

The image of 3 different circles under $f(z)=z^{2}+z$.

Let $h(z)=z+z^{-1}$ and note that $h(z)=0$ iff $z^{2}+1=0$, i.e. iff $z= \pm i$.

Figure 1. Here $h(z)=z+z^{-1}$ and these are plots of $h\left(i+3 e^{i \theta}\right)$ in green, $h\left(i+1.5 e^{i \theta}\right)$ in blue, and $h\left(i+\frac{1}{2} e^{i \theta}\right)$ in red.

Figure 2. Plots of $\sin \left(4 e^{i \theta}\right)$ in red and and $\sin \left(2 e^{i \theta}\right)$ in green with winding number 3 and 1 respectively.

Figure 3. Plots of $\sin \left(1+3 e^{i \theta}\right)$ in black and $\sin \left(1+\frac{1}{2} e^{i \theta}\right)$ in red with winding numbers about 0 being 2 and 0 respectively.

$$
g(z)=z\left(1+\frac{1}{10}\left(z-\frac{1}{3}\right)^{3}\left(z-\frac{1}{2}\right)^{2}\right)
$$

Figure 4. Plot of $g\left(e^{i \theta}\right)$ for $0 \leq \theta \leq 2 \pi$ in reference to the inverse function theorem.

$$
f(z)=z\left(1+\frac{1}{10}\left(z-\frac{1}{3}\right)^{3}\left(z-\frac{i}{2}\right)^{2}\right)
$$

Figure 5. Plot of $f\left(e^{i \theta}\right)$ for $0 \leq \theta \leq 2 \pi$ in reference to the inverse function theorem.

