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Definition 58.1 (Riemann Sphere). The Riemann sphere (C∞) is C with
an added point denoted by “∞.” By convention we let

1

0
=∞ ∈ C∞ and

1

∞
= 0 ∈ C ⊂ C∞.

Stereographic projection gives one useful way to represent and understand
C∞. The next definition gives another particularly useful way to represent C∞.

Definition 58.2 (Complex Projective Space). Complex projective spaces(
CP2

)
is the set of lines in C2. More explicitly, for (z, w) ∈ C2 \ {0} , then

[z, w] := C · (z, w) is the line containing (z, w) and hence an element of CP2.

The easy proof of the following proposition is left to the reader.

Proposition 58.3. The map,

CP2 3 [z, w]→ z

w
∈ C∞

is a bijection. The inverse map is given by

C∞ 3 z →
{

[z, 1] if z 6= 0
[1, 0] if z = 0

∈ CP2.

[Formally, [∞, 1] = 1
∞ [∞, 1] = [1, 0] .]

If A is a 2×2 invertible matrix, then by matrix multiplication, A takes lines
to lines, i.e. defines a map A : CP2 → CP2. More explicitly, if

A =

[
a b
c d

]
with detA 6= 0,

then

A

[
z
w

]
=

[
A

(
z
w

)]
=

[
az + bw
cz + dw

]
and in particular,

A

[
z
1

]
=

[
az + b
cz + d

]
=

[
az+b
cz+d

1

]

and so we see that A induces the linear fractional transformation (LFT),
ψA : C∞ → C∞ defined by

ψA (z) =
az + b

cz + d
.

Remark 58.4. It is useful to note that ψλA (z) = ψA (z) for all λ ∈ C\{0} . Thus
if we write A ∼ B to mean that A = λB for some λ ∈ C \ {0} , then ψA = ψB .

Proposition 58.5. If A and B are two 2 × 2 - invertible matrices, then ψA ◦
ψB = ψAB and ψA−1 = ψ−1

A . Moreover, ψA is a composition of rotations,
translations, dilations, and inversions, and hence takes circles in C∞ to circles
in C∞ and these maps restricted from a circle to a circle are bijective. [As usual,
a line in C is considered to be a circle in C∞ which goes through ∞.]

Proof. The assertion that ψA ◦ ψB = ψAB follows from the construction
described above. For the remaining assertion, recall that any 2 × 2 invertible
matrix may be written as a product of elementary matrices of the form[

a 0
0 1

]
,

[
1 b
0 1

]
,

[
0 1
1 0

]
and the LFT’s associated to these three matrices are (respectively) given by

ψ (z) = az, ψ (z) = z + b, and ψ (z) =
1

z
.

Since we have already seen that each of these transformations takes a generalized
circle to a generalized circle it follows that if C ⊂ C∞ is a generalized circle,
then ψ (C) ⊂ C ′ for some other circle, C ′ ⊂ C∞. Similarly there is a circle
C ′′ ⊂ C∞ such that ψ−1 (C ′) ⊂ C ′′ and hence,

C = ψ−1 (ψ (C)) ⊂ ψ−1 (C ′) ⊂ C ′′.

Since circles are determined by knowing three distinct points in the circle it
follows that in fact C = C ′′ and so C = ψ−1 (C ′) . Applying ψ to this identity
then shows ψ (C) = C ′.
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Remark 58.6. If ψ (z) = az+b
cz+d , then

ψ−1 (z) =
dz − b
−cz + a

since

A−1 =

[
a b
c d

]−1

=
1

detA

[
d −b
−c a

]
∼
[
d −b
−c a

]
and so

ψ−1 (z) = ψA−1 (z) =
dz − b
−cz + a

.

Definition 58.7 (Cross Ratio). For a, b, c distinct point in C∞ we call

(z, a, b, c) := Sa,b,c (z) =
(z − a)(b− c)
(z − c)(a− b)

the cross ratio with the following conventions;

(z,∞, b, c) := lim
a→∞

z − a
z − c

· b− c
b− a

=
b− c
z − c

= “
(z −∞)(b− c)
(z − c)(b−∞)

”

(z, a,∞, c) = lim
b→∞

z − a
z − c

· b− c
b− a

=
z − a
z − c

= “
z − a
z − c

· ∞ − c
∞− a

”

(z, a, b,∞) = lim
c→∞

z − a
z − c

· b− c
b− a

=
z − a
b− a

= “
z − a
z −∞

· b−∞
b− a

”.

In other words, (z, a, b, c) is the unique LFT which takes a → 0, b → 1, and
c→∞.

Corollary 58.8. Suppose given (a, b, c) ∈ C∞ distinct and (α, β, γ) ∈ C∞ there
exists ψ ∈

{
LFT′s

}
such that ψ(a) = α, ψ (b) = β, and ψ(c) = γ. To construct

this transformation, one should define ψ (z) = w where w is the unique solution
to

(w,α, β, γ) = (z, a, b, c) .

Proof. Uniqueness. If T is another such fractional linear transformation,
then T−1 ◦ S is a fractional linear transformation fixing the the three distinct
points, (a, b, c) and hence T−1 ◦ S = id, i.e. T = S by Proposition 59.3 below.

Existence. Define Sa,b,c (z) and Sα,β,γ and then

ψ (z) := S−1
α,β,γ (Sa,b,c (z))

is the desired LFT. Furthermore, if we let w = ψ (z) , then

(w,α, β, γ) = Sα,β,γ (w) = Sa,b,c (z) = (z, a, b, c) .

Example 58.9. Find the LFT, ψ, such that ψ (−1) = −i, ψ (0) = 1, and ψ (1) =
i.

Note well:
1 + i

1− i
=

1 + i

1− i
i

i
= i.

To solve this problem we must solve the following identity for w,

(w,−i, 1, i) = (z,−1, 0, 1)

where

(z,−1, 0, 1) = −z + 1

z − 1
=

z + 1

−z + 1
! A =

[
1 1
−1 1

]
and

(w,−i, 1, i) =
w + i

w − i
1− i
1 + i

i

i
= −iw + i

w − i
! B =

[
−i 1
1 −i

]
.

Thus we have to solve,

− (w − i) (z + 1) = −i (z − 1) (w + i) ⇐⇒
w [−z − 1 + i (z − 1)] = −i (z − 1) i− i (z + 1)

= z − 1− i (z + 1) = (1− i) z − 1− i

and so

w = ψ (z) =
(1− i) z − (1 + i)

(i− 1) z − (1 + i)
=

(
1−i
1+i

)
z − 1

−
(

1−i
1+i

)
z − 1

=
−iz − 1

iz − 1
=

iz + 1

−iz + 1
.

Alternatively using matrix calculations,

B−1A ∼
[
−i −1
−1 −i

] [
1 1
−1 1

]
=

[
1− i −1− i
−1 + i −1− i

]
∼
[
− 1−i

1+i 1

−−1+i
1+i 1

]
=

[
i 1
−i 1

]
and so again we find,

ψ (z) =
iz + 1

−iz + 1
.

Lets check this works:

ψ (−1) =
−i+ 1

i+ 1
= −i, ψ (0) = 1, and ψ (1) =

i+ 1

−i+ 1
= i

as desired.
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Standing notation and known facts.

1. For all of this lecture, let ψ : C∞ → C∞ be given by

ψ (z) = ψA (z) =
az + b

cz + d
(59.1)

where

A :=

[
a b
c d

]
∈ C2×2 with detA 6= 0.

2. Recall that ψ takes circles onto circles in C∞ and these maps are bijective
on these (generalized) circles.

Remark 59.1 (On terminolgy). The transformations in Eq. (59.1) are referred
to as linear fractional transformations, or bilinear transformations, or
Möbius transformations. See Section 99 of the book for the reason ψ is
called a bilinear transformation.

Here is the reason not covered in class: if w = ψ (z) , then

w =
az + b

cz + d
⇐⇒ w (cz + d) = az + b ⇐⇒ cwz − az + dw − b = 0

⇐⇒ Azw +Bz + Cw +D = 0 with AD −BC = −cb+ a · d = −detA.

Example 59.2. Using Corollary 58.8, find the unique LFT so that ψ (1) = i,
ψ (0) =∞, and ψ (−1) = 1. To this end we must again solve for w the equation,

(w, i,∞, 1) = (z, 1, 0,−1)

where

(z, 1, 0,−1) = −z − 1

z + 1
!

[
−1 1
1 1

]
= A

and

(w, i,∞, 1) =
w − i
w − 1

∞− 1

∞− i
=
w − i
w − 1

!

[
1 −i
1 −1

]
= B.

Solving for w gives;

ψ (z) =
(1 + i) z + (i− 1)

2z
. (59.2)

Here is the algebra. We need to solve for w,

−z − 1

z + 1
=
w − i
w − 1

⇐⇒ (z + 1) (w − i) = (z − 1) (1− w)

⇐⇒ w [z + 1 + z − 1] = z − 1 + i (z + 1) = (1 + i) z + (i− 1)

which easily gives Eq. (59.2).
Alternatively by matrix methods:

B−1A =

[
1 −i
1 −1

]−1 [−1 1
1 1

]
∼
[
−1 i
−1 1

] [
−1 1
1 1

]
=

[
1 + i −1 + i

2 0

]
.

The next proposition shows that ψ was used to guarantee that the construc-
tions described in Corollary 58.8 is unique.

Proposition 59.3. If

S (z) :=
az + b

cz + d

is a fractional linear transformation which is not the identity, then S has either
one or two fixed points in C∞ where z ∈ C∞ is a fixed point iff S (z) = z. [Hence
if S has at least 3 fixed points then in fact S (z) = z.]

Proof. Case (i) c 6= 0. In this case S (∞) = a/c ∈ C and hence ∞ is not
be a fixed point of S. For z ∈ C we have S (z) = z iff

az + b = z (cz + d) = cz2 + dz ⇐⇒ cz2 + (d− a) z − b = 0. (59.3)

This quadratic polynomial can have at most two solutions and hence S has at
most two fixed points in this case.1

1 Note that if c = 1 = −b and d = 2 and a = 0, then

S (z) =
−1

z + 2
= z ⇐⇒ −1 = z2 + 2z ⇐⇒ z2 + 2z + 1 = 0 ⇐⇒ z = 1,

which shows that it is possible to have only one fixed point.
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Case (ii) c = 0. In this case a · d 6= 0 and S (∞) =∞ so that ∞ is a fixed
point. Moreover, z ∈ C is a fixed point iff

az + b = z · d ⇐⇒ (d− a) z = b

and hence z = b
d−a is the only other fixed point when d 6= a. If d = a and b 6= 0

then the above equation has no solutions and hence ∞ is the only fixed point.
If d = a and b = 0, then in fact S (z) = z and every point is a fixed point.

59.1 Mapping properties of certain LFT’s

Theorem 59.4 (LFT taking R∞ to R∞). A LFT, ψ, takes R∞ to R∞ iff
there exists a, b, c, d ∈ R so that

ψ (z) = ψA (z) =
az + b

cz + d
. (59.4)

Moreover such a ψ will take the upper half plane to the upper half plane iff

detA = a · d− b · c > 0.

Proof. Clearly if a, b, c, d ∈ R then ψA (x) ∈ R∞ for all x ∈ R∞, so now
assume that ψ takes R∞ to R∞. Let α = ψ−1 (0) ∈ R∞, β = ψ−1 (1) ∈ R∞,
and γ = ψ−1 (∞) , then ψ (z) = (z, α, β, γ) is of the form in Eq. (59.4) with all
coefficients being real.

If we further wish to have ψ take the upper half plane to itself we must
require Imψ (i) > 0. However,

Imψ (i) = Im
(ai+ b) (−ci+ d)

c2 + d2

=
a · d− b · c
c2 + d2

=
detA

c2 + d2
.

Theorem 59.5 (FLT taking S to R∞). The general form of a LFT (ψ) which
takes S to R∞ is

ψ (z) =
ξz + ξ̄

wz + w̄
(59.5)

where ξ, w ∈ C such that Im (ξw̄) 6= 0. If we write ξ = reiθ and w = ρeiα and
k = r/ρ > 0, then

ψ (z) = k
zeiθ + e−iθ

zeiα + e−iα
. (59.6)

Proof. The LFT,

S (z) := (z, 1, i,−1) =
z − 1

z + 1

i+ 1

i− 1

−i
−i

= −iz − 1

z + 1
=
−iz + i

z + 1
,

takes S to R∞ and so the general such LFT is of the form ϕ ◦ S where

ϕ (z) =
az + b

cz + d
with a, b, c, d ∈ R.

The matrix associated with this LFT is(
a b
c d

)(
−i i
1 1

)
=

(
b− ia b+ ia
d− ic d+ ic

)
=

(
ξ ξ̄
w w̄

)
and so the general form of ψ is as in Eq. (59.5) or equivalently the form in Eq.
(59.6). Conversely if ψ is given as in Eq. (59.5) and |z| = 1, then

ψ (z) =
ξz + ξ̄

wz + w̄
=

ξ̄z̄ + ξ

w̄z̄ + w
=

ξ̄z̄ + ξ

w̄z̄ + w

z

z
=

ξ̄ + ξz

w̄ + wz
= ψ (z)

which shows ψ (z) ∈ R∞ as claimed.

Corollary 59.6 (FLT taking R∞ to S). The general LFT (ψ) which takes
R∞ to S may be written as

ψ (z) = eiθ · z − z0

z − z̄0
(59.7)

for some θ ∈ R and z0 ∈ C with Im z0 6= 0. Moreover, if we want the upper half
plane to go to the interior of S, then we must require Im z0 > 0, i.e. that z0 be
in the upper half plane.

[Note: it is simple to observe if z = x ∈ R and ψ is given as in Eq. (59.7),
then |ψ (x)| = 1.]

Proof. The general form of the LFT we are looking for is the inverse of a
ψ given in Eq. (59.5), i.e. of the form,

z → w̄z − ξ̄
−wz + ξ

= − w̄
w
· z − ξ̄/w̄
z − ξ/w

= eiθ · z − z0

z − z̄0
.

The last assertion now easily follows from the fact that ψ (z0) = 0.
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S below is the unit circle centered at 0 in the complex plane.



Theorem 59.7 (FLT taking S to S). The general LFT (ψ) which takes S
to S may be written as

ψ (z) = eiα · z − ζ
1− ζ̄z

(59.8)

for some α ∈ R and ζ ∈ C with |ζ|2 6= 1. If ψ is to take the interior of S to
itself we must further require that |ζ| < 1. [Note again that if ψ is as above and
|z| = 1, then

|ψ (z)| =
∣∣∣∣ z − ζ1− ζ̄z

∣∣∣∣ 1

|z̄|
=

∣∣∣∣z − ζz̄ − ζ̄

∣∣∣∣ = 1.

Proof. A particular LFT taking S → R∞ is given by

z → −iz − 1

z + 1
=
−iz + i

z + 1
∼
[
−i i
1 1

]
While the general LFT taking R∞ → S is a composition of a rotation, eiθ, and
an LFT of the form,

z → z − z0

z − z̄0
∼
[

1 −z0

1 −z̄0

]
.

Since [
1 −z0

1 −z̄0

] [
−i i
1 1

]
=

[
−z0 − i i− z0

−z̄0 − i i− z̄0

]
∼
[
z0 + i z0 − i
z̄0 + i z̄0 − i

]
the general LFT preserving S is of the form,

ψ (z) = eiθ
(z0 + i) z + z0 − i
(z̄0 + i) z + z̄0 − i

= eiθ
z0 + i

z̄0 − i
z + z0−i

z0+i(
z̄0+i
z̄0−i

)
z + 1

= eiα · z − ζ
−ζ̄z + 1

where ζ := −z0 − i
z0 + i

.
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