
49

(4/20/2018)

49.1 Winding Numbers

If σ : [a, b] → C is a curve in C and w is not in the image of σ, then we may
find differentiable functions, r (t) > 0 and θ (t) ∈ R such that

σ (t) = w + r (t) eiθ(t). (49.1)

The function θ (t) is unique up to an additive constant, 2πk, for some k ∈ Z
and therefore

∆ arg (σ) := ∆θ = θ (b)− θ (a)

is well defined independent of the choice of θ. Moreover, if σ is a loop so that
σ (b) = σ (a) , then eiθ(b) = eiθ(a) which implies that θ (b) − θ (a) = 2π · n for
some n ∈ Z.

Definition 49.1. Given a continuous loop σ : [a, b] → C and w not in the
image of σ, the winding number of σ around w is defined by

Nσ (w) :=
1

2π
∆ arg (σ) :=

1

2π
[θ (b)− θ (a)] ∈ Z

where θ (t) is any continuous choice of angle so that Eq. (49.1) holds with r (t) =
|σ (t)− w| .

Remark 49.2. It follows from the definition that

Nσ (w) = Nσ−w (0) .

Indeed it σ is written as in Eq. (49.1), then

σ (t)− w = 0 + r (t) eiθ(t) =⇒ Nσ−w (0) =
1

2π
∆θ = Nσ (w) .

Example 49.3. Suppose that σ (t) = eit with 0 ≤ t ≤ n2π, then Nσ (0) = n
while if σ (t) = e−it with 0 ≤ t ≤ n2π, then Nσ (0) = −n.

Lemma 49.4. The following identity holds,

Nσ (w) =
1

2πi

∫
σ

1

z − w
dz.

Proof. By definition of the contour integral,∫
σ

1

z − w
dz =

∫ b

a

1

σ (t)− w
σ̇ (t) dt

=

∫ b

a

1

r (t) eiθ(t)

[
ṙ (t) eiθ(t) + iθ̇ (t) r (t) eiθ(t)

]
dt

=

∫ b

a

[
ṙ (t)

r (t)
+ iθ̇ (t)

]
dt = ln r (t) |ba + i∆θ = i∆θ.

Dividing this equation by 2πi gives the desired result.

Corollary 49.5. The function Nσ (w) is constant as a function of w in each
connected component of C \ σ ([a, b]) .

Proof. We have

N ′σ (w) =
1

2πi

∫
σ

(z − w)
−2
dz =

−1

2πi
(z − w)

−1 |z=σ(b)
z=σ(a) = 0.

Corollary 49.6. If σ and τ are loops in C \ {0} which are homotopic inside of
C \ {w} , then Nσ (w) = Nτ (w) . In particular, if σ is homotopic to a constant
loop inside of C \ {0} , then Nσ (w) = 0.

Proof. This is the Cauchy-Goursat theorem again.

Corollary 49.7. If σ is a loop in C, then Nσ (w) = 0 when w is in the un-
bounded component of C \ σ ([a, b]) .

Proof. If |w| is very large, then the curve σ can be deformed to the constant
loop, C, sitting at 0 ∈ C inside of C \ {w} and therefore Nσ (w) = NC (w) = 0.
Indeed, if for s ∈ [0, 1] we define σs (t) := s · σ (t) , then σ1 = σ and σ0 (t) = 0
for all t and s→ σs is the desired homotopy.

Alternatively we note that for |w| >> 1 that

|Nσ (w)| =
∣∣∣∣ 1

2πi

∫
σ

1

z − w
dz

∣∣∣∣ � 1

|w|
1

2π
` (σ)

where ` (σ) is the length of σ. For |w| very large it will follow that |Nσ (w)| < 1
and as Nσ (w) ∈ Z we must have Nσ (w) = 0.
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Theorem 49.8 (Crossing rules). If σ is a loop in C and w,w′ ∈ C\σ ([a, b])
are as shown in Figure 49.1, then

Nσ (w) = Nσ (w′) + 1. (49.2)

If the orientation of σ is reversed, then

Nσ (w) = Nσ (w′)− 1. (49.3)

σ
w′

w

Fig. 49.1. With this configuration we have Nσ (w) = Nσ (w′) + 1.

Proof. First decompose σ into the path α followed by γ as indicated on the
left side of Figure 49.2 and then let σ̃ be the path β followed by γ as shown on
the right side of Figure 49.2. Using the properties of winding numbers we have
already proved we then have

Nσ (w) = Nσ̃ (w) = Nσ̃ (w′)

=
1

2πi

∫
σ̃

1

z − w′
dz =

1

2πi

(∫
β

+

∫
γ

)
1

z − w′
dz

=
1

2πi

(∫
β

−
∫
α

+

∫
α

+

∫
γ

)
1

z − w′
dz

=
1

2πi

(
2πi+

∫
σ

1

z − w′
dz

)
= 1 +Nσ (w′)

which proves Eq. (49.2). To prove Eq. (49.3) simply reverse the roles of w′ and
w in Eq. (49.2).

Example 49.9. Using the above rules we may now easily compute the winding
numbers of any reasonable closed loop, see for example Figure 49.3.

49.2 Argument Principle Introduction

Theorem 49.10 (Argument Principle). If f : D → C is a meromorphic
function and C is a simple closed positively oriented loop in D with having no
singularities or zeros on C, then

γ

w′

w
γ

α γ

w′

w
γ

α

β

Fig. 49.2. In this figure σ is α followed by γ and σ̃ is β followed by γ. Notice that σ̃
is homotopic to σ in C \ {w} but not in C \ {w′} .
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Fig. 49.3. Computing the winding numbers of a closed curve C.

1

2π
∆C arg (f) := Nf◦C (0) = (# of zeros of f inside C)−(# of poles of f inside C) .

The zeros are to be counted with multiplicities and the poles are to be counted
with their orders.

The next few figures illustrate the argument principal.
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Let h (z) = z + z−1 and note that h (z) = 0 iff z2 + 1 = 0, i.e. iff z = ±i.

Fig. 49.4. Here h (z) = z + z−1 and these are plots of h
(
i+ 3eiθ

)
in green,

h
(
i+ 1.5eiθ

)
in blue, and h

(
i+ 1

2
eiθ
)

in red. All curves go in the counter-clockwise
direction.

Fig. 49.5. Plots of sin
(
4eiθ

)
in red and and sin

(
2eiθ

)
in green with winding number

3 and 1 respectively.

Fig. 49.6. Plots of sin
(
1 + 3eiθ

)
in black and sin

(
1 + 1

2
eiθ
)

in red with winding
numbers about 0 being 2 and 0 respectively.
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