
Bruce K. Driver

Math 180B Stochastic Processes I, Spring 2020

March 31, 2020 File:180B˙Notes.tex





Contents

Part I Background Material

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Deterministic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Stochastic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 (Discrete) Distributions Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Appendix: Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Conditional Expectation (Discrete Case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Conditional and Joint Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Conditional Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Random Length Random Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Wald’s Equation and Gambler’s Ruin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 A Review of Correlation and Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Part II Appendix

A Basics of Probabilities and Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B Analytic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B.1 A Stirling’s Formula Like Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B.2 Formula for integer valued unifrom distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

C Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
C.1 Borel Cantelli Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



4 Contents

D Multivariate Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
D.1 Review of Gaussian Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
D.2 Gaussian Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
D.3 Gaussian Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
D.4 Independent Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Page: 4 job: 180B_Notes macro: svmonob.cls date/time: 31-Mar-2020/7:32



Part I

Background Material





1

Introduction

Definition 1.1 (Stochastic Process via Wikipedia). ..., a stochastic
process, or often random process, is a collection of random variables rep-
resenting the evolution of some system of random values over time. This is
the probabilistic counterpart to a deterministic process (or deterministic sys-
tem). Instead of describing a process which can only evolve in one way (as in
the case, for example, of solutions of an ordinary differential equation), in a
stochastic, or random process, there is some indeterminacy: even if the initial
condition (or starting point) is known, there are several (often infinitely many)
directions in which the process may evolve.

1.1 Deterministic Modeling

In deterministic modeling one often has a dynamical system on a state space
S. The dynamical system often takes on one of the two forms;

1. there exists f : S → S and a state xn then evolves according to the rule
xn+1 = f (xn). [More generally one might allow xn+1 = fn (x0, . . . , xn)
where fn : Sn+1 → S is a given function for each n.

2. There exists a vector field f on S (where now S = Rd or a manifold)
such that ẋ (t) = f (x (t)) . [More generally, we might allow for ẋ (t) =
f
(
t;x|[0,t]

)
, a functional differential equation.]

Goals: the goals in this case then have to do with deriving the properties
of the trajectories given the properties of the driving dynamics incorporated in
f. For example, think of a golfer trying to make a put or a hot-air balloonist
trying to find a path from point A to point B.

1.2 Stochastic Modeling

Much of our time in this course will be to explore the above two situations where
some extra randomness is added at each state of the game. The point being that
in many situations the exact nature of the dynamics is not known or is rapidly
changing. What is known are statistical properties of the dynamics – i.e. likely
hoods that the dynamics will be of a certain form. This amounts to replacing f
above by some sort of random f and then resolving the problems. However, now
rather than trying to find the properties of a given trajectory we instead try to
find properties of the statistics of the now random trajectories. Typically when
comparing theory to experiment one has to now average experimental results
(hoping to use the law of large numbers) to make contact with the mathematical
theory. Here is a little more detail on the typical sort of scenarios that we will
consider in this course.

1. We may now have that Xn+1 ∈ S is random and evolves according to

Xn+1 = f (Xn, ξn)

where {ξn}∞n=0 is a sequence of i.i.d. random variables. Alternatively put,
we might simply let fn := f (·, ξn) so that fn : S → S is a sequence of i.i.d.
random functions from S to S. Then {Xn}∞n=0 is defined recursively by

Xn+1 = fn (Xn) for n = 0, 1, 2, . . . . (1.1)

This is the typical example of a time-homogeneous Markov chain. We as-
sume that X0 ∈ S is given with an initial condition which is either deter-
ministic or is independent of the {fn}∞n=0 .

2. Later in the course we will study the continuous time analogue,

“Ẋt = ft (Xt) ”



where {ft}t≥0 are again i.i.d. random vector-fields. The continuous time
case will require substantially more technical care. For example, one often
considers the controlled differential equation,

Ẋt = f (Xt) Ḃt (1.2)

where {Bt}t≥0 is Brownian motion or equivalently Ḃt is “white noise” or Bt
is a Poisson process. The Poisson noise is often used to model arrival times
in networks or in queues (i.e. service lines) or appear in electrical circuits
due to “thermal fluctuations” to name a few. See for example, Johnson
Noise and Shot Noise by Dennis V. Perepelitsa, November 27, 2006.) Here
are two quotes from this article.
“The thermal agitation of the charge carriers in any circuit causes a small,
yet detectable, current to flow. J.B. Johnson was the first to present a quan-
titative analysis of this phenomenon, which is unaffected by the geometry
and material of the circuit.”
“The quantization of charge carried by electrons in a circuit also contributes
to a small amount of noise. Consider a photoelectric circuit in which current
caused by the photoexcitation of electrons flow to the anode.”

3. We will also consider a class of processes known as (Sub/Super) martin-
gales which encode information about fair (or not so fair) games of chance
amongst many other applications.
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(Discrete) Distributions Review

Notation 2.1 We typically let Ω be a sample space. An element ω ∈ Ω is
a sample point, a subset A ⊂ Ω and event, and a function X : Ω → R
a random variable. More generally a function, X : Ω → Rd, is called a
random vector. Even more generally we consider functions, f : Ω → S,
where S is another set that we will often refer to as state space.

We are interested in probability functions, P, on Ω and in particular in
computing, P (A) , the probability of an event A and, EX, the expectation of a
random variable X. We take for granted may of the basic notions of probability
but, see Appendix A below for a refresher on some of the basic notions. We
so however pause to discuss the notion of a distribution and give a number of
example.

2.1 Discrete Distributions

Definition 2.2 (Discrete distributions). If S is a discrete set, i.e. finite or
countable and X : Ω → S we let

ρX (s) := P (X = s) .

If Y : Ω → T is a another random function and again T is a discrete set,
then (X,Y ) : Ω → S × T is again a random function and we let

ρX,Y (s, t) := P ((X,Y ) = (s, t)) = P (X = s and Y = t)

be the corresponding joint distribution of (X,Y ) . In this setting we say

ρX (s) = P (X = s) =
∑
t∈T

P (X = s and Y = t) =
∑
t∈T

ρX,Y (s, t)

as the X-marginal of ρX,Y and similarly

ρY (t) = P (Y = t) =
∑
s∈S

P (X = s and Y = t) =
∑
s∈S

ρX,Y (s, t)

is that Y -marginal of ρX,Y .

Remark 2.3. Given a function, f : S → R, we have

E [f (X)] =
∑
s∈S

f (s)P (X = s) =
∑
s∈S

f (s) ρX (s) .

Theorem 2.4 (Independence). If X : Ω → S and Y : Ω → T are as above,
then the following statements are equivalent;

1. X and Y are independent, i.e.

P (X = s and Y = t) = P (X = s)P (Y = t) for all (s, t) ∈ S × T.

2. ρX,Y (s, t) = ρX (s) · ρY (t) for all (s, t) ∈ S × T.
3. E [f (X) g (Y )] = E [f (X)]E [g (Y )] for all bounded (or non-negative) func-

tions f : S → R and g : T → R.

In order to give some examples of discrete random variables, let us take
S = N0 = {0, 1, 2, . . . } for the rest of this section.

Definition 2.5 (Generating Function). Suppose that N : Ω → N0 is an
integer valued random variable on a probability space, (Ω,B,P) . The generating
function associated to N is defined by

GN (z) := E
[
zN
]

=

∞∑
n=0

P (N = n) zn for |z| ≤ 1. (2.1)



6 2 (Discrete) Distributions Review

The distribution of N may be recovered from GN (by standard power series
considerations) using;

P (N = n) =
1

n!
G

(n)
N (0) for n ∈ N0.

[The convention here is, as usual, that 0! = 1.]

Proposition 2.6 (Generating Functions). The generating function satis-
fies,

G
(k)
N (z) = E

[
N (N − 1) . . . (N − k + 1) zN−k

]
for |z| < 1

and
G(k) (1) = lim

z↑1
G(k) (z) = E [N (N − 1) . . . (N − k + 1)] ,

where it is possible that one and hence both sides of this equation are infinite.
In particular,

G′ (1) := lim
z↑1

G′ (z) = EN (2.2)

and if EN2 <∞,

Var (N) = G′′ (1) +G′ (1)− [G′ (1)]
2
. (2.3)

Proof. By standard power series considerations, for |z| < 1,

G
(k)
N (z) =

∞∑
n=0

P (N = n) · n (n− 1) . . . (n− k + 1) zn−k

= E
[
N (N − 1) . . . (N − k + 1) zN−k

]
. (2.4)

Since, for z ∈ (0, 1) ,

0 ≤ N (N − 1) . . . (N − k + 1) zN−k ↑ N (N − 1) . . . (N − k + 1) as z ↑ 1,

we may apply the “Monotone Convergence Theorem” (MCT) to pass to the
limit as z ↑ 1 in Eq. (2.4) to find,

G(k) (1) = lim
z↑1

G(k) (z) = E [N (N − 1) . . . (N − k + 1)] .

Exercise 2.1 (Some Discrete Distributions). Let p ∈ (0, 1] and λ > 0. In
the four parts below, the distribution of N will be described. You should work
out the generating function,

GN (z) := E
[
zN
]

=

∞∑
n=0

P (N = n) zn for |z| ≤ 1

and then use it (along with Eqs. (2.2) and (2.3)) to verify the given formulas
for EN and Var (N) .

1. Bernoulli(p) : P (N = 1) = p and P (N = 0) = 1− p. You should find

EN = p and Var (N) = p− p2.

2. Binomial(n, p) = Bin (n, p) :

P (N = k) =

(
n

k

)
pk (1− p)n−k for k = 0, 1, . . . , n,

i.e. P (N = k) is the probability of k successes in a sequence of n independent
yes/no experiments with probability of success being p.) You should find

EN = np and Var (N) = n
(
p− p2

)
.

3. Geo (p) : P (N = k) = p (1− p)k−1
for k ∈ N is the geometric distri-

bution. [P (N = k) is the probability that the kth – trial is the first time
of success out a sequence of independent trials with probability of success
being p.] You should find

EN =
1

p
and Var (N) =

1− p
p2

.

4. Poisson(λ) : P (N = k) = λk

k! e
−λ for all k ∈ N0 = {0, 1, 2, . . . } , see Proposi-

tion 2.11 below for some context. You should find

EN = λ = Var (N) .

Definition 2.7 (Negative Binomial). Let {Zi}∞i=1 be i.i.d. Bernoulli random
variables with P (Zi = 1) = p ∈ (0, 1]. For r ∈ N let Wr be the number of Zi = 0
before the first time that Zi = 1 occurs for the rth-time. In more detail, if
Wr = k, then Zk+r = 1 (otherwise we would have Wr < k) and we then have(
r+k−1
r−1

)
ways to choose the other r − 1 locations and each such configuration

occurs with probability pr (1− p)k . Therefore the probability mass function for
Wr is given by

P (Wr = k) =

(
r + k − 1

k

)
pr (1− p)k =

(
r + k − 1

r − 1

)
prqk (2.5)

where q = 1− p as usual.

Remark 2.8. The binomial coefficient in Eq. (2.5) may be rewritten as(
r + k − 1

k

)
=

(k + r − 1) · · · (r)
(k)!

= (−1)k
(−r)(−r − 1)(−r − 2) · · · (−r − k + 1)

(k)!
= (−1)k

(
−r
k

)

Page: 6 job: 180B_Notes macro: svmonob.cls date/time: 31-Mar-2020/7:32
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and hence we may also write,

P (Wr = k) = (−1)k
(
−r
k

)
pr (1− p)k = (−1)k

(
−r
k

)
pqk.

This explains the negative Binomial distribution terminology.
Let us further note that when r = −1,(

−r
k

)
= (−1)k

(−1)(−1− 1)(−1− 2) · · · (−1− k + 1)

(k)!
= 1

and so

P (W1 = k) = p (1− p)k = pqk = P (Geo (p) = k + 1) = P (Geo (p)− 1 = k)

so that W1
d
= Geo (p)− 1.

Lemma 2.9 (Generating Function). If 0 < p ≤ 1, q = 1− p, and Wr is as
in Definition 2.7, then its generating function is given by

GWr
(z) = pr (1− qz)−r =

(
p

1− qz

)r
for |z| < 1/q (2.6)

and moreover,

EWr = r · q
p

and Var (Wr) = r
q

p2
. (2.7)

Proof. By definition of the generating function,

G (z) := GWr
(z) = E

[
zWr

]
=

∞∑
k=0

zkP (Wr = k) = pr
∞∑
k=0

(−1)k
(
−r
k

)
(qz)

k

= pr (1− qz)−r =

(
p

1− qz

)r
wherein we have used the Binomial Theorem 2.17 to evaluate the sum. We then
compute the derivatives,

G′ (z) = qrpr (1− qz)−r−1
and G′′ (z) = q2r (r + 1) pr (1− qz)−r−2

and so

G′ (1) = qrpr (1− q)−r−1
= qrprp−r−1 = r

q

p
and

G′′ (1) = q2r (r + 1) pr (1− q)−r−2
= r (r + 1)

q2

p2
.

Therefore by Eqs. (2.2) and (2.3),

EWr = qrpr (1− q)−r−1
= r

q

p
and

Var (Wr) = r (r + 1)
q2

p2
+ r

q

p
−
(
r
q

p

)2

= r

[
q2

p2
+
q

p

]
= r

q

p2
[q + p] = r

q

p2
.

Corollary 2.10. If {Xi}ri=1 are i.i.d. with Xi
d
= W1

d
= [Geo (p)− 1] , then1

Wr
d
= X1 + · · ·+Xr. (2.8)

[This can be used to give another proof of the identities in Eq. (2.7).]

Proof. From Lemma 2.9 we know that

GXi (z) = GW1
(z) =

p

1− qz

and therefore, using the assumed independence,

GX1+···+Xr (z) = E
[
zX1+···+Xr

]
= E

[
zX1zX2 · · · zXr

]
=

r∏
j=1

E
[
zXj

]
=

(
p

1− qz

)r
= GWr

(z) .

Since the generating function completely determines the probability mass func-

tion, it follows that Wr
d
= X1 + · · ·+Xr.

Using Eq. (2.8) this fact along with Remark 2.8 and Exercise 2.1, it then
follows that

EWr = EW1 = r (E [Geo (p)− 1]) = r

(
1

p
− 1

)
= r · 1− p

p

and

Var (Wr) = rVar (X1) = rVar (Geo (p)) = r
1− p
p2

.

1 This result is fairly intuitive since X1 + · · ·+Xr represents a string {Zj}X1+···+Xr
j=1

where
# {1 ≤ j ≤ X1 + · · ·+Xr : Zj = 1 with the last being 1} .

Page: 7 job: 180B_Notes macro: svmonob.cls date/time: 31-Mar-2020/7:32



8 2 (Discrete) Distributions Review

Exercise 2.2. Let {λn}∞n=1 be a sequence of real numbers such that λ =
limn→∞ λn exists in R. Show for each k ∈ N0 that

lim
n→∞

(1− λn/n)
n−k

= e−λ.

Hint: you might use ln (1 + x) = x+O
(
x2
)

for |x| small.]

Proposition 2.11 (The Law of Rare Events I). Let Sn,p
d
= Bin (n, p) , k ∈

N, pn = λn/n where λn → λ > 0 as n → ∞. Show Bin (n, λn/n) =⇒ Poi (λ)
as n→∞,2 i.e. show

lim
n→∞

P (Sn,pn = k) =
λk

k!
e−λ = P (Poi (λ) = k) for k ∈ N0. (2.9)

(We will come back to the Poisson distribution and the related Poisson process
later on.)

Proof. We have,

P (Sn,pn = k) =

(
n

k

)
(λn/n)

k
(1− λn/n)

n−k

=
λkn
k!

n (n− 1) . . . (n− k + 1)

nk
(1− λn/n)

n−k
.

The result now follows from Exercise 2.2 and the observation that (for each
fixed k ∈ N0),

lim
n→∞

n (n− 1) . . . (n− k + 1)

nk
= 1.

Remark 2.12. Slightly informally, Eq. (2.9) states; if n ∈ N is large and p =
O (1/n)3, then

P (Bin (n, p) = k) ∼= P (Poi (pn) = k) =
(pn)

k

k!
e−pn for k ≪ n. (2.10)

See the next two figures where (p, n) = (5/100, 100) and (p, n) = (5/1000, 1000)
so that λ = pn = 5 in each case.

2 The probability of success, pn, is going to zero as n→∞. Thus as n→∞ we are
doing lots of trials of an experiment with very low probability of success and hence
the name, the Law of rare events.

3 Writing p = O (1/n) is being used informally here to mean the pn is “much smaller”
than n.

Fig. 2.1. Plot of the probability functions for Bern
(

5
100

, 100
)

in black and Poi (5) in
green.

Fig. 2.2. Plot of the probability functions for Bern
(

5
1000

, 1000
)

in black and Poi (5)
in green.
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2.2 Appendix: Taylor’s Theorem 9

2.2 Appendix: Taylor’s Theorem

Proposition 2.13 (Taylor’s Theorem I). Suppose that h : (−ε, 1 + ε) → C
is a CN – differentiable function. Then

h (1) =

N−1∑
l=0

h(l)(0)

l!
+

∫ 1

0

(1− t)N−1

(N − 1)!
h(N)(t)dt. (2.11)

Proof. We prove this formula by induction on N using integration by parts.
For N = 1 the formula states,

h (1) = h (0) +

∫ 1

0

h′ (t) dt

which is true by the fundamental theorem of calculus. Moreover if f is CN+1 –
differentiable, then by integration by parts∫ 1

0

(1− t)(N−1)

(N − 1)!
h(N)(t)dt = −

∫ 1

0

h(N)(t)

[
d

dt

(1− t)N

N !

]
dt

=

∫ 1

0

h(N+1)(t)
(1− t)N

N !
dt− h(N)(t)

(1− t)N

N !

∣∣∣∣1
0

=

∫ 1

0

h(N+1)(t)
(1− t)N

N !
dt+

1

N !
h(N)(0).

Hence if Eq. (2.11) holds then

h (1) =

N−1∑
l=0

h(l)(0)

l!
+

1

N !
h(N)(0) +

∫ 1

0

h(N+1)(t)
(1− t)N

N !
dt

=

N∑
l=0

h(l)(0)

l!
+

∫ 1

0

h(N+1)(t)
(1− t)N

N !
dt

which completes the induction argument.

Theorem 2.14 (Taylor’s Theorem with Integral Remainder). Suppose
that f : (a, b)→ C is CN – differentiable and x0 ∈ (a, b) . Then for all x ∈ (a, b) ,

f (x) =

N−1∑
l=0

f (k) (x0)

l!
(x− x0)

k
+

(x− x0)
N

N !
RN (x)

where RN (x) = RN (f, x0;x) is given by

RN (x) =

∫ 1

0

f (N) (x0 + t (x− x0))N(1− t)N−1dt

=

∫ 1

0

f (N) ((1− t)x0 + tx)N(1− t)N−1dt.

[Observe that
∫ 1

0
N(1− t)N−1dt = − (1− t)N |10 = 1.]

Proof. We apply Proposition 2.13 with h (t) := f (x0 + t (x− x0)) using,

h(k) (t) = f (k) (x0 + t (x− x0)) (x− x0)
k
. Therefore,

f (x) =h (1) =

N−1∑
l=0

h(l)(0)

l!
+

∫ 1

0

(1− t)N−1

(N − 1)!
h(N)(t)dt

=

N−1∑
l=0

f (k) (x0)

l!
(x− x0)

k

+
(x− x0)

N

N !

∫ 1

0

f (N) (x0 + t (x− x0))N(1− t)N−1dt.

Definition 2.15. For β ∈ R and k ∈ N0 we define the Binomial coefficient by(
β

k

)
:=

β (β − 1) . . . (β − k + 1)

k!

with the convention that
(
β
0

)
= 1 for all β ∈ R.

Remark 2.16. If β ∈ N then(
β

k

)
=

1

k!
β (β − 1) . . . (β − k + 1) =

1

k!

β!

(β − k)!
=

β!

k! · (β − k)!
.

Theorem 2.17 (Binomial Series). If β ∈ R and |x| < 1, then

(1− x)β =

∞∑
k=0

(−1)
k

(
β

k

)
xk.

Proof. By repeated differentiation you may show,

f (k)(x) = (−1)kβ(β − 1) . . . (β − k + 1)(1− x)β−k = (−1)k! ·
(
β

k

)
(1− x)β−k

So by Taylor’s theorem (Eq. (2.11) with x = 0 and y = x)
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(1− x)β = 1 +

N−1∑
k=1

1

k!
(−1)kβ(β − 1) . . . (β − k + 1)xk +RN (x) (2.12)

where

RN (x) =
xN

N !

∫ 1

0

(−1)Nβ(β − 1) . . . (β −N + 1)(1− sx)β−NdνN (s)

=
xN

N !
(−1)Nβ(β − 1) . . . (β −N + 1)

∫ 1

0

N(1− s)N−1

(1− sx)N−β
ds.

Now for x ∈ (−1, 1) and N > β,

0 ≤
∫ 1

0

N(1− s)N−1

(1− sx)N−β
ds ≤

∫ 1

0

N(1− s)N−1

(1− s)N−β
ds =

∫ 1

0

N(1− s)β−1ds =
N

β

and therefore,

|RN (x)| ≤ |x|N

(N − 1)!
|(β − 1) . . . (β −N + 1)| =: ρN .

Since

lim sup
N→∞

ρN+1

ρN
= |x| · lim sup

N→∞

N − β
N

= |x| < 1,

the Ratio test implies that |RN (x)| ≤ ρN → 0 (exponentially fast) as N →∞.
Therefore by passing to the limit in Eq. (2.12) we have proved

(1− x)β = 1 +

∞∑
k=1

(−1)k

k!
β(β − 1) . . . (β − k + 1)xk (2.13)

which is valid for |x| < 1 and β ∈ R.

Example 2.18. An important special cases is β = −1 in which case, Eq. (2.13)
becomes the standard geometric series formula;

1

1− x
=

∞∑
k=0

xk.

Another another useful special case is β = 1/2 in which case Eq. (2.13) becomes

√
1− x = 1 +

∞∑
k=1

(−1)k

k!

1

2
(
1

2
− 1) . . . (

1

2
− k + 1)xk

= 1−
∞∑
k=1

(2k − 3)!!

2kk!
xk for all |x| < 1. (2.14)



3

Conditional Expectation (Discrete Case)

3.1 Conditional and Joint Distributions

Let us now suppose that S and T are finite or at most countable sets and
X : Ω → S and Y : Ω → T are (random) functions.

Definition 3.1 ((conditional) probability mass functions). Let pX : S →
[0, 1] , pY : T → [0, 1] , pX,Y : S × T → [0, 1] , and pX|Y : S × T → [0, 1] , be the
functions defined by

pX (x) = P [X = x] for all x ∈ S
pY (y) = P [Y = y] for all y ∈ T

pX,Y (x, y) = P [X = x and Y = y] , for (x, y) ∈ S × T, and

pX|Y (x|y) = P [X = x|Y = y] =
P [X = x and Y = y]

P [Y = y]

=
pX,Y (x, y)

pY (y)
when pY (y) > 0.

If pY (y) = 0 we define pX,Y (x|y) ∈ [0, 1] as function of x in any way we like
such that

∑
y∈T pX|Y (x|y) = 1. We call pX|Y (x|y) the conditional probabil-

ity mass function of X given Y, pX,Y is the joint distribution of (X,Y )
and pX and pY are the probability mass functions for X and Y respectively.

Let us note the following identities;

pX,Y (x, y) = pX|Y (x|y) pY (y) ,

pX (x) =
∑
y∈T

pX,Y (x, y) =
∑
y∈T

pX|Y (x|y) pY (y) , and

pY (y) =
∑
x∈S

pX,Y (x, y) =
∑
x∈S

pY |X (y|x) pX (x) .

In this setting one refers to pX and pY as the X-marginal and Y -marginal
of p(X,Y ) respectively.

Example 3.2. Let Y ∈ [6] = {1, 2, 3, 4, 5, 6} be the result of a fair die toss and
then let X be the number of heads resulting from tossing a fair coin Y -times.
Find p(X,Y ) and pX , i.e. find the joint law of (X,Y ) , its X-marginal, and then
compute EX.

Solution. We are given pY (y) = 1
6 and

pX|Y (x|y) = P (X = x|Y = y) =

(
y

x

)(
1

2

)x(
1

2

)y−x
=

(
y

x

)(
1

2

)y
for 0 ≤ x ≤ y.

Thus we find, for 0 ≤ x ≤ y ≤ 6 and y ≥ 1, that

p(X,Y ) (x, y) = pX|Y (x|y) pY (y) =
1

6

(
y

x

)(
1

2

)y
=

1

6 · 26

(
y

x

)
26−y.

Here is the table of values of p(X,Y ) (x, y) ;

p(X,Y ) (x, y) =
1

6 · 26



x\y 1 2 3 4 5 6
0 32 16 8 4 2 1
1 32 32 24 16 10 6
2 0 16 24 24 20 15
3 0 0 8 16 20 20
4 0 0 0 4 10 15
5 0 0 0 0 2 6
6 0 0 0 0 0 1


(3.1)
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where for example the, x = 3 and y = 4 entry is given by(
y

x

)
26−y|x=3,y=4 =

(
4

3

)
26−4 = 4 · 22 = 16.

To compute the X-marginal, we need to add the rows of the matrix in Eq. (3.1)
to find

x 6 · 26 · pX (x)
0 63
1 120
2 99
3 64
4 29
5 8
6 1

.

For example the top entry is found using, 32 + 16 + 8 + 4 + 2 + 1 = 63. As a
check let us note that

63 + 120 + 99 + 64 + 29 + 8 + 1 = 384 = 6 · 26.

We may now compute EX as

EX =
1

6 · 26
(0 · 63 + 1 · 120 + 2 · 99 + 3 · 64 + 4 · 29 + 5 · 8 + 6 · 1)

=
1

6 · 26
672 =

7

4
.

The next two examples are also discussed on pages 47-49 of P.K.

Example 3.3 (Bin (p,Bin (q,M))
d
= Bin (pq,M)). If X

d
= Bin (p,N) where N

d
=

Bin (q,M) , then X
d
= Bin (pq,M) .

Solution. By assumption,

P [N = n] =

(
M

n

)
qn (1− q)N−n

P [X = k|N = n] =

(
n

k

)
pk (1− p)n−k and

and therefore the joint distribution of (X,N) is given by;

P [X = k,N = n] =

(
n

k

)
pk (1− p)n−k

(
M

n

)
qn (1− q)M−n 10≤k≤n≤M

=
M !

k! (n− k)! (M − n)!
pk (1− p)n−k qn (1− q)M−n 10≤k≤n≤M .

Summing this identity on n (while making the change of variables, let n = k+`,
in the second line) shows

P [X = k] =

M∑
n=0

P [X = k,N = n]

=

M∑
n=0

M !

k! (n− k)! (M − n)!
pk (1− p)n−k qn (1− q)M−n 10≤k≤n≤M

=

M−k∑
`=0

M !

k! (`)! (M − k − `)!
pk (1− p)` qk+` (1− q)M−k−`

=
M !

k! (M − k − `)!
pkqk

M−k∑
`=0

(M − k)!

(`)! (M − k − `)!
(1− p)` q` (1− q)M−k−`

=
M !

k! (M − k − `)!
pkqk ((1− p) q + (1− q))M−k

=
M !

k! (M − k − `)!
(pq)

k
(1− pq)M−k ,

i.e. X
d
= Bin (pq,M) .

Remark 3.4. Let q = λ/M and then making use of Proposition 2.11 suggests
that

Bin (p,Bin (λ/M,M))
d
= Bin (pλ/M,M)

⇓ as M →∞ ⇓
Bin (p,Poi (λ))

?
= Poi (pλ)

which suggest that Bin (p,Poi (λ))
d
= Poi (pλ) . We will verify this conclusion

directly in the next proposition.

Proposition 3.5. Suppose that λ > 0, p ∈ (0, 1) , q = 1 − p, N
d
= Poi (λ)

and given N = n, suppose that X
d
= Bin (n, p) . Then X

d
= Poi (pλ) and Y =

N −X d
= Poi (qλ) and both X and Y are independent of one another.

Proof. By assumption,

P [N = n] = e−λ
λn

n!
and

P [X = k|N = n] =

(
n

k

)
pk (1− p)n−k for 0 ≤ k ≤ n.

Therefore the joint distribution is determined by
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3.2 Conditional Expectations 13

P [X = k,N = n] =

(
n

k

)
pk (1− p)n−k e−λλ

n

n!

=
(pλ)

k

k!

(qλ)
n−k

(n− k)!
e−λ for 0 ≤ k ≤ n <∞.

Summing this equation on n ∈ N0 shows

P [X = k] =

∞∑
n=0

P [X = k,N = n] =

∞∑
n=k

(pλ)
k

k!

(qλ)
n−k

(n− k)!
e−λ

=
(pλ)

k

k!
e−λ

∞∑
n=k

(qλ)
n−k

(n− k)!
(let ` = n− k)

=
(pλ)

k

k!
e−λ

∞∑
`=0

(qλ)
`

(`)!

=
(pλ)

k

k!
e−λeqλ =

(pλ)
k

k!
e−λe(1−p)λ = e−pλ

(pλ)
k

k!

from which it follows that X
d
= Poi (pλ) .

We then see that (Y = N −X)

P [X = k, Y = `] = P [X = k,N −X = `]

= P [X = k,N = k + `]

=
(pλ)

k

k!

(qλ)
k+`−k

(k + `− k)!
e−λ =

(pλ)
k

k!

(qλ)
`

`!
e−λ

=
(pλ)

k

k!
e−pλ

(qλ)
`

`!
e−qλ

which shows X is independent of Y and Y
d
= Poi (qλ) .

Note that

P [X = k] =

∞∑
`=0

P [X = k, Y = `] =
(pλ)

k

k!
e−pλ

∞∑
`=0

(qλ)
`

`!
e−qλ

=
(pλ)

k

k!
e−pλeqλe−qλ =

(pλ)
k

k!
e−pλ.

3.2 Conditional Expectations

Definition 3.6. We let L1 (P) denote those random variables, X : Ω → R,
such that E |X| <∞. We say such a random variable is integrable.

Again suppose that T is a finite or at most countable set and let Y : Ω → T.
For X ∈ L1 (P) and y ∈ T, let

E [X|Y = y] =

{
E[X:Y=y]
P[Y=y] =

E[X·1Y=y ]
P[Y=y] if P [Y = y] 6= 0

EX if P [Y = y] = 0
.

When P [Y = y] = 0, E [X|Y = y] is rather arbitrarily defined above. As there
is no chance that the event {Y = y} occurs the value we choose for E [X|Y = y]
in this case is actually irrelevant. If S := X (Ω) is a finite or countable set, then
we may take

E [X|Y = y] =
∑
x∈X

f (x) pX|Y (x|y) .

Definition 3.7 (Conditional Expectation). The conditional expectation
(E [X|Y ]) of X given Y is the random variable,

E [X|Y ] := g (Y ) where g (y) := E [X|Y = y] for y ∈ T.

The next theorem summarizes the main properties of conditional expecta-
tions.

Theorem 3.8 (Basic properties). Let X, X1, X2 ∈ L1 (P) , Y : Ω → T, and
a ∈ R be given. Then:

1. E [k|Y ] = k when k is a constant.
2. Linearity:

E(X1 + aX2|Y ) = E(X1|Y ) + aE(X2|Y ).

3. Pullout Property: for all bounded functions g,

E(g(Y )X|Y ) = g(Y )E(X|Y )

4. Tower Property/ Law of Total Probability / Law of the Forgetful
Statistician (LFS):

E(E(X|Y )) = EX.
5. Independence property: If X and Y are independent then

E(X|Y ) = EX a.s.

6. Best RMS1 Approximation: if E |X|2 < ∞ and X̄ : =E [X|Y ] = g (Y )

and h : T → R is such that E |h (Y )|2 <∞, then

E (X − h (Y ))
2 ≥ E

(
X − X̄

)2
= E (X − g (Y ))

2
. (3.2)

This shows that X̄ = g (Y ) is the best approximation to X among all func-

tions of the form h (Y ) with E |h (Y )|2 <∞, see Figure 3.1.
1 RMS stands for root-mean-square.
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14 3 Conditional Expectation (Discrete Case)

Fig. 3.1. Geometric description of E [X|Y ] .

Proof. We will take each item in turn. We will use over and over again that

Ω =
∑
y∈T
{Y = y} = ∪y∈T {Y = y} .

Fig. 3.2. Showing how Y partitions Ω.

E [X|Y ] = E [X|Y = j] on the set {Y = j} .

1. & 2. On the event, {Y = y} we have

E(k|Y ) = E(k|Y = y) = k

E(X1 + aX2|Y ) = E(X1 + aX2|Y = y) = E(X1|Y = y) + aE(X2|Y = y).

As the events {Y = y} for y ∈ T partitions Ω, these identities suffice to
prove the first two items.

3. Similarly, on the event, {Y = y}

E(g(Y )X|Y ) = E(g(Y )X|Y = y) = E(g(y)X|Y = y)

= g(y)E(X|Y = y) = g(Y )E(X|Y ).

4. The proof of the LFS is contained in the following simple computation;

E(E(X|Y )) =
∑
y∈T

E (E(X|Y ) : Y = y) =
∑
y∈T

E(E(X|Y = y) : Y = y)

=
∑
y∈T

E(E(X|Y = y) · 1Y=y)

=
∑
y∈T

E(X|Y = y) · P(Y = y) =
∑
y∈T

E(X : Y = y)

= E [X] .

5. If X and Y are independent and y ∈ T, then

E(X|Y ) =
E [X1Y=y]

P [Y = y]
=

E [X] · E [1Y=y]

P [Y = y]
= EX.

6. Taking expectations of the identity;

(X − h (Y ))
2

= (X − g (Y ) + g (Y )− h (Y ))
2

= (X − g (Y ))
2

+ (g (Y )− h (Y ))
2

+ 2 (X − g (Y )) (g (Y )− h (Y )) ,

shows,

E (X − h (Y ))
2

= E
(
X − X̄

)2
+E

(
X̄ − h (Y )

)2
+2E [(X − g (Y )) (g (Y )− h (Y ))] .

(3.3)
However, by the pull-out property,

E [(X − g (Y )) |Y ] = E [X|Y ]− g (Y )E [1|Y ] = 0 and so

E [(X − g (Y )) (g (Y )− h (Y )) |Y ] = (g (Y )− h (Y ))E [(X − g (Y )) |Y ] = 0

and so by the tower property,

E [(X − g (Y )) (g (Y )− h (Y ))] = E (E [(X − g (Y )) (g (Y )− h (Y )) |Y ])

= E (0) = 0. (3.4)

So from Eqs. (3.3) and (3.4);

E (X − h (Y ))
2

= E
(
X − X̄

)2
+ E

(
X̄ − h (Y )

)2 ≥ E
(
X − X̄

)2
and Equation (3.2) is proved.

Example 3.9 (Example 3.2 Cont.). Recall that in Example 3.2 that let Y ∈ [6] =
{1, 2, 3, 4, 5, 6} be the result of a fair die toss and then let X be the number of
heads resulting from tossing a fair coin Y -times. Since
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3.3 Random Length Random Sums 15

E [X|Y = y] =
1

2
y =⇒ E [X|Y ] =

1

2
Y

it follows by the LFS that

E [X] = E (E [X|Y ]) =
1

2
EY =

1

2
· 1

6
(1 + · · ·+ 6) =

21

12
=

7

4
.

This is in agreement with what we already found in Example 3.2.

Exercise 3.1 (See Durrett, #8, p. 213). Suppose that X and Y are two
integrable random variables such that

E [X|Y ] = 18− 3

5
Y and E [Y |X] = 10− 1

3
X.

Find EX and EY.

3.3 Random Length Random Sums

See P.K. Section 2.3. Let {ξi}∞i=1 be i.i.d random variables and for n ∈ N0 let

Xn = ξ1 + · · ·+ ξn :=

{∑n
i=1 ξi if n ≥ 1
0 if n = 0

for n ∈ N0 .

If N : Ω → N0 is a discrete random variable we also let

X = XN = ξ1 + · · ·+ ξN :=

{∑N
i=1 ξi if N ≥ 1
0 if N = 0

which is now a random sum of random length, N. We further let

µ = Eξi, σ2 = Var (ξi) ,

ν = EN = ν, τ2 = Var (N)

which we assume to be finite.

Proposition 3.10 (Random Length Random Sums). If N is independent
of {ξi}∞i=1 , then

EX = µν and Var (X) = νσ2 + µ2τ2.

Proof. For a general function, f (x) , with x ∈ R we have

Ef (X) =
∞∑
n=0

E [f (X) : N = n] =
∞∑
n=0

E [f (Xn) : N = n]

=

∞∑
n=0

E [f (Xn)] · P [N = n] .

Since EXn = n · µ, taking f (x) = x we find,

EX =

∞∑
n=0

EXn · P [N = n] =

∞∑
n=0

µ · n · P [N = n] = µEN = µν.

Similarly taking f (x) = x2 while using,

EX2
n = Var (Xn) + (EXn)

2
= n · σ2 + n2µ2,

it follows that

EX2 =

∞∑
n=0

E
[
X2
n

]
· P [N = n]

=

∞∑
n=1

(
n · σ2 + n2µ2

)
· P [N = n]

= σ2EN + µ2EN2 = σ2ν + µ2
(
τ2 + ν2

)
and so

Var (X) = EX2 − (EX)
2

= EX2 − (µν)
2

= νσ2 + µ2τ2.

Example 3.11 (Examples 3.2 and 3.9 revisited). Recall that in Example 3.2 that
let N := Y ∈ [6] = {1, 2, 3, 4, 5, 6} be the result of a fair die toss and then let
X be the number of heads resulting from tossing a fair coin Y -times. Thus if
we let {ξj}∞j=1 be i.i.d. with P [ξj = 1] = 1

2 = P [ξj = 0] , then we may represent
X = ξ1 + · · ·+ ξN . In this case

µ = Eξi =
1

2

σ2 = Var (ξi) =
1

2
· 1

2
=

1

4
,

ν = EN =
1

6
(1 + 2 + · · ·+ 6) =

21

6
=

7

2
,

τ2 = Var (N) =
91

6
−
(

21

6

)2

=
35

12

where we used2 EN2 = 1
6

∑6
j=1 j

2 = 91
6 . Thus we find,

EX = µν =
7

4
and

Var (X) = νσ2 + µ2τ2 =
7

2
· 1

4
+

(
1

2

)2
35

12
=

77

48
.

2 See see the end of Appendix B for general formula of this type.
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16 3 Conditional Expectation (Discrete Case)

3.4 Wald’s Equation and Gambler’s Ruin

See the Wikipedia page;

https : //en.wikipedia.org/wiki/Wald%27s equation

for a more general version of the following theorem.

Theorem 3.12 (Wald’s Equation). Lets {ξj}∞j=1 be a sequence of random
variables and N ∈ N0 be a random time and suppose that;

1. EN <∞ and E |ξj | <∞ for each j.
2. µ = Eξj and µ̃ := E |ξj | are independent of j ∈ N.
3. 1j≤N and ξj are independent for each j ∈ N.

If, as above, XN :=
∑∞
j=1 1j≤N · ξj , then

EXN = µ · EN = Eξ1 · EN. (3.5)

Moreover; if ξj ≥ 0 for all j, the Eq. (3.5) holds even when EN =∞. [In
this latter case one should interpret µ · EN := 0 even when µ = Eξ1 = 0 or
EN =∞.]

Proof. Here is the basic calculation;

E [XN ] = E

 ∞∑
j=1

1j≤N · ξj

 =

∞∑
j=1

E [1j≤N · ξj ]

=

∞∑
j=1

E [ξj ]E [1j≤N ] =

∞∑
j=1

µ · E [1j≤N ]

= µ · E

 ∞∑
j=1

1j≤N

 = µ · EN.

The only question is whether all of the interchanges of infinite sums and expec-
tations are justified. By general measure theory summarized in Appendix A,
the above calculation with ξj replaced by |ξj | is always valid and this implies

E

 ∞∑
j=1

1j≤N · |ξj |

 = µ̃ · EN <∞.

It then again follows by the general theory of the expectations that this is what
is needed in order to justify the previous calculation.

Corollary 3.13. Suppose that {ξj}∞j=1 ⊂ L1 (P) are i.i.d. random variables,
µ = Eξi, and N ∈ N0 is a random “stopping” time, i.e.

{j ≤ N} depends only on {ξ1, . . . , ξj−1} for each j ∈ N. (3.6)

If we further assume that EN <∞ or that ξj ≥ 0 for all j, then

EXN = µ · EN.

Proof. The stopping time assumption in Eq. (3.6) means (more precisely)
that

1j≤N = a function of (ξ1, . . . , ξj−1) .

Since {ξj}∞j=1 are independent, it follows that ξj is independent of 1j≤N and
hence the corollary follows from Wald’s identity, Theorem 3.12.

Example 3.14. Let {ξj}∞j=1 be {0, 1}-valued random variables and

N := min {j : ξ1 + · · ·+ ξj = 10} .

[Flip a coin sides labeled by 0 and 1. Then N is the first time you have flipped
10 ones.] Since

{j ≤ N} = # {k ≤ j − 1 : ξk = 1} < 10

we see that N is a stopping time.

Further assume 0 < p ≤ 1 and {ξj}∞j=1 are i.i.d. with ξj
d
= Bern (p) - random

variables, i.e. P (ξj = 1) = p and P (ξj = 0) = q = 1− p. Then

10 = E

 N∑
j=1

ξj

 = Eξ1 · EN = p · EN =⇒ EN =
10

p
. (3.7)

[Note that P [N =∞] =“q∞”= 0, so that
∑N
j=1 ξj = 10 a.s.]

Remark 3.15. The Random time, N, in Example 3.14 may be written as N =
W10 + 10 where W10 is the negative binomial distribution as in Definition 2.7
with r = 10. It then follows by Corollary 2.10, that

EN = EW10 + 10 = 10 · 1− p
p

+ 10 =
10

p

in agreement with Eq. (3.7).

Example 3.16 (Gambler’s ruin). Let {ξj}∞j=1 be i.i.d. such that P (ξj = −1) =

P (ξj = 1) = 1/2 and let

N := min {j : ξ1 + · · ·+ ξj = 1} .
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3.5 A Review of Correlation and Independence 17

[So N represents the first time a gambler is ahead by 1$ in a betting game based
on the flips of a fair cone.] Notice that

{j ≤ N} = ∩k<j {ξ1 + · · ·+ ξk ≤ 0}

which shows N is a stopping time.
Claim: EN =∞.
Proof. If EN <∞, then N <∞ a.s. and hence

ξ1 + · · ·+ ξN = 1 a.s..

Taking expectations while using Wald’s equation and Eξj = 0 would lead to
the following contradiction,

1 = E

 N∑
j=1

ξj

 = Eξ1 · EN = 0 · EN = 0.

Hence it must be that

EN = E [first time that a gambler is ahead by 1] =∞.

3.5 A Review of Correlation and Independence

Notation 3.17 (Means, Variances, etc.) Given square integrable random
variables X and Y, let

1. a) µX := EX be the mean of X.

b) Var (X) := E
[
(X − µX)

2
]

= EX2 − µ2
X be the variance of X.

c) σX = σ (X) :=
√

Var (X) be the standard deviation of X.
d) Cov (X,Y ) := E [(X − µX) (Y − µY )] = E [XY ]−µXµY be the covari-

ance of X and Y.
e) The correlation of X and Y is defined to be

Corr (X,Y ) :=
Cov (X,Y )√

Var (X) ·Var (Y )
=

Cov (X,Y )

σX · σY
∈ [−1, 1] .

f) The random variables X and Y are uncorrelated if Cov (X,Y ) = 0
or equivalently if Corr (X,Y ) = 0. We further say that a collection
{Xk}nk=1 are uncorrelated if Cov (Xk, Xl) = 0 for all k 6= l.

The following Lemma lists the basic properties of variances and covariances
that I hope you already basically know.

Lemma 3.18. The following properties hold.

1. Var (X) = Cov (X,X) .
2. Cov (X,Y ) = Cov (Y, Y ) .
3. Cov (X,Y ) = 0 if either X or Y is constant.
4. Cov (X,Y ) is bilinear in X and Y, i.e.

Cov (X1 + λX2, Y ) = Cov (X1, Y ) + λCov (X1, Y ) (3.8)

where λ ∈ R and {X1, X2, Y } are square integrable random variables.
5. For any constant λ ∈ R,

Var (X + λ) = Var (X) and Var (λX) = λ2 Var (X) .

6. If {Xj}nj=1 are uncorrelated L2 (P ) – random variables, then

Var (X1 + · · ·+Xn) =

n∑
j=1

Var (Xj) . (3.9)

Proof. I will leave most of these results to the reader and only verify Eqs.
(3.8) and (3.9). For Eq. (3.8) we have using the linearity of the expectation
that,

Cov (X1 + λX2, Y ) = E [(X1 + λX2) · Y ]− E [(X1 + λX2)] · EY
= E [X1Y ] + λE [X2Y ]− [EX1 + λEX2] · EY
= (E [X1Y ]− EX1 · EY ) + λ (E [X2Y ]− EX2 · EY )

= Cov (X1, Y ) + λCov (X1, Y ) .

To prove Eq. (3.9) let Y := X1 + · · · + Xn, then (by what we just proved and
induction),

Var (Y ) = Cov (Y, Y ) = Cov (X1 + · · ·+Xn, Y )

=

n∑
i=1

Cov (Xi, Y )

and similarly,

Cov (Xi, Y ) = Cov (Xi, X1 + · · ·+Xn) =

n∑
j=1

Cov (Xi, Xj) .

Combining the last two equations shows, in general, that

Var (X1 + · · ·+Xn) =

n∑
i,j=1

Cov (Xi, Xj) .
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If the {Xj}nj=1 are uncorrelated, then Cov (Xi, Xj) = 0 unless i = j and so the
above sum reduces to

Var (X1 + · · ·+Xn) =

n∑
j=1

Cov (Xj , Xj) =

n∑
j=1

Var (Xj) .

Bonus proof, let me also show that Var (X + λ) = Var (X) when λ is a
constant;

Var (X + λ) = Cov (X + λ,X + λ) = Cov (X + λ,X) + Cov (X + λ, λ)

= Cov (X + λ,X) = Cov (X,X) + Cov (λ,X)

= Cov (X,X) = Var (X) ,

wherein we have used the bilinearity of Cov (·, ·) and the property (you should
verify) that Cov (Y, λ) = 0 whenever λ is a constant.

Theorem 3.19 (Independence = Uncorrelated on Steroids). If X,Y :
Ω → R are random variables then X and Y are independent iff f (X) and g (Y )
are uncorrelated (i.e. Cov (f (X) , g (Y )) = 0) for all functions f, g : R→ R such
that f (X) and g (Y ) are square integrable.

Note well that X and Y being uncorrelated is a much weaker condition
than X and Y being independent as it only requires that Cov (X,Y ) = 0, i.e.
we only perform the independence test with f (x) = g (x) = x!

Proof. This is just a simple rewriting of item 3. of Theorem 2.4.

Corollary 3.20. If {Xj}nj=1 are independent random functions and fj are real

valued functions on the range of Xj such that E |fj (Xj)|2 <∞ for each j, then

Var (f1 (X1) + · · ·+ fn (Xn)) =

n∑
j=1

Var (fj (Xj)) .

Proof. Combine item 6. of Lemma 3.18 with Theorem 3.19.
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A

Basics of Probabilities and Expectations

The goal of this appendix is to describe modern probability with “sufficient”
precision to allow us to do the required computations for this course. We will
thus be neglecting some technical details involving measures and σ – algebras.
The knowledgeable reader should be able to fill in the missing hypothesis while
the less knowledgeable readers should not be too harmed by the omissions to
follow.

1. (Ω,P) will denote a probability space and S will denote a set which is
called state space. Informally put, Ω is a set (often the sample space) and
P is a function on all1 subsets of Ω (subsets of Ω are called events) with
the following properties;

a) P (A) ∈ [0, 1] for all A ⊂ Ω,
b) P (Ω) = 1 and P (∅) = 0.
c) P (A ∪B) = P (A) + P (B) is A ∩B = ∅. More generally, if An ⊂ Ω for

all n with An ∩Am = ∅ for m 6= n we have

P (∪∞n=1An) =

∞∑
n=1

P (An) .

2. A random variable, Z, is a function from Ω to R or perhaps some other
range space. For example if A ⊂ Ω is an event then the indicator function
of A,

1A (ω) :=

{
1 if ω ∈ A
0 if ω /∈ A,

is a random variable.

1 This is often a lie! Nevertheless, for our purposes it will be reasonably safe to ignore
this lie.

3. Note that every real value random variable, Z, may be approximated by
the discrete random variables

Zε :=
∑
n∈Z

nε · 1{nε≤Z<(n+1)ε} for all ε > 0. (A.1)

As we usually do in probability, {nε ≤ Z < (n+ 1) ε} , stands for the event
more precisely written as;

{ω ∈ Ω : nε ≤ Z (ω) < (n+ 1) ε} .

4. EZ will denote the expectation of a random variable, Z : Ω → R which
is defined as follows. If Z only takes on a finite number of real values
{z1, . . . , zm} we define

EZ =

m∑
i=1

ziP (Z = zi) .

For general Z ≥ 0 we set EZ = limn→∞ EZn where {Zn}∞n=1 is any sequence
of discrete random variables such that 0 ≤ Zn ↑ Z as n ↑ ∞. Finally if Z
is real valued with E |Z| < ∞ (in which case we say Z is integrable) we
set EZ = EZ+ − EZ− where Z± = max (±Z, 0) . With these definition one
eventually shows via the dominated convergence theorem below; if f : R→
R is a bounded continuous function, then

E [f (Z)] = lim
∆→0

∑
n∈Z

f (n∆)P (n∆ < Z ≤ (n+ 1)∆) .

We summarize this informally2 by writing;

E [f (Z)] = “

∫
R
f (z)P (z < Z ≤ z + dz) .”

2 Think of z = n∆ and dz = ∆.
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5. The expectation has the following basic properties;

a) Expectations of indicator functions: E1A = P (A) for all events
A ⊂ Ω.

b) Linearity: if X and Y are integrable random variables and c ∈ R, then

E [X + cY ] = EX + cEY.

c) Monotinicity: if X,Y : Ω → R are integrable with P (X ≤ Y ) = 1,
then EX ≤ EY. In particular if X = Y almost surely (a.s.) (i.e.
P (X = Y ) = 1), then EX = EY. [What happens on sets of probability
0 are typically irrelevant.]

d) Finite expectation =⇒ finite random variable. If Z : Ω → [0,∞]
is a random variable such that EZ < ∞ then P (Z =∞) = 0, i.e.
P (Z <∞) = 1.

e) MCT: the monotone convergence theorem holds; if 0 ≤ Zn ↑ Z
then

↑ lim
n→∞

E [Zn] = E [Z] (with ∞ allowed as a possible value).

Example 1: If {An}∞n=1 is a sequence of events such that An ↑ A (i.e.
An ⊂ An+1 for all n and A = ∪∞n=1An), then

P (An) = E [1An ] ↑ E [1A] = P (A) as n→∞

Example 2: If Xn : Ω → [0,∞] for n ∈ N then

E
∞∑
n=1

Xn = E lim
N→∞

N∑
n=1

Xn = lim
N→∞

E
N∑
n=1

Xn = lim
N→∞

N∑
n=1

EXn =

∞∑
n=1

EXn.

Example 3: Suppose S is a finite or countable set and X : Ω → S is
a random function. Then for any f : S → [0,∞] ,

E [f (X)] =
∑
s∈S

f (s)P (X = s) .

Indeed, we have

f (X) =
∑
s∈S

f (s) 1{X=s}

and so by Example 2. above,

E [f (X)] =
∑
s∈S

E
[
f (s) 1{X=s}

]
=
∑
s∈S

f (s)E
[
1{X=s}

]
=
∑
s∈S

f (s)P (X = s) .

f) DCT: the dominated convergence theorem holds, if

E
[
sup
n
|Zn|

]
<∞ and lim

n→∞
Zn = Z, then

E
[

lim
n→∞

Zn

]
= EZ = lim

n→∞
EZn.

Example 1: If {An}∞n=1 is a sequence of events such that An ↓ A (i.e.
An ⊃ An+1 for all n and A = ∩∞n=1An), then

P (An) = E [1An ] ↓ E [1A] = P (A) as n→∞.

The dominating function is 1 here.
Example 2: If {Xn}∞n=1 is a sequence of real valued random variables
such that

E
∞∑
n=1

|Xn| =
∞∑
n=1

E |Xn| <∞,

then; 1) Z :=
∑∞
n=1 |Xn| < ∞ a.s. and hence

∑∞
n=1Xn =

limN→∞
∑N
n=1Xn exist a.s., 2)

∣∣∣∑N
n=1Xn

∣∣∣ ≤ Z and EZ < ∞, and

so 3) by DCT,

E
∞∑
n=1

Xn = E lim
N→∞

N∑
n=1

Xn = lim
N→∞

E
N∑
n=1

Xn = lim
N→∞

N∑
n=1

EXn =

∞∑
n=1

EXn.

g) Fatou’s Lemma: Fatou’s lemma holds; if 0 ≤ Zn ≤ ∞, then

E
[
lim inf
n→∞

Zn

]
≤ lim inf

n→∞
E [Zn] .

This may be proved as an application of MCT.

6. Discrete distributions. If S is a discrete set, i.e. finite or countable and
X : Ω → S we let

ρX (s) := P (X = s) .

Notice that if f : S → R is a function, then f (X) =
∑
s∈S f (s) 1{X=s} and

therefore,

Ef (X) =
∑
s∈S

f (s)E1{X=s} =
∑
s∈S

f (s)P (X = s) =
∑
s∈S

f (s) ρX (s) .

More generally if Xi : Ω → Si for 1 ≤ i ≤ n we let

ρX1,...,Xn (s) := P (X1 = s1, . . . , Xn = sn)

for all s = (s1, . . . , sn) ∈ S1 × · · · × Sn and

Ef (X1, . . . , Xn) =
∑

s=(s1,...,sn)

f (s) ρX1,...,Xn (s) .
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7. Continuous density functions. If S is R or Rn, we say X : Ω → S is a
“continuous random variable,” if there exists a probability density
function, ρX : S → [0,∞) such that for all bounded (or positive) functions,
f : S → R, we have

E [f (X)] =

∫
S

f (x) ρX (x) dx.

8. Given random variables X and Y we let;

a) µX := EX be the mean of X.

b) Var (X) := E
[
(X − µX)

2
]

= EX2 − µ2
X be the variance of X.

c) σX = σ (X) :=
√

Var (X) be the standard deviation of X.
d) Cov (X,Y ) := E [(X − µX) (Y − µY )] = E [XY ]−µXµY be the covari-

ance of X and Y.
e) Corr (X,Y ) := Cov (X,Y ) / (σXσY ) be the correlation of X and Y.

9. Tonelli’s theorem; if f : Rk × Rl → R+, then∫
Rk
dx

∫
Rl
dyf (x, y) =

∫
Rl
dy

∫
Rk
dxf (x, y) (with ∞ being allowed).

10. Fubini’s theorem; if f : Rk × Rl → R is a function such that∫
Rk
dx

∫
Rl
dy |f (x, y)| =

∫
Rl
dy

∫
Rk
dx |f (x, y)| <∞,

then ∫
Rk
dx

∫
Rl
dyf (x, y) =

∫
Rl
dy

∫
Rk
dxf (x, y) .





B

Analytic Facts

B.1 A Stirling’s Formula Like Approximation

Theorem B.1. Suppose that f : (0,∞) → R is an increasing concave down
function (like f (x) = lnx) and let sn :=

∑n
k=1 f (k) , then

sn −
1

2
(f (n) + f (1)) ≤

∫ n

1

f (x) dx

≤ sn −
1

2
[f (n+ 1) + 2f (1)] +

1

2
f (2)

≤ sn −
1

2
[f (n) + 2f (1)] +

1

2
f (2) .

Proof. On the interval, [k − 1, k] , we have that f (x) is larger than the
straight line segment joining (k − 1, f (k − 1)) and (k, f (k)) and thus

1

2
(f (k) + f (k − 1)) ≤

∫ k

k−1

f (x) dx.

Summing this equation on k = 2, . . . , n shows,

sn −
1

2
(f (n) + f (1)) =

n∑
k=2

1

2
(f (k) + f (k − 1))

≤
n∑
k=2

∫ k

k−1

f (x) dx =

∫ n

1

f (x) dx.

For the upper bound on the integral we observe that f (x) ≤ f (k)−f ′ (k) (x− k)
for all x and therefore,∫ k

k−1

f (x) dx ≤
∫ k

k−1

[f (k)− f ′ (k) (x− k)] dx = f (k)− 1

2
f ′ (k) .

Summing this equation on k = 2, . . . , n then implies,∫ n

1

f (x) dx ≤
n∑
k=2

f (k)− 1

2

n∑
k=2

f ′ (k) .

Since f ′′ (x) ≤ 0, f ′ (x) is decreasing and therefore f ′ (x) ≤ f ′ (k − 1) for x ∈
[k − 1, k] and integrating this equation over [k − 1, k] gives

f (k)− f (k − 1) ≤ f ′ (k − 1) .

Summing the result on k = 3, . . . , n+ 1 then shows,

f (n+ 1)− f (2) ≤
n∑
k=2

f ′ (k)

and thus ti follows that
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1

f (x) dx ≤
n∑
k=2

f (k)− 1

2
(f (n+ 1)− f (2))

= sn −
1

2
[f (n+ 1) + 2f (1)] +

1

2
f (2)

≤ sn −
1

2
[f (n) + 2f (1)] +

1

2
f (2)

Example B.2 (Approximating n!). Let us take f (n) = lnn and recall that∫ n

1

lnxdx = n lnn− n+ 1.

Thus we may conclude that

sn −
1

2
lnn ≤ n lnn− n+ 1 ≤ sn −

1

2
lnn+

1

2
ln 2.

Thus it follows that(
n+

1

2

)
lnn− n+ 1− ln

√
2 ≤ sn ≤

(
n+

1

2

)
lnn− n+ 1.

Exponentiating this identity then gives the following upper and lower bounds
on n!;

e√
2
· e−nnn+1/2 ≤ n! ≤ e · e−nnn+1/2.

These bound compare well with Strirling’s formula (Theorem B.5) which im-
plies,

n! ∼
√

2πe−nnn+1/2 by definition⇐⇒ lim
n→∞

n!

e−nnn+1/2
=
√

2π.

Observe that

e√
2
∼= 1. 922 1 ≤

√
2π ∼= 2. 506 ≤ e ∼= 2.718 3.

Definition B.3 (Gamma Function). The Gamma function, Γ : R+ → R+

is defined by

Γ (x) :=

∫ ∞
0

ux−1e−udu (B.1)

(The reader should check that Γ (x) <∞ for all x > 0.)

Here are some of the more basic properties of this function.

Example B.4 (Γ – function properties). Let Γ be the gamma function, then;

1. Γ (1) = 1 as is easily verified.
2. Γ (x+ 1) = xΓ (x) for all x > 0 as follows by integration by parts;

Γ (x+ 1) =

∫ ∞
0

e−u ux+1 du

u
=

∫ ∞
0

ux
(
− d

du
e−u

)
du

= x

∫ ∞
0

ux−1 e−u du = x Γ (x) .

In particular, it follows from items 1. and 2. and induction that

Γ (n+ 1) = n! for all n ∈ N. (B.2)

3. Γ (1/2) =
√
π. This last assertion is a bit trickier. One proof is to make use

of the fact (proved below in Lemma D.1) that∫ ∞
−∞

e−ar
2

dr =

√
π

a
for all a > 0. (B.3)

Taking a = 1 and making the change of variables, u = r2 below implies,

√
π =

∫ ∞
−∞

e−r
2

dr = 2

∫ ∞
0

u−1/2e−udu = Γ (1/2) .

Γ (1/2) = 2

∫ ∞
0

e−r
2

dr =

∫ ∞
−∞

e−r
2

dr

= I1(1) =
√
π.

4. A simple induction argument using items 2. and 3. now shows that

Γ

(
n+

1

2

)
=

(2n− 1)!!

2n
√
π

where (−1)!! := 1 and (2n− 1)!! = (2n− 1) (2n− 3) . . . 3 · 1 for n ∈ N.

Theorem B.5 (Stirling’s formula). The Gamma function (see Definition
B.3), satisfies Stirling’s formula,

lim
x→∞

Γ (x+ 1)√
2πe−xxx+1/2

= 1. (B.4)

In particular, if n ∈ N, we have

n! = Γ (n+ 1) ∼
√

2πe−nnn+1/2

where we write an ∼ bn to mean, limn→∞
an
bn

= 1.
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B.2 Formula for integer valued unifrom distributions

By various means (and easily proved by induction) one finds the formulas;

n∑
j=1

j =
1

2
n (n+ 1)

n∑
j=1

j2 =
1

6
n (2n+ 1) (n+ 1) .

Suppose now that Y ∈ [n] = {1, 2, . . . , n} is chosen uniformly at random, then

EY =
1

n
·
n∑
j=1

j =
n+ 1

2
,

EY 2 =
1

n
·
n∑
j=1

j2 =
1

6
(2n+ 1) (n+ 1) ,

and hence

Var (Y ) =
1

6
(2n+ 1) (n+ 1)−

(
n+ 1

2

)2

= (n+ 1)

[
1

6
(2n+ 1)− n+ 1

4

]
=

1

12
(n− 1) (n+ 1) =

1

12

(
n2 − 1

)
.

So for example if n = 6 (for dice) then (as we have used in the text),

EY =
7

2
and Var (Y ) =

1

12

(
62 − 1

)
=

35

12
.





C

Independence

Definition C.1. We say that an event, A, is independent of an event, B, iff1

P (A ∩B) = P (A)P (B) .

We further say a collection of events {Aj}j∈J are independent iff

P (∩j∈J0Aj) =
∏
j∈J0

P (Aj)

for any finite subset, J0, of J.

Lemma C.2. If {Aj}j∈J is an independent collection of events then so is{
Aj , A

c
j

}
j∈J .

Proof. First consider the case of two independent events, A and B. By
assumption, P (A ∩B) = P (A)P (B) . Since A is the disjoint union of A ∩ B
and A ∩Bc, the additivity of P implies,

P (A) = P (A ∩B) + P (A ∩Bc) = P (A)P (B) + P (A ∩Bc) .

Solving this identity for P (A ∩Bc) gives,

P (A ∩Bc) = P (A) [1− P (B)] = P (A)P (Bc) .

Thus if {A,B} are independent then so is {A,Bc} . Similarly we may show
{Ac, B} are independent and then that {Ac, Bc} are independent. That is
P
(
Aε ∩Bδ

)
= P (Aε)P

(
Bδ
)

where ε, δ is either “nothing” or “c.”

1 Shortly we will consider conditional probabilities, P (·|B) . With this notation, A
is independent of B iff P (A|B) = P (A) , i.e. given the information gained by B
occurring does not affect the likelihood that A occurred.

The general case now easily follows similarly. Indeed, if {A1, . . . , An} ⊂
{Aj}j∈J we must show that

P (Aε11 ∩ · · · ∩Aεnn ) = P (Aε11 ) . . .P (Aεnn )

where εj = c or εj = “ ”. But this follows from above. For example,
{A1 ∩ · · · ∩An−1, An} are independent implies that {A1 ∩ · · · ∩An−1, A

c
n} are

independent and hence

P (A1 ∩ · · · ∩An−1 ∩Acn) = P (A1 ∩ · · · ∩An−1)P (Acn)

= P (A1) . . .P (An−1)P (Acn) .

Thus we have shown it is permissible to add Acj to the list for any j ∈ J.

Lemma C.3. If {An}∞n=1 is a sequence of independent events, then

P (∩∞n=1An) =

∞∏
n=1

P (An) := lim
N→∞

N∏
n=1

P (An) .

Proof. Since ∩Nn=1An ↓ ∩∞n=1An, it follows that

P (∩∞n=1An) = lim
N→∞

P
(
∩Nn=1An

)
= lim
N→∞

N∏
n=1

P (An) ,

where we have used the independence assumption for the last equality.
The convergence assertion used above follows from DCT Indeed, 1∩Nn=1An

↓
1∩∞n=1An

and all functions are dominated by 1 and therefore,

P (∩∞n=1An) = E
[
1∩∞n=1An

]
= lim
N→∞

E
[
1∩Nn=1An

]
= lim
N→∞

P
(
∩Nn=1An

)
.
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C.1 Borel Cantelli Lemmas

Definition C.4 (An i.o.). Suppose that {An}∞n=1 is a sequence of events. Let

{An i.o.} :=

{ ∞∑
n=1

1An =∞

}

denote the event where infinitely many of the events, An, occur. The abbrevia-
tion, “i.o.” stands for infinitely often.

For example if Xn is H or T depending on whether a heads or tails is flipped
at the nth step, then {Xn = H i.o.} is the event where an infinite number of
heads was flipped.

Lemma C.5 (The First Borell – Cantelli Lemma). If {An} is a sequence
of events such that

∑∞
n=0 P (An) <∞, then

P ({An i.o.}) = 0.

Proof. Since

∞ >

∞∑
n=0

P (An) =

∞∑
n=0

E1An = E

[ ∞∑
n=0

1An

]

it follows that
∑∞
n=0 1An <∞ almost surely (a.s.), i.e. with probability 1 only

finitely many of the {An} can occur.
Under the additional assumption of independence we have the following

strong converse of the first Borel-Cantelli Lemma.

Lemma C.6 (Second Borel-Cantelli Lemma). If {An}∞n=1 are independent
events, then

∞∑
n=1

P (An) =∞ =⇒ P ({An i.o.}) = 1. (C.1)

Proof. We are going to show P ({An i.o.}c) = 0. Since,

{An i.o.}c =

{ ∞∑
n=1

1An =∞

}c
=

{ ∞∑
n=1

1An <∞

}
,

we see that ω ∈ {An i.o.}c iff there exists n ∈ N such that ω /∈ Am for all
m ≥ n. Thus we have shown, if ω ∈ {An i.o.}c then ω ∈ Bn := ∩m≥nAcm for
some n and therefore,

{An i.o.}c = ∪∞n=1Bn.

As Bn ↑ {An i.o.}c we have

P ({An i.o.}c) = lim
n→∞

P (Bn) .

But making use of the independence (see Lemmas C.2 and C.3) and the esti-
mate, 1− x ≤ e−x, see Figure C.1 below, we find

P (Bn) = P (∩m≥nAcm) =
∏
m≥n

P (Acm) =
∏
m≥n

[1− P (Am)]

≤
∏
m≥n

e−P(Am) = exp

−∑
m≥n

P (Am)

 = e−∞ = 0.

Fig. C.1. Comparing e−x and 1− x.

Combining the two Borel Cantelli Lemmas gives the following Zero-One
Law.

Corollary C.7 (Borel’s Zero-One law). If {An}∞n=1 are independent events,
then

P (An i.o.) =

{
0 if

∑∞
n=1 P (An) <∞

1 if
∑∞
n=1 P (An) =∞ .

Example C.8. If {Xn}∞n=1 denotes the outcomes of the toss of a coin such that
P (Xn = H) = p > 0, then P (Xn = H i.o.) = 1.
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Example C.9. If a monkey types on a keyboard with each stroke being in-
dependent and identically distributed with each key being hit with positive
probability. Then eventually the monkey will type the text of the bible if she
lives long enough. Indeed, let S be the set of possible key strokes and let
(s1, . . . , sN ) be the strokes necessary to type the bible. Further let {Xn}∞n=1

be the strokes that the monkey types at time n. Then group the monkey’s
strokes as Yk :=

(
XkN+1, . . . , X(k+1)N

)
. We then have

P (Yk = (s1, . . . , sN )) =

N∏
j=1

P (Xj = sj) =: p > 0.

Therefore,
∞∑
k=1

P (Yk = (s1, . . . , sN )) =∞

and so by the second Borel-Cantelli lemma,

P ({Yk = (s1, . . . , sN )} i.o. k) = 1.





D

Multivariate Gaussians

The following basic Gaussian integration formula is needed in order to prop-
erly normalize Gaussian densities, see Definition D.2 below.

Lemma D.1. Let a > 0 and for d ∈ N let,

Id(a) :=

∫
Rd

e−a|x|
2

dm(x).

Then Id(a) = (π/a)d/2.

Proof. By Tonelli’s theorem and induction,

Id(a) =

∫
Rd−1×R

e−a|y|
2

e−at
2

md−1(dy) dt

= Id−1(a)I1(a) = Id1 (a). (D.1)

So it suffices to compute:

I2(a) =

∫
R2

e−a|x|
2

dm(x) =

∫
R2\{0}

e−a(x2
1+x2

2)dx1dx2.

Using polar coordinates, we find,

I2(a) =

∫ ∞
0

dr r

∫ 2π

0

dθ e−ar
2

= 2π

∫ ∞
0

re−ar
2

dr

= 2π lim
M→∞

∫ M

0

re−ar
2

dr = 2π lim
M→∞

e−ar
2

−2a

∫ M

0

=
2π

2a
= π/a.

This shows that I2(a) = π/a and the result now follows from Eq. (D.1).

D.1 Review of Gaussian Random Variables

Definition D.2 (Normal / Gaussian Random Variable). A random vari-
able, Y, is normal with mean µ standard deviation σ2 iff

P (Y ∈ (y, y + dy]) =
1√

2πσ2
e−

1
2σ2

(y−µ)2dy. (D.2)

We will abbreviate this by writing Y
d
= N

(
µ, σ2

)
. When µ = 0 and σ2 = 1 we

say Y is a standard normal random variable. We will often denote standard
normal random variables by Z.

Observe that Eq. (D.2) is equivalent to writing

E [f (Y )] =
1√

2πσ2

∫
R
f (y) e−

1
2σ2

(y−µ)2dy

for all bounded functions, f : R→ R. Also observe that Y
d
= N

(
µ, σ2

)
is

equivalent to Y
d
= σZ+µ. Indeed, by making the change of variable, y = σx+µ,

we find

E [f (σZ + µ)] =
1√
2π

∫
R
f (σx+ µ) e−

1
2x

2

dx

=
1√
2π

∫
R
f (y) e−

1
2σ2

(y−µ)2 dy

σ
=

1√
2πσ2

∫
R
f (y) e−

1
2σ2

(y−µ)2dy.

Lastly the constant,
(
2πσ2

)−1/2
is chosen so that

1√
2πσ2

∫
R
e−

1
2σ2

(y−µ)2dy =
1√
2π

∫
R
e−

1
2y

2

dy = 1.
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Lemma D.3 (Integration by parts). If X
d
= N

(
0, σ2

)
for some σ2 ≥ 0

and f : R→ R is a C1 – function such that Xf (X) , f ′ (X) and f (X) are all

integrable random variables and1 limz→±∞

[
f (x) e−

1
2σ2

x2
]

= 0, then

E [Xf (X)] = σ2E [f ′ (X)] = E
[
X2
]
· E [f ′ (X)] . (D.3)

Proof. If σ = 0 then X = 0 a.s. and both sides of Eq. (D.3) are zero. So we

now suppose that σ > 0 and set C := 1/
√

2πσ2. The result is a simple matter
of using integration by parts;

E [f ′ (X)] = C

∫
R
f ′ (x) e−

1
2σ2

x2

dx = C lim
M→∞

∫ M

−M
f ′ (x) e−

1
2σ2

x2

dx

= C lim
M→∞

[
f (x) e−

1
2σ2

x2

|M−M −
∫ M

−M
f (x)

d

dx
e−

1
2σ2

x2

dx

]

= C lim
M→∞

∫ M

−M
f (x)

x

σ2
e−

1
2x

2

dx =
1

σ2
E [Xf (X)] .

Example D.4. Suppose that X
d
= N (0, 1) and define αk := E

[
X2k

]
for all

k ∈ N0. By Lemma D.3,

αk+1 = E
[
X2k+1 ·X

]
= (2k + 1)αk with α0 = 1.

Hence it follows that

α1 = α0 = 1, α2 = 3α1 = 3, α3 = 5 · 3

and by a simple induction argument,

EX2k = αk = (2k − 1)!!,

where (−1)!! := 0.
Actually we can use the Γ – function to say more. Namely for any β > −1,

E |X|β =
1√
2π

∫
R
|x|β e− 1

2x
2

dx =

√
2

π

∫ ∞
0

xβe−
1
2x

2

dx.

Now make the change of variables, y = x2/2 (i.e. x =
√

2y and dx = 1√
2
y−1/2dy)

to learn,

E |X|β =
1√
π

∫ ∞
0

(2y)
β/2

e−yy−1/2dy

=
1√
π

2β/2
∫ ∞

0

y(β+1)/2e−yy−1dy =
1√
π

2β/2Γ

(
β + 1

2

)
.

1 This last hypothesis is actually unnecessary!

Exercise D.1. Let q (x) be a polynomial2 in x, Z
d
= N (0, 1) , and

u (t, x) := E
[
q
(
x+
√
tZ
)]

(D.4)

=

∫
R

1√
2πt

e−
1
2t (y−x)2q (y) dy (D.5)

Show u satisfies the heat equation,

∂

∂t
u (t, x) =

1

2

∂2

∂x2
u (t, x) for all t > 0 and x ∈ R,

with u (0, x) = q (x) .

Hints: Make use of Lemma D.3 along with the fact (which is easily proved
here) that

∂

∂t
u (t, x) = E

[
∂

∂t
q
(
x+
√
tZ
)]
.

You will also have to use the corresponding fact for the x derivatives as well.

Exercise D.2. Let q (x) be a polynomial in x, Z
d
= N (0, 1) , and ∆ = d2

dx2 .
Show

E [q (Z)] =
(
e∆/2q

)
(0) :=

∞∑
n=0

1

n!

((
∆

2

)n
q

)
(0) =

∞∑
n=0

1

n!

1

2n
(∆nq) (0)

where the above sum is actually a finite sum since ∆nq ≡ 0 if 2n > deg q.
Hint: let u (t) := E

[
q
(√
tZ
)]
. From your proof of Exercise D.1 you should be

able to see that u̇ (t) = 1
2E
[
(∆q)

(√
tZ
)]
. This latter equation may be iterated

in order to find u(n) (t) for all n ≥ 0. With this information in hand you should
be able to finish the proof with the aid of Taylor’s theorem.

Example D.5. Suppose that k ∈ N, then

E
[
Z2k

]
=
(
e
∆
2 x2k

)
|x=0 =

∞∑
n=0

1

n!

1

2n
(
∆nx2k

)
|x=0

=
1

k!

1

2k
∆kx2k =

(2k)!

k!2k

=
2k · (2k − 1) · 2 (k − 1) · (2k − 3) · · · · · (2 · 2) · 3 · 2 · 1

2kk!
= (2k − 1)!!

in agreement with Example D.4.
2 Actually, q (x) can be any twice continuously differentiable function which along

with its derivatives grow slower than eεx
2

for any ε > 0.
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Example D.6. Let Z be a standard normal random variable and set f (λ) :=

E
[
eλZ

2
]

for λ < 1/2. Then f (0) = 1 and

f ′ (λ) = E
[
Z2eλZ

2
]

= E
[
∂

∂Z

(
ZeλZ

2
)]

= E
[
eλZ

2

+ 2λZ2eλZ
2
]

= f (λ) + 2λf ′ (λ) .

Solving for λ we find,

f ′ (λ) =
1

1− 2λ
f (λ) with f (0) = 1.

The solution to this equation is found in the usual way as,

ln f (λ) =

∫
f ′ (λ)

f (λ)
dλ =

∫
1

1− 2λ
dλ = −1

2
ln (1− 2λ) + C.

By taking λ = 0 using f (0) = 1 we find that C = 0 and therefore,

E
[
eλZ

2
]

= f (λ) =
1√

1− 2λ
for λ <

1

2
.

This can also be shown by directly evaluating the integral,

E
[
eλZ

2
]

=

∫
R

1√
2π
e−

1
2 (1−2λ)z2dz.

Exercise D.3. Suppose that Z
d
= N (0, 1) and λ ∈ R. Show

f (λ) := E
[
eiλZ

]
= exp

(
−λ2/2

)
. (D.6)

Hint: You may use without proof that f ′ (λ) = iE
[
ZeiλZ

]
(i.e. it is permissible

to differentiate past the expectation.) Assuming this use Lemma D.3 to see that
f ′ (λ) satisfies a simple ordinary differential equation.

Lemma D.7 (Gaussian tail estimates). Suppose that X is a standard nor-
mal random variable, i.e.

P (X ∈ A) =
1√
2π

∫
A

e−x
2/2dx for all A ∈ BR,

then for all x ≥ 0,

P (X ≥ x) ≤ min

(
1

2
− x√

2π
e−x

2/2,
1√
2πx

e−x
2/2

)
≤ 1

2
e−x

2/2. (D.7)

Moreover (see [8, Lemma 2.5]),

P (X ≥ x) ≥ max

(
1− x√

2π
,

x

x2 + 1

1√
2π
e−x

2/2

)
(D.8)

which combined with Eq. (D.7) proves Mill’s ratio (see [3]);

lim
x→∞

P (X ≥ x)
1√
2πx

e−x2/2
= 1. (D.9)

Proof. See Figure D.1 where; the green curve is the plot of P (X ≥ x) , the
black is the plot of

min

(
1

2
− 1√

2πx
e−x

2/2,
1√
2πx

e−x
2/2

)
,

the red is the plot of 1
2e
−x2/2, and the blue is the plot of

max

(
1

2
− x√

2π
,

x

x2 + 1

1√
2π
e−x

2/2

)
.

The formal proof of these estimates for the reader who is not convinced by

Fig. D.1. Plots of P (X ≥ x) and its estimates.

Figure D.1 is given below.
We begin by observing that

P (X ≥ x) =
1√
2π

∫ ∞
x

e−y
2/2dy ≤ 1√

2π

∫ ∞
x

y

x
e−y

2/2dy

≤ − 1√
2π

1

x
e−y

2/2|−∞x =
1√
2π

1

x
e−x

2/2. (D.10)
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If we only want to prove Mill’s ratio (D.9), we could proceed as follows. Let
α > 1, then for x > 0,

P (X ≥ x) =
1√
2π

∫ ∞
x

e−y
2/2dy

≥ 1√
2π

∫ αx

x

y

αx
e−y

2/2dy = − 1√
2π

1

αx
e−y

2/2|y=αx
y=x

=
1√
2π

1

αx
e−x

2/2
[
1− e−α

2x2/2
]

from which it follows,

lim inf
x→∞

[√
2πxex

2/2 · P (X ≥ x)
]
≥ 1/α ↑ 1 as α ↓ 1.

The estimate in Eq. (D.10) shows lim supx→∞

[√
2πxex

2/2 · P (X ≥ x)
]
≤ 1.

To get more precise estimates, we begin by observing,

P (X ≥ x) =
1

2
− 1√

2π

∫ x

0

e−y
2/2dy (D.11)

≤ 1

2
− 1√

2π

∫ x

0

e−x
2/2dy ≤ 1

2
− 1√

2π
e−x

2/2x.

This equation along with Eq. (D.10) gives the first equality in Eq. (D.7). To
prove the second equality observe that

√
2π > 2, so

1√
2π

1

x
e−x

2/2 ≤ 1

2
e−x

2/2 if x ≥ 1.

For x ≤ 1 we must show,

1

2
− x√

2π
e−x

2/2 ≤ 1

2
e−x

2/2

or equivalently that f (x) := ex
2/2 −

√
2
πx ≤ 1 for 0 ≤ x ≤ 1. Since f is convex(

f ′′ (x) =
(
x2 + 1

)
ex

2/2 > 0
)
, f (0) = 1 and f (1) ∼= 0.85 < 1, it follows that

f ≤ 1 on [0, 1] . This proves the second inequality in Eq. (D.7).
It follows from Eq. (D.11) that

P (X ≥ x) =
1

2
− 1√

2π

∫ x

0

e−y
2/2dy

≥ 1

2
− 1√

2π

∫ x

0

1dy =
1

2
− 1√

2π
x for all x ≥ 0.

So to finish the proof of Eq. (D.8) we must show,

f (x) :=
1√
2π
xe−x

2/2 −
(
1 + x2

)
P (X ≥ x)

=
1√
2π

[
xe−x

2/2 −
(
1 + x2

) ∫ ∞
x

e−y
2/2dy

]
≤ 0 for all 0 ≤ x <∞.

This follows by observing that f (0) = −1/2 < 0, limx↑∞ f (x) = 0 and

f ′ (x) =
1√
2π

[
e−x

2/2
(
1− x2

)
− 2xP (X ≥ x) +

(
1 + x2

)
e−x

2/2
]

= 2

(
1√
2π
e−x

2/2 − xP (X ≥ y)

)
≥ 0,

where the last inequality is a consequence Eq. (D.7).

D.2 Gaussian Random Vectors

Definition D.8 (Gaussian Random Vectors). A random vector, X ∈ Rd,
is Gaussian iff

E
[
eiλ·X

]
= exp

(
−1

2
Var (λ ·X) + iE (λ ·X)

)
for all λ ∈ Rd. (D.12)

In short, X is a Gaussian random vector iff λ·X is a Gaussian random variable
for all λ ∈ Rd. (Implicitly in this definition we are assuming that E

∣∣X2
j

∣∣ < ∞
for 1 ≤ j ≤ d.)

Notation D.9 Let X be a random vector in Rd with second moments, i.e.
E
[
X2
k

]
< ∞ for 1 ≤ k ≤ d. The mean X is the vector µ = (µ1, . . . , µd)

tr ∈ Rd
with µk := EXk for 1 ≤ k ≤ d and the covariance matrix C = C (X) is the
d× d matrix with entries,

Ckl := Cov (Xk, Xl) for 1 ≤ k, l ≤ d. (D.13)

Exercise D.4. Suppose that X is a random vector in Rd with second moments.
Show for all λ = (λ1, . . . , λd)

tr ∈ Rd that

E [λ ·X] = λ · µ and Var (λ ·X) = λ · Cλ. (D.14)

Corollary D.10. If Y
d
= N

(
µ, σ2

)
, then

E
[
eiλY

]
= exp

(
−1

2
λ2σ2 + iµλ

)
for all λ ∈ R. (D.15)

Conversely if Y is a random variable such that Eq. (D.15) holds, then Y
d
=

N
(
µ, σ2

)
.
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Proof. ( =⇒ ) From the remarks after Lemma D.2, we know that Y
d
=

σZ + µ where Z
d
= N (0, 1) . Therefore,

E
[
eiλY

]
= E

[
eiλ(σZ+µ)

]
= eiλµE

[
eiλσZ

]
= eiλµe−

1
2 (λσ)2 = exp

(
−1

2
λ2σ2 + iµλ

)
.

(⇐=) This follows from the basic fact that the characteristic function or Fourier
transform of a distribution uniquely determines the distribution.

Remark D.11 (Alternate characterization of being Gaussian). Given Corollary
D.10, we have Y is a Gaussian random variable iff EY 2 <∞ and

E
[
eiλY

]
= exp

(
−1

2
Var (λY ) + iλEY

)
= exp

(
−λ

2

2
Var (Y ) + iλEY

)
for all λ ∈ R.

Exercise D.5. Suppose X1 and X2 are two independent Gaussian random

variables with Xi
d
= N

(
0, σ2

i

)
for i = 1, 2. Show X1 + X2 is Gaussian and

X1 +X2
d
= N

(
0, σ2

1 + σ2
2

)
. (Hint: use Remark D.11.)

Exercise D.6. Suppose that Z
d
= N (0, 1) and t ∈ R. Show E

[
etZ
]

=

exp
(
t2/2

)
. (You could follow the hint in Exercise D.3 or you could use a comple-

tion of the squares argument along with the translation invariance of Lebesgue
measure.)

Exercise D.7. Use Exercise D.6 to give another proof that EZ2k = (2k − 1)!!

when Z
d
= N (0, 1) .

Exercise D.8. Let Z
d
= N (0, 1) and α ∈ R, find ρ : R+ → R+ := (0,∞) such

that

E [f (|Z|α)] =

∫
R+

f (x) ρ (x) dx

for all continuous functions, f : R+ → R with compact support in R+.

In particular a random vector (X) in Rd with second moments a Gaussian
random vector iff

E
[
eiλ·X

]
= exp

(
−1

2
Cλ · λ+ iµ · λ

)
for all λ ∈ Rd. (D.16)

We abbreviate Eq. (D.16) by writing X
d
= N (µ,C) . Notice that it follows from

Eq. (D.13) that Ctr = C and from Eq. (D.14) that C ≥ 0, i.e. λ ·Cλ ≥ 0 for all
λ ∈ Rd.

Definition D.12. Given a Gaussian random vector, X, we call the pair, (C, µ)
appearing in Eq. (D.16) the characteristics of X.

Lemma D.13. Suppose that X =
∑k
l=1 Zlvl + µ where {Zl}kl=1 are i.i.d. stan-

dard normal random variables, µ ∈ Rd and vl ∈ Rd for 1 ≤ l ≤ k. Then

X
d
= N (µ,C) where C =

∑k
l=1 vlv

tr
l .

Proof. Using the basic properties of independence and normal random vari-
ables we find

E
[
eiλ·X

]
= E

[
ei
∑k

l=1
Zlλ·vl+iλ·µ

]
= eiλ·µ

k∏
l=1

E
[
eiZlλ·vl

]
= eiλ·µ

k∏
l=1

e−
1
2 (λ·vl)2

= exp

(
−1

2

k∑
l=1

(λ · vl)2
+ iλ · µ

)
.

Since
k∑
l=1

(λ · vl)2
=

k∑
l=1

λ · vl
(
vtr
l λ
)

= λ ·

(
k∑
l=1

vlv
tr
l

)
λ

we may conclude,

E
[
eiλ·X

]
= exp

(
−1

2
Cλ · λ+ iλ · µ

)
,

i.e. X
d
= N (µ,C) .

Exercise D.9 (Existence of Gaussian random vectors for all C ≥ 0 and
µ ∈ Rd). Suppose that µ ∈ Rd and C is a symmetric non-negative d×d matrix.

By the spectral theorem we know there is an orthonormal basis {uj}dj=1 for Rd

such that Cuj = σ2
juj for some σ2

j ≥ 0. Let {Zj}dj=1 be i.i.d. standard normal

random variables, show X :=
∑d
j=1 Zjσjuj + µ

d
= N (µ,C) .

Theorem D.14 (Gaussian Densities). Suppose that X
d
= N (µ,C) is an Rd

– valued Gaussian random vector with C > 0 (for simplicity). Then

E [f (X)] =
1√

det (2πC)

∫
Rd
f (x) exp

(
−1

2
C−1 (x− µ) · (x− µ)

)
dx (D.17)

for bounded or non-negative functions, f : Rd→ R.

Proof. Let us continue the notation in Exercise D.9 and further let

A := [σ1u1| . . . |σnun] = UΣ (D.18)
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where

U = [u1| . . . |un] and Σ = diag (σ1, . . . , σn) = [σ1e1| . . . |σnen] ,

where {ei}di=1 is the standard orthonormal basis for Rd. With this notation we

know that X
d
= AZ+µ where Z = (Z1, . . . , Zd)

tr
is a standard normal Gaussian

vector. Therefore,

E [f (X)] = (2π)
−d/2

∫
Rd
f (Az + µ) e−

1
2‖z‖

2

dz (D.19)

wherein we have used

d∏
j=1

1√
2π
e−

1
2 z

2
i = (2π)

−d/2
e−

1
2‖z‖

2

with ‖z‖2 :=

d∑
j=1

z2
j .

Making the change of variables x = Az + µ in Eq. (D.19) (i.e. z = A−1 (x− µ)
and dz = dx/detA) implies

E [f (X)] =
1

(2π)
d/2

detA

∫
Rd
f (x) e−

1
2‖A−1(x−µ)‖2dx. (D.20)

Recall from your linear algebra class (or just check) that CU = UΣ2, i.e.
C = UΣ2U−1 = UΣ2U tr. Therefore3,

AAtr = UΣΣU tr = UΣ2U−1 = C (D.21)

which then implies detA =
√

detC and for all y ∈ Rd∥∥A−1y
∥∥2

=
(
A−1

)tr
A−1y · y =

(
AAtr

)−1
y · y = C−1y · y.

Equation (D.17) follows from theses observations, Eq. (D.20), and the identity;

(2π)
d/2

detA = (2π)
d/2
√

detC =

√
(2π)

d
detC =

√
det (2πC).

3 Alternatively,

Cik = Cov (Xi, Xk) = Cov (Yi, Yk)

=
∑
j,m

Cov (AijZj , AkmZm) =
∑
j,m

AijAkm Cov (Zj , Zm)

=
∑
j,m

AijAkmδjm =
∑
j

AijAkj =
(
AAtr)

ik
.

Theorem D.15 (Gaussian Integration by Parts). Suppose that X =
(X1, . . . , Xd) is a mean zero Gaussian random vector and Cij = Cov (Xi, Yj) =
E [XiXj ] . Then for any smooth function f : Rd → R such that f and all its
derivatives grows slower that exp (|x|α) for some α < 2, we have

E [Xif (X1, . . . , Xd)] =

d∑
k=1

CikE
[

∂

∂Xk
f (X1, . . . , Xd)

]

=

d∑
k=1

E [XiXk] · E
[

∂

∂Xk
f (X1, . . . , Xd)

]
.

Here we write ∂
∂Xk

f (X1, . . . , Xd) for (∂kf) (X1, . . . , Xd) where

(∂kf) (x1, . . . , xd) :=
∂

∂xk
f (x1, . . . , xd) =

d

dt
|0f (x+tek)

where x := (x1, . . . , xd) and ek is the kth – standard basis vector for Rd.

Proof. From Exercise D.9 we know X
d
= Y where Y =

∑d
j=1 σjZjuj where

{uj}dj=1 is an orthonormal basis for Rd such that Cuj = σ2
juj and {Zj}dj=1

are i.i.d. standard normal random variables. To simplify notation we define
A := [σ1u1| . . . |σdud] as in Eq. (D.18) so that Y = AZ where Z = (Z1, . . . , Zd)

tr

as in the proof of Theorem D.14. From our previous observations and a simple
generalization of Lemma D.3, it follows that

E [Xif (X1, . . . , Xd)] = E [Yif (Y1, . . . , Yd)]

=
∑
j

AijE [Zjf ((AZ)1 , . . . (AZd))]

=
∑
j

AijE
[
∂

∂Zj
f ((AZ)1 , . . . (AZd))

]

=
∑
j

AijE

[∑
k

(∂kf) ((AZ)1 , . . . (AZd)) ·
∂

∂Zj
(AZ)k

]
=
∑
j,k

AijAkjE [(∂kf) (X1, . . . , Xd)] .

This completes the proof since,
∑
j AijAkj = (AAtr)ik = Cik as we saw in Eq.

(D.21).

Theorem D.16 (Wick’s Theorem). If X = (X1, . . . , X2n) is a mean zero
Gaussian random vector, then
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E [X1 . . . X2n] =
∑

pairings

Ci1j1 . . . Cinjn

where the sum is over all perfect pairings of {1, 2, . . . , 2n} and

Cij = Cov (Xi, Xj) = E [XiXj ] .

Proof. From Theorem D.15,

E [X1 . . . X2n] =
∑
j

C1jE
[
∂

∂Xj
X2 . . . X2n

]
=
∑
j>2

C1jE
[
X2 . . . X̂j . . . X2n

]
where the hat indicates a term to be omitted. The result now basically follows
by induction. For example,

E [X1X2X3X4] =C12E
[
∂

∂X2
(X2X3X4)

]
+ C13E

[
∂

∂X3
(X2X3X4)

]
+ C14E

[
∂

∂X4
(X2X3X4)

]
=C12E [X3X4] + C13E [X2X4] + C14E [X2X3]

=C12C34 + C13C24 + C14C23.

Recall that if Xi and Yj are independent, then Cov (Xi, Yj) = 0, i.e. indepen-
dence implies uncorrelated. On the other hand, typically uncorrelated random
variables are not independent. However, if the random variables involved are
jointly Gaussian, then independence and uncorrelated are actually the same
thing!

Lemma D.17. Suppose that Z = (X,Y )
tr

is a Gaussian random vector with
X ∈ Rk and Y ∈ Rl. Then X is independent of Y iff Cov (Xi, Yj) = 0 for all
1 ≤ i ≤ k and 1 ≤ j ≤ l.

Remark D.18. Lemma D.17 also holds more generally. Namely if
{
X l
}n
l=1

is

a sequence of random vectors such that
(
X1, . . . , Xn

)
is a Gaussian random

vector. Then
{
X l
}n
l=1

are independent iff Cov
(
X l
i , X

l′

k

)
= 0 for all l 6= l′ and

i and k.

Exercise D.10. Prove Lemma D.17. Hint: by basic facts about the Fourier
transform, it suffices to prove

E
[
eix·Xeiy·Y

]
= E

[
eix·X

]
· E
[
eiy·Y

]
for all x ∈ Rk and y ∈ Rl.

If you get stuck, take a look at the proof of Corollary D.19 below.

Corollary D.19. Suppose that X ∈ Rk and Y ∈ Rl are two independent ran-
dom Gaussian vectors, then (X,Y ) is also a Gaussian random vector. This
corollary generalizes to multiple independent random Gaussian vectors.

Proof. Let x ∈ Rk and y ∈ Rl, then

E
[
ei(x,y)·(X,Y )

]
=E

[
ei(x·X+y·Y )

]
= E

[
eix·Xeiy·Y

]
= E

[
eix·X

]
· E
[
eiy·Y

]
= exp

(
−1

2
Var (x ·X) + iE (x ·X)

)
× exp

(
−1

2
Var (y · Y ) + iE (y · Y )

)
= exp

(
−1

2
Var (x ·X) + iE (x ·X)− 1

2
Var (y · Y ) + iE (y · Y )

)
= exp

(
−1

2
Var (x ·X + y · Y ) + iE (x ·X + y · Y )

)
which shows that (X,Y ) is again Gaussian.

Remark D.20 (Be careful). If X1 and X2 are two standard normal random vari-
ables, it is not generally true that (X1, X2) is a Gaussian random vector. For

example suppose X1
d
= N (0, 1) is a standard normal random variable and

ε is an independent Bernoulli random variable with P (ε = ±1) = 1
2 . Then

X2 := εX1
d
= N (0, 1) but X := (X1, X2) is not a Gaussian random vector as

we now verify.
If λ = (λ1, λ2) ∈ R2, then

E
[
eiλ·X

]
= E

[
ei(λ1X1+λ2X2)

]
= E

[
ei(λ1X1+λ2εX1)

]
=

1

2

∑
τ=±1

E
[
ei(λ1X1+λ2τX1)

]
=

1

2

∑
τ=±1

E
[
ei(λ1+λ2τ)X1

]
=

1

2

∑
τ=±1

exp

(
−1

2
(λ1 + λ2τ)

2

)
=

1

2

∑
τ=±1

exp

(
−1

2

(
λ2

1 + λ2
2 + 2τλ1λ2

))
=

1

2
e−

1
2 (λ2

1+λ2
2) · [exp (−λ1λ2) + exp (λ1λ2)]

= e−
1
2 (λ2

1+λ2
2) cosh (λ1λ2) .

On the other hand, E
[
X2

1

]
= E

[
X2

2

]
= 1 and

E [X1X2] = Eε · E
[
X2

1

]
= 0 · 1 = 0,
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from which it follows that X1 and X2 are uncorrelated and CX = I2×2. Thus
if X were Gaussian we would have,

E
[
eiλ·X

]
= exp

(
−1

2
CXλ · λ

)
= e−

1
2 (λ2

1+λ2
2)

which is just not the case!
Incidentally, this example also shows that two uncorrelated random variables

need not be independent. For if {X1, X2} were independent, then again we
would have

E
[
eiλ·X

]
= E

[
ei(λ1X1+λ2X2)

]
= E

[
eiλ1X1eiλ2X2

]
= E

[
eiλ1X1

]
· E
[
eiλ2X2

]
= e−

1
2λ

2
1e−

1
2λ

2
2 = e−

1
2 (λ2

1+λ2
2),

which is not the case.

The following theorem gives another useful way of computing Gaussian in-
tegrals of polynomials and exponential functions.

Theorem D.21. Suppose X
d
= N (0, C) where C is a N×N symmetric positive

definite matrix. Let L = LC :=
∑d
i,j=1 Cij∂i∂j (sum on repeated indices) where

∂i := ∂/∂xi. Then for any polynomial function, q : RN → R,

E [q (X)] =
(
e

1
2Lq
)

(0) :=

∞∑
n=0

1

n!

((
L

2

)n
q

)
(0) (a finite sum). (D.22)

Proof. This is a fairly straight forward extension of Exercise D.2 and so I
will only provide a short outline to the proof. 1) Let u (t) := E

[
q
(√
tX
)]
. 2)

Using Theorem D.15 one shows that u̇ (t) = 1
2E
[
(Lq)

(√
tX
)]
. 3) Iterating this

result and then using Taylor’s theorem finishes the proof just like in Exercise
D.2.

Corollary D.22. The function u (t, x) := E
[
q
(
x+
√
tX
)]

solves the heat
equation,

∂tu (t, x) =
1

2
LCu (t, x) with u (0, x) = q (x) .

If X
d
= N (1, 0) we have

u (t, x) =
1√
2π

∫
R
q
(
x+
√
tz
)
e−

1
2 z

2

dz

=

∫
E
pt (x, y) q (y) dy

where

pt (x, y) :=
1√
2πt

exp

(
− 1

2t
(y − x)

2

)
.

D.3 Gaussian Conditioning

Notation D.23 Let (X,Y ) be a mean zero Gaussian random vector taking
values in Rk × Rl,

CX := E
[
XXtr

]
, CY := E

[
Y Y tr

]
, CX,Y = E

[
XY tr

]
, and CY,X = E

[
Y Xtr

]
so that CX , CY, CX,Y , and CY,X are k × k, l × l, k × l, and l × k matrices
respectively. [Note that Ctr

X,Y = CY,X while Ctr
X = CX and Ctr

Y = CY .]

Definition D.24 (Pseudo-Inverses). If C is a symmetric k × k matrix on
Rk, let C−1 be the k×k matrix uniquely determined by; C−1v = 0 if v ∈ Nul (C)

while if v ∈ Nul (C)
⊥

= Ran (C) we let C−1v = w where w is the unique element
of Ran (C) such that Cw = v. [If C is invertible, then the pseudo inverse is the
same as the inverse matrix.]

Lemma D.25. If X is a mean zero Rk – valued Gaussian random vector, then
X ∈ Ran (CX) a.s.

Proof. If λ ∈ Ran (CX)
⊥

= Nul (C∗X) = Nul (CX) , then

E [λ ·X]
2

= CXλ · λ = 0 =⇒ λ ·X = 0 a.s. .

Letting λ run through a basis for Ran (CX)
⊥
, it then follows thatX ∈ Ran (CX)

a.s.

Lemma D.26. If (X,Y ) is a mean zero Gaussian random vector taking values
in Rk × Rl, then Z := Y − CY,XC−1

X X is independent of X, i.e.

Y = CY,XC
−1
X X + Z (D.23)

where Z is a mean zero Gaussian random vector independent of X such that

CZ = CY − CY,XC−1
X CX,Y . (D.24)

Proof. We look for a l× k matrix, A, so that Z := Y −AX is independent
of X. Since (X,Y ) is Gaussian it suffices to find A so that

0 = E
[
ZXtr

]
= E

[
(Y −AX)Xtr

]
= CY,X −ACX ,

i.e. we require ACX = CY,X . This suggests that we let A = CY,XC
−1
X but we

must check this works even when CX is not invertible. In this case

ACX = CY,XC
−1
X CX = CY,XPX

where PX is orthogonal projection onto Ran (CX) . The claim is that CY,XPX =
CY,X . The point is that if λ ∈ Nul (CX) , then
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CY,Xλ = E
[
Y Xtrλ

]
= E [(λ ·X)Y ] = E [0] = 0,

wherein we have used Lemma D.25 to conclude λ · X = 0 a.s. Consequently,
CY,X vanishes on Ran (CX)

⊥
and hence CY,XPX = CY,X .

So we have shown Z := Y − CY,XC
−1
X X is independent of X. We now

compute the covariance (CZ) of Z;

CZ = E
[
ZZtr

]
= E

[
Z
[
Y − CY,XC−1

X X
]tr]

= E
[
ZY tr

]
= E

[[
Y − CY,XC−1

X X
]
Y tr
]

= CY − CY,XC−1
X CX,Y ,

wherein the third equality we made use of the fact that Z and X were indepen-
dent of (X,Z) is still jointly Gaussian.

Theorem D.27 (Gaussian Conditioning). Suppose that (X,Y ) is a Gaus-
sian vector taking values in Rk × Rl. Then

E [f (Y ) |X] = G (X) (D.25)

where
G (x) := E

[
f
(
CY,XC

−1
X x+ Z

)]
(D.26)

and Z is a Rl – mean zero Gaussian random vector with covariance matrix
(CZ) as in Eq. (D.24). As a special case, taking f (y) = y above shows

E [Y |X] = CY,XC
−1
X X.

Proof. This follows directly from Proposition ?? and the decomposition in
Lemma D.26.

Corollary D.28. If (X,Y ) is a Gaussian random vector taking values in Rk×
Rl with µX = EX and µY = EY, then

Y = µY + CY,XC
−1
X (X − µX) + Z

where now,

CY,X = E
[
(Y − µY ) (X − µX)

tr
]

= EY Xtr − (EY ) (EX)
tr

with similar definitions for CX,Y , CX , and CY and Z is a mean zero Gaussian
Rl – random vector independent of X with covariance matrix,

CZ = CY − CY,XC−1
X CX,Y . (D.27)

Moreover

E [f (Y ) |X] = G (X) where G (x) := E
[
f
(
CY,XC

−1
X x+ Z̃

)]
, (D.28)

where Z̃ is a Rl - valued Gaussian random vector independent such that

Z̃ = Z + µY − CY,XC−1
X µX

d
= N

(
µY − CY,XC−1

X µX , CZ
)
. (D.29)

Proof. Applying Lemma D.26 to (X − µX , Y − µY ) shows,

Y − µY = CY,XC
−1
X (X − µX) + Z (D.30)

where the matrices CY,X and CX are now the covariances as described in the
statement. The Rl – valued random vector, Z, is still a mean zero Gaussian
vector with covariance given by Eq. (D.27) as described. We may rewrite Eq.
(D.30) in the form Y = CY,XC

−1
X X + Z̃ where Z̃ is given as in Eq. (D.29). The

formula for E [f (Y ) |X] given in Eq. (D.28) follows from this decomposition
along with Proposition ??.

D.4 Independent Random Variables

Definition D.29. We say a collection of discrete random variables, {Xj}j∈J ,
are independent if

P (Xj1 = x1, . . . , Xjn = xn) = P (Xj1 = x1) · · ·P (Xjn = xn) (D.31)

for all possible choices of {j1, . . . , jn} ⊂ J and all possible values xk of Xjk .

Proposition D.30. A sequence of discrete random variables, {Xj}j∈J , is in-
dependent iff

E [f1 (Xj1) . . . fn (Xjn)] = E [f1 (Xj1)] . . .E [fn (Xjn)] (D.32)

for all choices of {j1, . . . , jn} ⊂ J and all choice of bounded (or non-negative)
functions, f1, . . . , fn. Here n is arbitrary.

Proof. ( =⇒ ) If {Xj}j∈J , are independent then

E [f (Xj1 , . . . , Xjn)] =
∑

x1,...,xn

f (x1, . . . , xn)P (Xj1 = x1, . . . , Xjn = xn)

=
∑

x1,...,xn

f (x1, . . . , xn)P (Xj1 = x1) · · ·P (Xjn = xn) .

Therefore,
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E [f1 (Xj1) . . . fn (Xjn)] =
∑

x1,...,xn

f1 (x1) . . . fn (xn)P (Xj1 = x1) · · ·P (Xjn = xn)

=

(∑
x1

f1 (x1)P (Xj1 = x1)

)
· · ·

(∑
xn

f (xn)P (Xjn = xn)

)
= E [f1 (Xj1)] . . .E [fn (Xjn)] .

(⇐=) Now suppose that Eq. (D.32) holds. If fj := δxj for all j, then

E [f1 (Xj1) . . . fn (Xjn)] = E [δx1 (Xj1) . . . δxn (Xjn)] = P (Xj1 = x1, . . . , Xjn = xn)

while
E [fk (Xjk)] = E [δxk (Xjk)] = P (Xjk = xk) .

Therefore it follows from Eq. (D.32) that Eq. (D.31) holds, i.e. {Xj}j∈J is an
independent collection of random variables.

Using this as motivation we make the following definition.

Definition D.31. A collection of arbitrary random variables, {Xj}j∈J , are in-
dependent iff

E [f1 (Xj1) . . . fn (Xjn)] = E [f1 (Xj1)] . . .E [fn (Xjn)]

for all choices of {j1, . . . , jn} ⊂ J and all choice of bounded (or non-negative)
functions, f1, . . . , fn.

Fact D.32 To check independence of a collection of real valued random vari-
ables, {Xj}j∈J , it suffices to show

P (Xj1 ≤ t1, . . . , Xjn ≤ tn) = P (Xj1 ≤ t1) . . .P (Xjn ≤ tn)

for all possible choices of {j1, . . . , jn} ⊂ J and all possible tk ∈ R. Moreover,
one can replace ≤ by < or reverse these inequalities in the the above expression.

Theorem D.33 (Groupings of independent RVs). If {Xj}j∈J , are inde-
pendent random variables and J0, J1 are finite disjoint subsets in J, then

E
[
f0

(
{Xj}j∈J0

)
· f1

(
{Xj}j∈J1

)]
= E

[
f0

(
{Xj}j∈J0

)]
· E
[
f1

(
{Xj}j∈J1

)]
.

(D.33)
This holds more generally for any {Jk}nk=0 ⊂ J with Jk∩Jl = ∅ and # (Jk) <∞.

In words; disjoint groupings of independent random variables are still in-
dependent random vectors.

Proof. Discrete case example. Suppose {X1, . . . , X5} are independent
discrete random variables. Then

P (X1 = s1, X2 = s2, X3 = s3, X4 = s4, X5 = s5)

= P (X1 = s1)P (X2 = s2)P (X3 = s3)P (X4 = s4)P (X5 = s5)

= P (X1 = s1, X2 = s2)P (X3 = s3, X4 = s4, X5 = s5)

=: ρ1,2 (s1, s2) · ρ3,4,5 (s3, s4, s5)

and therefore,

E [f (X1, X2) g (X3, X4, X5)]

=
∑

s=(s1,...,s5)

f (s1, s2) g (s3, s4, s5)P (X1 = s1, . . . , X5 = s5)

=
∑

s=(s1,...,s5)

f (s1, s2) g (s3, s4, s5) · ρ1,2 (s1, s2) · ρ3,4,5 (s3, s4, s5)

=
∑

s=(s1,s2)

f (s1, s2) ρ1,2 (s1, s2) ·
∑

s=(s3,s4,s5)

g (s3, s4, s5) ρ3,4,5 (s3, s4, s5)

= E [f (X1, X2)] · E [g (X3, X4, X5)] .

General Case. Equation (D.33) is easy to verify when f0 and f1 are them-
selves product functions. The general result is then deduced from this obser-
vation along with measure theoretic arguments which go under the name of
Dynkin’s multiplicative systems theorem.

Proposition D.34 (Disintegration I.). Suppose that X is an Rk – valued
random variable, Y is an Rl – valued random variable independent of X, and
f : Rk × Rl → R+ then (assuming X and Y have continuous distributions
ρX (x) and ρY (y) respectively),

E [f (X,Y )] =

∫
Rk

E [f (x, Y )] ρX (x) dx and

E [f (X,Y )] =

∫
Rl

E [f (X, y)] ρY (y) dy.

Proof. It is a fact that independence implies that the joint probability
distribution, ρ(X,Y ) (x, y), for (X,Y ) must be given by

ρ(X,Y ) (x, y) = ρX (x) ρY (y) .

Therefore,

E [f (X,Y )] =

∫
Rk×Rl

f (x, y) ρX (x) ρY (y) dxdy

=

∫
Rk

[∫
Rl
dyf (x, y) ρY (y)

]
ρX (x) dx

=

∫
Rk

E [f (x, Y )] ρX (x) dx.
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One of the key theorems involving independent random variables is the
strong law of large numbers. The other is the central limit theorem.

Theorem D.35 (Kolmogorov’s Strong Law of Large Numbers). Sup-
pose that {Xn}∞n=1 are i.i.d. random variables and let Sn := X1 + · · · + Xn.
Then there exists µ ∈ R such that 1

nSn → µ a.s. iff Xn is integrable and in
which case EXn = µ.

Remark D.36. If E |X1| =∞ but EX−1 <∞, then 1
nSn →∞ a.s. To prove this,

for M > 0 let

XM
n := min (Xn,M) =

{
Xn if Xn ≤M
M if Xn ≥M

and SMn :=
∑n
i=1X

M
i . It follows from Theorem D.35 that 1

nS
M
n → µM := EXM

1

a.s.. Since Sn ≥ SMn , we may conclude that

lim inf
n→∞

Sn
n
≥ lim inf

n→∞

1

n
SMn = µM a.s.

Since µM → ∞ as M → ∞, it follows that lim infn→∞
Sn
n = ∞ a.s. and hence

that limn→∞
Sn
n =∞ a.s.

Here is a crude special case of Theorem D.35 which however does come with
a rate estimate. We will do considerably better later in Corollary ??.

Proposition D.37. Let k ∈ N with k ≥ 2 and {Xn}∞n=1 be i.i.d. random vari-
ables with EXn = 0 and EX2k

n <∞. Then for every p > 1
2 + 1

2k ,

lim
n→∞

Sn
np

= 0 a.s.

In other words for any ε > 0 small we have

Sn
n

=
Sn
np

1

n1−p = O

(
1

n1−p

)
= O

(
1

n
1
2 (1− 1

k−ε)

)
.

Proof. We start with the identity,

E
[

1

n
Sn

]2k

=
1

n2k

n∑
j1,...j2k=1

E [Xj1 . . . Xj2k ] .

Using E [Xj1 . . . Xj2k ] = 0 if there is any one index, jl, distinct from the others,
we conclude that the above sum can contain at most Ckn

k non-zero terms for
some Ck < ∞ and all of these terms are bounded by a constant C depending
on EX2k

n . For example if k = 2 we have E [Xj1Xj2Xj3Xj4 ] = 0 unless j1 = j2 =

j3 = j4 (of which there are n such terms) or j1 = j2 and j3 = j4 (or similar
with permuted indices) of which there are 3n2 – terms.

From the previous observations it follows that

E
[

1

n
Sn

]2k

≤ Cnk

n2k
= C

1

nk
.

Therefore if 0 < α < 1, then

E

( ∞∑
n=1

[
nα

1

n
Sn

]2k
)

=

∞∑
n=1

E
[
nα

1

n
Sn

]2k

≤
∞∑
n=1

C
1

nk
nα2k =

∞∑
n=1

C
1

nk(1−2α)
<∞

provided k (1− 2α) > 1, i.e. 1− 2α > 1
k , i.e. α < 1

2

(
1− 1

k

)
. For such an α we

have
∞∑
n=1

[
nα

1

n
Sn

]2k

<∞ a.s. =⇒ lim
n→∞

1

n1−αSn = 0 a.s..

Tracing through the inequalities shows p := 1− α > 1− 1
2

(
1− 1

k

)
= 1

2 + 1
2k is

the required restriction on p.
Often times for practical importance, the following weak law of large num-

bers is in fact more useful. For the proof we will need the following simple but
very useful inequality.

Lemma D.38 (Chebyshev’s Inequality). If X is a random variable, δ > 0,
and p > 0, then

P ({|X| ≥ δ}) = E
[
1|X|≥δ

]
≤ E

[
|X|p

δp
1|X|≥δ

]
≤ δ−pE |X|p . (D.34)

Proof. Taking expectations of the following pointwise inequalities,

1|X|≥δ ≤
|X|p

δp
1|X|≥δ ≤ δ−p |X|

p
,

immediately gives Eq. (D.34).

Theorem D.39. Let {Xn}∞n=1 be uncorrelated random square integrable ran-
dom variables, then

P

(∣∣∣∣∣ 1n
n∑

m=1

(Xm − EXm)

∣∣∣∣∣ ≥ δ
)
≤ 1

δ2n2

n∑
m=1

Var (Xm) .
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If we further assume that EXm = µ and Var (Xm) = σ2 are independent of m,
then

P

(∣∣∣∣∣ 1n
n∑

m=1

Xm − µ

∣∣∣∣∣ ≥ δ
)
≤ σ2

δ2

1

n
.

Proof. By Chebyshev’s inequality and the assumption that Cov (Xm, Xk) =
δmk Var (Xm) , we find

P

(∣∣∣∣∣ 1n
n∑

m=1

(Xm − EXm)

∣∣∣∣∣ ≥ δ
)

≤ 1

δ2
E

∣∣∣∣∣ 1n
n∑

m=1

(Xm − EXm)

∣∣∣∣∣
2

=
1

δ2n2
E

n∑
m.k=1

[(Xm − EXm) (Xk − EXk)]

=
1

δ2n2

n∑
m.k=1

Cov (Xm, Xk) =
1

δ2n2

n∑
m=1

Var (Xm) .



References

1. Persi Diaconis and J. W. Neuberger, Numerical results for the Metropolis algorithm,
Experiment. Math. 13 (2004), no. 2, 207–213. MR 2068894

2. Richard Durrett, Probability: theory and examples, second ed., Duxbury Press,
Belmont, CA, 1996. MR MR1609153 (98m:60001)

3. Robert D. Gordon, Values of Mills’ ratio of area to bounding ordinate and of the
normal probability integral for large values of the argument, Ann. Math. Statistics
12 (1941), 364–366. MR MR0005558 (3,171e)

4. Olav Kallenberg, Foundations of modern probability, second ed., Probability and
its Applications (New York), Springer-Verlag, New York, 2002. MR MR1876169
(2002m:60002)

5. K. L. Mengersen and R. L. Tweedie, Rates of convergence of the Hastings and
Metropolis algorithms, Ann. Statist. 24 (1996), no. 1, 101–121. MR 1389882
(98c:60081)

6. Sean Meyn and Richard L. Tweedie, Markov chains and stochastic stability, second
ed., Cambridge University Press, Cambridge, 2009, With a prologue by Peter W.
Glynn. MR 2509253 (2010h:60206)

7. J. R. Norris, Markov chains, Cambridge Series in Statistical and Probabilistic
Mathematics, vol. 2, Cambridge University Press, Cambridge, 1998, Reprint of
1997 original. MR MR1600720 (99c:60144)

8. Yuval Peres, An invitation to sample paths of brownian motion, stat-
www.berkeley.edu/ peres/bmall.pdf (2001), 1–68.


	Part I Background Material
	Introduction
	Deterministic Modeling
	Stochastic Modeling

	(Discrete) Distributions Review
	Discrete Distributions
	Appendix: Taylor's Theorem 

	Conditional Expectation (Discrete Case)
	Conditional and Joint Distributions
	Conditional Expectations
	Random Length Random Sums
	Wald's Equation and Gambler's Ruin
	A Review of Correlation and Independence


	Part II Appendix
	Basics of Probabilities and Expectations
	Analytic Facts
	A Stirling's Formula Like Approximation
	Formula for integer valued unifrom distributions

	Independence
	Borel Cantelli Lemmas

	Multivariate Gaussians
	Review of Gaussian Random Variables
	Gaussian Random Vectors
	Gaussian Conditioning
	Independent Random Variables

	References


