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Fluid Flows (6/1/2018)

Consider a two dimensional fluid flow which we describe by its velocity field,

V (x, y) = (p (x, y) , q (x, y)) = p+ iq ∈ R2.

We are only going to consider flows which are incompressible, i.e.

0 = ∇ · V = px + qy

and irrotational,
0 = curl (V ) = qx − py.

Example 65.1. If D is an open subset of C and Φ = ϕ + iψ : D → C is an
analytic function, then V = (p, q) = ∇ϕ = (ϕx, ϕy) is incompressible and
irrotational. Indeed,

∇ · V = ∆ϕ = 0 and

curl (V ) = qx − py = ϕy,x − ϕx,y = 0.

In fact; the only thing we really need here is to know that ϕ : D → R is a
harmonic function. When V = ∇ϕ with ∆ϕ = 0 we refer to ϕ as a potential
function of V.

Lemma 65.2. If V = (p, q) : D → R2 is a C1 -function, then V is incompress-
ible and irrotational iff f = p− iq is analytic on D or equivalently iff q + ip is
analytic.

Proof. This is a consequence of the Cauchy-Riemann equations and the
identity,

fy − ifx = py − iqy − i (px − iqx)

= py − qx − i (px + qy) = − [curl (V ) + i (∇ · V )] .

Theorem 65.3. If D is a simply connected region and V = (p, q) : D → R2

is a vector field, then V is an incompressible irrotational flow iff there exists a
complex potential, Φ = ϕ+ iψ : D → C such that V = ∇ϕ.

Proof. The easy and most important direction has already been discussed in
Example 65.1 without the need for D to be simply connected. For the converse
direction, assume that V is an incompressible irrotational flow so that f = p−iq
is an analytic function on D by Lemma 65.2. By Corollary 64.9, there exists an
analytic anti-derivative, Φ = ϕ+ iψ : D → C, of f, i.e.

p− iq = f = Φ′ = ϕx + iψx = ϕx − iϕy

from which the result follows.

Example 65.4. If Φ (z) = Az where A > 0, then ϕ (z) = Ax and hence ∇ϕ =
(A, 0) is the uniform horizontal flow with speed A and since ∇ϕ ·∇ψ = 0 where
ψ (z) = Ay, the flow lines are horizontal curves which is quite obvious.

Example 65.5. Suppose that Φ (z) = log (z) in which case ϕ (z) = ln |z| and
ψ (z) = arg (z). In this case the vector field is given by

∇ ln
(√

x2 + y2
)

=
1

x2 + y2
(x, y) .

If we add the two flows together we get

(A, 0) +
1

x2 + y2
(x, y) .
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See the mathematica notebook “fluid flow examples.nb” for pictures of these
flows.

Notation 65.6 (Flows and stream functions) Let D be an open region in
C and suppose that Φ = ϕ+ iψ : D → C is a complex potential and V = ∇ϕ is
the associated irrotational and incompressible flow.

1. The trajectories of this flow are the solutions to the differential equation;

σ̇ (t) = V (σ (t)) = ∇ϕ (σz (t)) .

2. The flow lines are the images of these trajectories which may be computed
at the level curves of ψ. Indeed,

d

dt
ψ (σ (t)) = (∇ψ · ∇ϕ) (σ (t)) = 0

because Φ is conformal or by the Cauchy Riemann equations,

∇ψ · ∇ϕ = ψx · ϕx − ψyϕy = ± (ϕyϕx − ϕxϕy) = 0.

3. Since Φ′ = ϕx + iψx = ϕx − iϕy it follows that

V = p+ iq = Φ′

and in particular
|V | =

∣∣Φ′∣∣ = |Φ′| .

4. The function ϕ is called the potential function of V while ψ is the stream
function of V.

Remark 65.7 (Flows in regions). When looking for flows in a given region, Ω, a
key point is that the flows near a boundary of Ω (∂Ω) should be parallel to the
boundary. In other words, the stream function, ψ := ImΦ, should vanish or at
least be constant on the boundary of Ω.

Example 65.8. We can transform the uniform flow to a wedge, say Qθ :={
reiα : 0 ≤ r <∞ and 0 ≤ α ≤ θ

}
with 0 < θ < π by considering the map,

g (z) := zπ/θ = e
π
θ Log(z).

In other words if z = reiα in Qθ then

g (z) = r
π
θ eiα

π
θ .

Then g is conformal homeomorphism from Qθ → H where H is the upper half
plane with g (∂Qθ) = ∂H which is a stream line for the horizontal flow. Thus we
find Φ (z) = g (z) is the desired complex potential. For example when θ = π/2
the we find

Φ (z) = z2 = x2 − y2 + i2xy = ϕ (x, y) + iψ (x, y)

and the stream functions become,

ψ (x, y) = ImΦ (z) = 2xy.
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Proposition 66.1. If Ω is an open set and f : Ω → C is analytic then f̃ : Ω̄ →
C defined by

f̃ (z) = f (z̄) for z ∈ Ω̄

is an analytic function and moreover,

f̃ ′ (z) = f ′ (z̄).

Proof. Let h ∈ C be small and z ∈ Ω̄, then

f̃ (z + h)− f̃ (z)

h
=
f
(
z̄ + h̄

)
− f (z̄)

h

=

(
f
(
z̄ + h̄

)
− f (z̄)

h̄

)
→ f ′ (z̄) as h→ 0

and this completes the proof.

Theorem 66.2 (Milne-Thomson circle theorem). Let f (z) be a complex
potential with all of its singularities outside of |z| = R. Then

Φ (z) := f (z) + f

(
R2

z̄

)
(66.1)

is a complex potential such that ImΦ (z) = 0 when |z| = R and moreover Φ (z)
has the same singularities as f (z) in |z| > R. [Note that for |z| >> 1 that
Φ (z) ∼ f (z) + f (0) and so the fluid flow associated to Φ and f should be
similar away from the inserted circular obstacle put into the flow.]

Proof. We look for a function g (z) which is analytic in a neighborhood of
|z| ≥ 1

R such that Φ (z) := f (z) + g (z) satisfies ImΦ (z) = 0 when |z| = R.
Now the condition that ImΦ (z) = 0 when |z| = R implies that

g (z) = f (z) when |z| = R. (66.2)

Now we can not use f (z) as our function since it is not analytic!. However,

|z| = R =⇒ z · z̄ = R2 =⇒ z =
R2

z̄

and so we can write Eq. (66.2) as

g (z) = f

(
R2

z̄

)
when |z| = R.

By Proposition 66.1, z → f
(
R2

z̄

)
is analytic and hence so is Φ (z) in Eq. (66.1).

Example 66.3. Suppose we take f (z) = z and R = 1 above then

J (z) := f (z) + f

(
1

z

)
= z +

1

z

= x+ iy +
x− iy
x2 + y2

= x

(
1 +

1

x2 + y2

)
+ iy

(
1− 1

x2 + y2

)
.

The next few pictures indicate the streamlines associated to the flow coming
form ∇Re J.

Note relative to Problem 126.9: these stream lines are consistent with
a flow in the region

H \D = {z ∈ C : Im z ≥ 0 and |z| ≥ 1}

since in this case

ψ (x, y) = ImJ (x+ iy) = y

(
1− 1

x2 + y2

)
vanishes on the boundary of H \D.

Remark 66.4. If Φ is a complex potential such that ImΦ (z) = 0 if |z| = 1 (i.e.
is a complex potential on C \D (0, 1)), then for z0 ∈ C and R > 0,

Φ̃ (z) := Φ

(
z − z0

R

)
a complex potential such that Im Φ̃ (z) = 0 if |z − z0| = R, i.e. is a complex
potential on C \D (z0, R) . In particular if
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Fig. 66.1. The vector field, ∇Re J.

Fig. 66.2. A uniform flow around a circular region.

Φ (z) = f (z) + f

(
1

z̄

)
then

Φ̃ (z) := f

(
z − z0

R

)
+ f

(
R

z̄ − z̄0

)
.

66.1 An introduction to airfoils

This section was not covered except by pictures in class.

Definition 66.5 (Joukowski Mapping). The function J (z) = z + 1/z is
referred to as the Joukowski mapping.

We now explore some interesting properties of this mapping related to airfoil
design.

R
D

w

Fig. 66.3. A Joukowski airfoil (in blue) created by applying the Joukowski mapping
to a circle C (in orange) centered at z0 = a+ ib which goes through 1.

Proposition 66.6. Let R be the cross section of the airfoil and D = D (z0, R)
be the open disk bounded by the orange circle as indicated in Figure 66.3. Then
J maps C \D onto C \R and this map is one to one.

Proof. Let us first observe that
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J (z) = z +
1

z
= w ⇐⇒ z2 − zw + 1 = 0 ⇐⇒ z =

w ±
(
w2 − 4

)
2

from which it follows that J is a 2 to one map. This is true even when w = ±2
in which case z = ±1 where J ′ (±1) = 0 since J ′ (z) = 1− z−1. The other key
observations is that J (z) := z + 1

z has a pole of order 1 at zero. With this in-
formation in hand we may now use the argument principle to deduce the stated
results. For this one checks that ∂R is traversed once in the counterclockwise
direction.

If w ∈ R, then

1 = N∂R (w) = # {z ∈ D : J (z) = w} − 1

which implies # {z ∈ D : J (z) = w} = 2 and hence both solutions are in D and
therefore J (C \D) ⊂ C \ R. On the other hand, if w ∈ C \ R the argument
principle implies

0 = N∂R (w) = # {z ∈ D : J (z) = w} − 1

which implies that J (z) = w has a unique solution in D for each w ∈ C \ R.
Since J (z) is 2 to 1 we infer that J (z) = w ∈ C \R has exactly one solution in
C \D as well. Thus we have shown that J maps C \D onto C \ R in a one to
one and onto fashion.

Corollary 66.7. We will continuing the notation in Proposition 66.6. If Φ is
a complex potential consistent with a flow in C \D then Φ ◦ J |−1

C\D is a complex

potential on C\R and one may compute the streamlines of this potential using,
with c ∈ ImΦ (C \D) ,{

w : ImΦ ◦ J |−1
C\D (w) = c

}
= {J (z) : ImΦ (z) = c} .

That is we apply J to the streamlines of Φ to get the streamlines associated with
the Joukowski airfoil.

We refer the interested reader to

https : //www.grc.nasa.gov/WWW/K − 12/airplane/map.html

and the links therein for more on this subject. Also see

http : //demonstrations.wolfram.com/JoukowskiAirfoilF lowField/

for a simulator of the streamlines for various Joukowski airfoils.
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