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Mean value and maximum (minimum) principles (6/6/2018)

Corollary 68.1 (Mean value property). Let {2 C, C and f € H({2), then
f satisfies the mean value property

1 27

f(z0) = f(z0 + pei®)do (68.1)

27 Jo

which holds for all zy and p > 0 such that D(zp, p) C 2.

Proof. By Cauchy’s integral formula and parametrizing dD(zo, p) as z =
29 + pe'?, we learn

1 f() g _ 1 [* [(a0+ pe')
270 JoD(z0,p) Z — 20 270 Jo pet?

f(20) ipe'df
1 2m

o f(z0 + pe'?)do.

Theorem 68.2 (Mean Value Property for Harmonic Functions). If u :
D (zg,7) = R be a continuous function which is harmonic on D (zg,7), then

1
2

2
/ u (20 + rew) do = ! u(z) % (68.2)
0

u(z0) = o s
2m0 S )= z

Proof. Let v be a harmonic conjugate to u (see Corollary 64.10) so that
f =wu+ v is analytic on D (zp,7). For 0 < p < r, we take the real part of Eq.

(68.1) to find arrive at
1 2 )
u(20) = o /0 u(zo 4 pe'®)do.

We then let p 1 ¢ to arrive at Eq. (68.2). [ ]

Theorem 68.3 (Maximum principle for Harmonic Functions). Suppose
that 2 is an open connected region and u : {2 — R is a harmonic function. If u
has a local mazimum (minimum) at some point zo € 2, then u is constant.

Proof. From Eq. (68.2) and the given assumptions,
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OZU(ZO)*%/O u(zo+rew)d9*

=3 [u (20) —u (zo + rew)] do
T Jo

where for r sufficiently small, u (z9) —u (zo + rew) > 0 and hence we must have
u(20) — u (2o + 7€) = 0 for all § and r small.

This shows that u is constant near zy. Given another point z € {2, we choose an
analytic function, f defined on a simply connected region containing zp and z
such that Re f = u. By the open mapping theorem and analytioc continuation
methods it follows that f is constant on the this region and hence u(z) =
Re f (2) = Re f (20) = u(20) . m

Corollary 68.4 (Harmonic function maximum principle). Let {2 be a
bounded region and u € C(2,R) such that Au(z) = 0 for z € 2. Then for all
z € {2,

min u (z) < u(z) < max u(z).

z€082 z€0802

Furthermore if there exists zg € (2 such that u(zo) is either a minimum or a
maximum, then u is constant.

Corollary 68.5 (Dirichlet problem uniqueness). Let {2 be a bounded re-
gion and g € C (082, R) be a given function, then there is at most one function
u € C(£2,R) such that Au(z) =0 for z € 2 and u = g on 0f2.

Proof. If there was another function w then v = © — w would solve Av =0
with v = 0 on 92 and then by Corollary it follows that v =0, i.e. u = w.
[
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Solving the Dirichlet problems on D

Theorem 69.1 (Change of Variables). Let C be a finite length contour h be
an analytic function on a domain, D, such that C C D, and f : ho C — C be
a continuous function, then,

/ FE)W () dz= [ f(w)dw.
C

hoC
In short, if we let w = h(2), then dw = h' (2) dz.

Proof. Let [a,b] > t — z(¢) be a parametrization of C' and so w (t) :=
h(z (t)) is a parameterization of h (C) . Therefore,

b b
[ rwau- / £ (w (1)) (1) dt = / £ (2 @) B (2 (8)) £ (t) e
- / £ (h(2) W () d.
C

Notation 69.2 For the rest of this section, let D = D (0,1) be the open unit
disk centered at 0 € C and D be the closed unit disk.

Remark 69.5. 1t h(z) = f(z) /g(z) where f,g are analytic functions near z,
9(20) #0# [ (20) , then

M) G gk
he) ~ fR) )

This is easily verified since, by the quotient rule,

W fg-fd 1 _fe-tdg ¢
h 9 h ¢ f f g
Lemma 69.4. If, for { € D, ¢ is the LFT (Mdébius transform),
z—§
= = 69.1
ge ()= T2 (69.1)

then ¢ : D — D is a homeomorphism, ¢ : D — D is a conformal, p¢ (OD) =
dD, and for |z| =1,

pe(2) 1 3
o) €1 G (692)
1—]¢1
o _E'Qz. (69.3)

Moreover, § — ¢ (€') traverses the OD in the counter-clockwise direction.

Proof. The stated mapping properties of ¢¢ have already been proved in
Theorem 59.7 above. From Remark

o) 1 E i
ve() " zo¢tiog frlE=Tand <1, (69.4)

which proves Eq. (69.2). If |z] =1 (i.e. 2z = 1), we have

Pelx) 1 & 1-&+E(-9
pel(z) 2—-¢ 1-¢&2 (z—{)(l—f_z)
_r 1t 11—

22z (1-&) 2(1-z2)(1-&)
L1 11—

z|1-zE*  z|z—¢?

from which we deduce Eq. (69.3)).
The last assertion is a consequence of the identity,

g% () =i () = i€ Gy T e ()
-l e
i e () = e ()

where v > 0 and therefore d%gog (ew) is a tangent vector to 0D at (g (ew)
which points in the counter-clockwise direction. [

Proposition 69.5 (Mean value property). If u : D — R is continuous
function which is harmonic inside of D, then

w0 =g [ ulear=god ww (69.5)

- 2w w
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Proof. Let v be the Harmonic conjugate to u so that f = u + v is analytic
on D. Then by the Cauchy integral formula we know that
1 f(w 1 [
70 = ) g

= — —dw
27 ‘

= f (rei‘g) df for all 0 < r < 1.
w 2 J_,

w|=r
Taking the real part of this equation then shows

U(O) = %/W U (r@w) do

—T

and then letting r 1 1 proves Eq. (69.5]). ]

Corollary 69.6 (Representation formula). If u : D — R is continuous
function which is harmonic inside of D, then, for €| <1,

w© =57 § ulo-e@) Y (69.6)
- aDU(Z)(Zif—i_l—gfz) dz (69.8)
= ﬁ . u(z) L_'Zz % (69.9)
_ % _:u () wde (69.10)

Proof. Let £ € D and ¢_¢ be the LFT as in Eq. . As we have seen
some time ago, ¢_¢ : D — D is a homeomorphism, ¢_¢ : 0D — 0D, and
¢—¢ : D — D is conformal. Hence uo¢_¢ = Re f o ¢p_¢ is still harmonic and is
still continuous on D. Therefore we may apply the mean value property in Eq.

(69.5) with w replaced by uo ¢_¢ shows gives Eq. for all £ € D. Using
Theorem 39.4, we make the change of variables, w = ¢¢ (2), to find with the

aid of Lemma'| that Eq. may be rewritten as in Egs. (69.7H69.9)
69.10]

while Eq. (69.10]) then follows by definition of the contour integral around 9D
in the counter-clockwise orientation.

WO =uopeO) =5 f w5

= omi |z —¢? 2
1 [" 1—¢f?
N

! We also use ¢_¢ (0D) = dD = ¢¢ (9D) and preserves orientation on the boundary
which can be verified directly as we did in Lemma [69.4] or deduced from the fact
that ¢_¢ is conformal and takes D to D.
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which is Eq. (69.10)). [ |
Theorem 69.7 (Solving the Dirichlet Problem). For g € C (0D,R), let
ug (§) == L /Tr g (e) ﬂd@ for |&l <1 (69.11)
T )T et — g

If we extend u, to the D by setting, u, = g on D, then u, : D — R is
continuous, ug = g on 0D, and Aug =0 in D.

Proof. As in Corollary we may also write ug (£) as

_ 1 1 3

ug (§) = 5~ aDg(z) (Z5 +1 _52) dz (69.12)
_ ! £
IR A ALt e ROk

from which it follows that u4 is the sum of a holomorphic and anti-holmorphic
function and therefore uy is harmonic.
Similarly as in Corollary we can also write ug (§) as

1 dw
w© = 5§ ole-e() T
We now let £ = rv with 0 <7 <1 and |v| = 1 and then compute,
(w) (w) w+ rv _w+rv W+ r
e (W) = QY_pp (W) = — =V -0V — = - —
v-e v 1+ row 14+ row 14 row

and so

1 tw+r \ dw 1 z+7r\ dz
ug(rv):T glv — ) —=— glv- —
7t Jop 1+rvw) w 27 Jop 1+rz) 2

wherein we made the change of variables z = vw in the last equality. Since

lmz—H"i 1 ifz# -1
Mmil+rz | —lifz=-1

we may conclude (by DCT) that

1 dz
I =— — =g(v).
lim g (rv) = 5 72 9w =9()

In fact if we let d, (1) := max|,—1 |g (vn) — g (v)| which goes to zero as n — 1
by uniform continuity of g on 0D, we may further conclude
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max |ug (rv) — (v)|—maxif v T (v) dz
lo|=1' 7 g " ul=1 |27 oD g 14+rz g z

Z+r
< 1) dz| — 0 as 1.
_]ng<l+m)z| asr?

This last assertion easily implies shows that ug, as defined, is in fact continuous
on D. [

Definition 69.8 (Poisson Kernel). For 0 <r <1 and § € R, let

1—1r2
pr (6) = 1+ 72— 2rcos(0)

which we referred to as the Poisson kernel.

Corollary 69.9 (Poisson Integral Formula). If g € C(0D,R), 0 <r < 1,
and o € R, then

ug (re’) = S /7T pr(a—0)g (ew) dé. (69.13)

2r J_,

Proof. If we write £ = re‘®, then

1_|§\2 B 1—|7‘em|2 B 1—r?
lei0 — &> |ei —reia|? 1412 —2rcos(a—0)
1—1r2

T 1472 2rcos (0)
and so Eq. (69.11]) is equivalent to Eq. (69.13]). [

Theorem 69.10 (Fourier series representation). The function u, in The-
orem[69.7 has the “Fourier series representation,”

e¢]

ug (re'*) = Z rimg (n) e (69.14)
where | g

~ . 0\ —inb

g(n):= o /_Trg (e) e~ dp. (69.15)

Proof. We start with the expression,

ug (§) L Q(Z)< ‘4 §Z>dzzfor €] < 1.

~ 2 oD z—€ 1-¢&z

By geometric series considerations,
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= 1 (Y _enn
z—§_1—£/2_2(2> PR

n=0 n=0
EZ _*OO*”_OO’nn
5= z;kz] —;u,
and hence, B
z 52 _ - n._,—n cno.n
z—§+1—§z_1+n§::l[€z + &2

Letting z = €%, this expression becomes,

Z gZ = n _ —ion cn 10n
Z_§+17§_Z:1+Z[§e on 4 gnetfn]

n=1

and so

Qﬁ
—
o
I
|

0 — n —ifn cn _ifn
27Tj<1ng(e)<l+nz:1[£e +éme ]>d9

=3(0)+ > ["9(n)+ &g (-n)].

n=1

Now writing ¢ = re’® we further find,

oo

" (,reia) _ g (0) + Z,rn [g (n) eine +§](*n) efinoz] _ Z T\n|g (n) e

n—=—oo

Theorem 69.11 (Fourier’s Theorem). If g : 0D — C is a function such
that a — g (e“") is continuously differentiable, then

o0

g (") = Z g (n)e™™ for all a € R, (69.16)

n=—oo

where the sum is absolutely (hence uniformly convergent). As before, g (n) is as

was defined in Eq. .

Proof. By an integration by parts argument one and Bessel’s inequality one

shows
o0

2oz L7
> wtlat) < o |

n=-—o0 i

2

d da < oo.

@9(6 )
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This inequality along with the Cauchy-Schwarz inequality, then shows

S pmi= Y |g<n>||n|-ﬁ

nezZ\{0} n€Z\{0}
- 1/2 . 1/2
~ 2
(X uor) X ) e
n=-—0o0 neZ\{0}

This shows the infinite sum in Eq. (69.16) is absolutely (hence uniformly con-
vergent). Thus we pass to the limit as r 1 1 in Eq. (69.14)) in order to arrive at

the equality in Eq. (69.16). n
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