π
u
(
eiθ
)
dθ =

1

2πi

∮
|w|=1

u (w)
dw

w
. (69.5)



262 69 Solving the Dirichlet problems on D

Proof. Let v be the Harmonic conjugate to u so that f = u+ iv is analytic
on D. Then by the Cauchy integral formula we know that

f (0) =
1

2πi

∮
|w|=r

f (w)

w
dw =

1

2π

∫ π

−π
f
(
reiθ

)
dθ for all 0 < r < 1.

Taking the real part of this equation then shows

u (0) =
1

2π

∫ π

−π
u
(
reiθ

)
dθ

and then letting r ↑ 1 proves Eq. (69.5).

Corollary 69.6 (Representation formula). If u : D̄ → R is continuous
function which is harmonic inside of D, then, for |ξ| < 1,

u (ξ) =
1

2πi

∮
∂D

u (ϕ−ξ (w))
dw

w
(69.6)

=
1

2πi

∮
∂D

u (z)
ϕ′ξ (z)

ϕξ (z)
dz (69.7)

=
1

2πi

∮
∂D

u (z)

(
1

z − ξ
+

ξ̄

1− ξ̄z

)
dz (69.8)

=
1

2πi

∮
∂D

u (z)
1− |ξ|2

|z − ξ|2
dz

z
(69.9)

=
1

2π

∫ π

−π
u
(
eiθ
) 1− |ξ|2

|eiθ − ξ|2
dθ. (69.10)

Proof. Let ξ ∈ D and ϕ−ξ be the LFT as in Eq. (69.1). As we have seen
some time ago, ϕ−ξ : D̄ → D̄ is a homeomorphism, ϕ−ξ : ∂D → ∂D, and
ϕ−ξ : D → D is conformal. Hence u ◦ ϕ−ξ = Re f ◦ ϕ−ξ is still harmonic and is
still continuous on D̄. Therefore we may apply the mean value property in Eq.
(69.5) with u replaced by u ◦ ϕ−ξ shows gives Eq. (69.6) for all ξ ∈ D. Using
Theorem 39.4, we make the change of variables, w = ϕξ (z) , to find with the
aid of Lemma1 69.4 that Eq. (69.6) may be rewritten as in Eqs. (69.7–69.9)
while Eq. (69.10) then follows by definition of the contour integral around ∂D
in the counter-clockwise orientation.

u (ξ) = u ◦ ϕ−ξ (0) =
1

2πi

∮
∂D

u (z)
1− |ξ|2

|z − ξ|2
dz

z

=
1

2π

∫ π

−π
u (z)

1− |ξ|2

|eiθ − ξ|2
dθ

1 We also use ϕ−ξ (∂D) = ∂D = ϕξ (∂D) and preserves orientation on the boundary
which can be verified directly as we did in Lemma 69.4 or deduced from the fact
that ϕ−ξ is conformal and takes D to D.

which is Eq. (69.10).

Theorem 69.7 (Solving the Dirichlet Problem). For g ∈ C (∂D,R) , let

ug (ξ) :=
1

2π

∫ π

−π
g
(
eiθ
) 1− |ξ|2

|eiθ − ξ|2
dθ for |ξ| < 1 (69.11)

If we extend ug to the ∂D by setting, ug = g on ∂D, then ug : D̄ → R is
continuous, ug = g on ∂D, and ∆ug = 0 in D.

Proof. As in Corollary 69.6, we may also write ug (ξ) as

ug (ξ) =
1

2πi

∮
∂D

g (z)

(
1

z − ξ
+

ξ̄

1− ξ̄z

)
dz (69.12)

=
1

2πi

∮
∂D

g (z)
1

z − ξ
dz +

1

2πi

∮
∂D

g (z)
ξ̄

1− ξ̄z
dz

from which it follows that ug is the sum of a holomorphic and anti-holmorphic
function and therefore ug is harmonic.

Similarly as in Corollary 69.6 we can also write ug (ξ) as

ug (ξ) =
1

2πi

∮
∂D

g (ϕ−ξ (w))
dw

w
.

We now let ξ = rv with 0 ≤ r < 1 and |v| = 1 and then compute,

ϕ−ξ (w) = ϕ−rv (w) =
w + rv

1 + rv̄w
= v · v̄ w + rv

1 + rv̄w
= v · v̄w + r

1 + rv̄w

and so

ug (rv) =
1

2πi

∮
∂D

g

(
v · v̄w + r

1 + rv̄w

)
dw

w
=

1

2πi

∮
∂D

g

(
v · z + r

1 + rz

)
dz

z

wherein we made the change of variables z = v̄w in the last equality. Since

lim
r↑1

z + r

1 + rz
=

{
1 if z 6= −1
−1 if z = −1

we may conclude (by DCT) that

lim
r↑1

ug (rv) =
1

2πi

∮
∂D

g (v)
dz

z
= g (v) .

In fact if we let δg (η) := max|v|=1 |g (vη)− g (v)| which goes to zero as η → 1
by uniform continuity of g on ∂D, we may further conclude
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max
|v|=1

|ug (rv)− g (v)| = max
|v|=1

∣∣∣∣ 1

2πi

∮
∂D

[
g

(
v · z + r

1 + rz

)
− g (v)

]
dz

z

∣∣∣∣
≤
∮
∂D

δg

(
z + r

1 + rz

)
|dz| → 0 as r ↑ 1.

This last assertion easily implies shows that ug, as defined, is in fact continuous
on D̄.

Definition 69.8 (Poisson Kernel). For 0 ≤ r < 1 and θ ∈ R, let

pr (θ) :=
1− r2

1 + r2 − 2r cos (θ)

which we referred to as the Poisson kernel.

Corollary 69.9 (Poisson Integral Formula). If g ∈ C (∂D,R) , 0 ≤ r < 1,
and α ∈ R, then

ug
(
reiα

)
=

1

2π

∫ π

−π
pr (α− θ) g

(
eiθ
)
dθ. (69.13)

Proof. If we write ξ = reiα, then

1− |ξ|2

|eiθ − ξ|2
=

1−
∣∣reiα∣∣2

|eiθ − reiα|2
=

1− r2

1 + r2 − 2r cos (α− θ)

=
1− r2

1 + r2 − 2r cos (θ)

and so Eq. (69.11) is equivalent to Eq. (69.13).

Theorem 69.10 (Fourier series representation). The function ug in The-
orem 69.7 has the “Fourier series representation,”

ug
(
reiα

)
=

∞∑
n=−∞

r|n|ĝ (n) einα (69.14)

where

ĝ (n) :=
1

2π

∫ π

−π
g
(
eiθ
)
e−inθdθ. (69.15)

Proof. We start with the expression,

ug (ξ) =
1

2πi

∮
∂D

g (z)

(
z

z − ξ
+

ξ̄z

1− ξ̄z

)
dz

z
for |ξ| < 1.

By geometric series considerations,

z

z − ξ
=

1

1− ξ/z
=
∞∑
n=0

(
ξ

z

)n
=
∞∑
n=0

ξnz−n,

ξ̄z

1− ξ̄z
= ξ̄z

∞∑
n=0

[
ξ̄z
]n

=
∞∑
n=1

ξ̄nzn,

and hence,

z

z − ξ
+

ξ̄z

1− ξ̄z
= 1 +

∞∑
n=1

[
ξnz−n + ξ̄nzn

]
.

Letting z = eiθ, this expression becomes,

z

z − ξ
+

ξ̄z

1− ξ̄z
= 1 +

∞∑
n=1

[
ξne−iθn + ξ̄neiθn

]
and so

ug (ξ) =
1

2π

∮
∂D

g
(
eiθ
)(

1 +

∞∑
n=1

[
ξne−iθn + ξ̄neiθn

])
dθ

= ĝ (0) +
∞∑
n=1

[
ξnĝ (n) + ξ̄nĝ (−n)

]
.

Now writing ξ = reiα we further find,

u
(
reiα

)
= ĝ (0) +

∞∑
n=1

rn
[
ĝ (n) einα + ĝ (−n) e−inα

]
=

∞∑
n=−∞

r|n|ĝ (n) einα.

Theorem 69.11 (Fourier’s Theorem). If g : ∂D → C is a function such
that α→ g

(
eiα
)

is continuously differentiable, then

g
(
eiα
)

=
∞∑

n=−∞
ĝ (n) einα for all α ∈ R, (69.16)

where the sum is absolutely (hence uniformly convergent). As before, ĝ (n) is as
was defined in Eq. (69.15).

Proof. By an integration by parts argument one and Bessel’s inequality one
shows

∞∑
n=−∞

n2 |ĝ (n)|2 ≤ 1

2π

∫ π

−π

∣∣∣∣ ddαg (eiα)
∣∣∣∣2 dα <∞.
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This inequality along with the Cauchy-Schwarz inequality, then shows∑
n∈Z\{0}

|ĝ (n)| =
∑

n∈Z\{0}

|ĝ (n)| |n| · 1

|n|

≤

( ∞∑
n=−∞

n2 |ĝ (n)|2
)1/2

·

 ∑
n∈Z\{0}

1

n2

1/2

<∞.

This shows the infinite sum in Eq. (69.16) is absolutely (hence uniformly con-
vergent). Thus we pass to the limit as r ↑ 1 in Eq. (69.14) in order to arrive at
the equality in Eq. (69.16).
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