

The image of 3 different circles under $f(z) = z^2 + z$.

Let
$$h(z) = z + z^{-1}$$
 and note that $h(z) = 0$ iff $z^2 + 1 = 0$, i.e. iff $z = \pm i$.

FIGURE 1. Here $h(z) = z + z^{-1}$ and these are plots of $h(i+3e^{i\theta})$ in green, $h(i+1.5e^{i\theta})$ in blue, and $h(i+\frac{1}{2}e^{i\theta})$ in red.

FIGURE 2. Plots of $\sin(4e^{i\theta})$ in red and $\sin(2e^{i\theta})$ in green with winding number 3 and 1 respectively.

4

FIGURE 3. Plots of $\sin(1+3e^{i\theta})$ in black and $\sin(1+\frac{1}{2}e^{i\theta})$ in red with winding numbers about 0 being 2 and 0 respectively.

fig.gz

FIGURE 5. Plot of $f(e^{i\theta})$ for $0 \le \theta \le 2\pi$ in reference to the inverse function theorem.