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12. HILBERT SPACES

12.1. Hilbert Spaces Basics.
Definition 12.1. Let H be a complex vector space. An inner product on H is a
function, (-,-) : H x H — C, such that

(1) (azx+ by, z) = a{z,z) + by, z) i.e. x — (x, z) is linear.

(2) (z,y) = (y, ).
(3) ||z||* = (z,x) > 0 with equality ||z||*> =0 iff x = 0.

Notice that combining properties (1) and (2) that  — (z,x) is anti-linear for

fixed z € H, i.e. ~
(2, 03 + by) = a2, 3) + bz, y).
We will often find the following formula useful:
|z +ylI* = (@ +y,z +y) = 2>+ yl* + (z,9) + (v, 2)

(12.1) = [l«l* + llyl* + 2Re(z, y)
Theorem 12.2 (Schwarz Inequality). Let (H, (-,-)) be an inner product space, then
forallx,y e H

[z, )] < [l]lllyl]
and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y # 0. First off notice
that if 2 = ay for some a € C, then (z,y) = «|y]|* and hence

2
[z 9)l = lel lyl™ = llzllyl-

_ (=)
lyll®
Now suppose that x € H is arbitrary, let z = x — |ly]|=%(z,9)y. (So z is the

“orthogonal projection” of x onto y, see Figure 28.) Then

Moreover, in this case « :

X

:MZ= X~ (7‘)7)5
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F1GURE 28. The picture behind the proof.
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from which it follows that 0 < |y||?||z||* — |(z,y)|* with equality iff z = 0 or
equivalently iff z = ||y|| ~%(z,y)y. =

= |l=|l* -
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Corollary 12.3. Let (H, {(-,-)) be an inner product space and ||z|| := /{x,z). Then
Il -1 is @ norm on H. Moreover {-,-) is continuous on H X H, where H is viewed as
the normed space (H, ||-||).

Proof. The only non-trivial thing to verify that ||-|| is a norm is the triangle
inequality:
Iz +ylI* = llzlI* + [lyl|* + 2Re(z,y) < [l2]* + [ly[|* + 2]z [ly]
= (]l + lly1)*

where we have made use of Schwarz’s inequality. Taking the square root of this
inequality shows |z + y|| < ||z|| + ||y||. For the continuity assertion:

[z, y) = (&' 9) = [{& — 2" y) + (2", y = o/)]|

< lyllllz = 2"l + ll="[l1ly — /|l

< lyllllz = 2" + (=l + = = 2" lly = o/l

= [lyllllz — 2/l + lzlllly = ¥/l + lle — " llly — ¢/l
from which it follows that (-, ) is continuous. m
Definition 12.4. Let (H,(-,-)) be an inner product space, we say z,y € H are
orthogonal and write L y iff (x,y) = 0. More generally if A C H is a set,
x € H is orthogonal to A and write z 1L A iff (z,y) = 0 for all y € A. Let
At ={xz € H:x L A} be the set of vectors orthogonal to A. We also say that a
set S C H is orthogonal if x 1 y for all z,y € S such that x # y. If § further
satisfies, ||z|| = 1 for all z € S, then S is said to be orthonormal.
Proposition 12.5. Let (H, (-,-)) be an inner product space then

(1) (Parallelogram Law)

(12.2) lz+ yll* + llz = ylI* = 2||=]|* + 2]ly|1®

for all x,y € H.
(2) (Pythagorean Theorem) If S C H is a finite orthonormal set, then

(12.3) 1>l =" lall®.

zeS €S
(3) If AC H is a set, then A+ is a closed linear subspace of H.

Remark 12.6. See Proposition 12.37 in the appendix below for the “converse” of
the parallelogram law.

Proof. T will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations:

Iz +ylI* + = yl* = ll=l* + lyl* + 2Re(z, y) + [|2]* + [ly[|* — 2Relz, y)

= 2|z* + 2lly|I?,
and
I 2lP=0"x> =Y (zy)
€S zeS yes z,y€S

=Y (wa) =) |l

€S €S
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Item 3. is a consequence of the continuity of (-,-) and the fact that
AJ— = MNzeA ker(<'a l‘>)
where ker({-,z)) = {y € H : (y,z) = 0} — a closed subspace of H. m

Definition 12.7. A Hilbert space is an inner product space (H, (-,-)) such that
the induced Hilbertian norm is complete.

Example 12.8. Let (X, M, ) be a measure space then H := L?*(X, M, i) with
inner product

(f,g)=/Xf-§du

is a Hilbert space. In Exercise 12.6 you will show every Hilbert space H is “equiv-
alent” to a Hilbert space of this form.

Definition 12.9. A subset C of a vector space X is said to be convex if for all
xz,y € C the line segment [z,y] = {tx+ (1 —¢)y:0 <t <1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 12.10. Suppose that H is a Hilbert space and M C H be a closed convex
subset of H. Then for any x € H there exists a unique y € M such that

I =yl = dw, M) = inf o =],

Moreover, if M is a vector subspace of H, then the point y may also be characterized
as the unique point in M such that (x —y) L M.

Proof. By replacing M by M — z :={m —x : m € M} we may assume z = 0.
Let 6 := d(0, M) = inf e ||m| and y, z € M, see Figure 29.

FIGURE 29. The geometry of convex sets.

By the parallelogram law and the convexity of M,
yrz
2
Hence if ||y|| = ||z]| = §, then 262 + 262 > 452 + ||y — z||?, so that ||y — 2[|> = 0

Therefore, if a minimizer for d(0, )|y exists, it is unique.

(12.4) 2llyl*+2[12* = lly+2l*+]ly—2]* = 4] P+ lly—zl* > 46° +|ly—=2[|>.
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Existence. Let y, € M be chosen such that ||y,| = 6, — § = d(0, M). Taking
Y = ym and z = y,, in Eq. (12.4) shows 202, + 262 > 462 + ||yn — ym|*. Passing to
the limit m,n — oo in this equation implies,

202 4 262 > 46 + limsup ||yn — Yyl

m,n— 00

Therefore {y,},. ; is Cauchy and hence convergent. Because M is closed, y :=
lim y, € M and because ||| is continuous,

n—oo

lyll = T lyall = 6 = d(0, M).

So y is the desired point in M which is closest to 0.

Now for the second assertion we further assume that M is a closed subspace of
H and x € H. Let y € M be the closest point in M to z. Then for w € M, the
function

9(t) = |z = (y + tw)|* = ||lz — y|* - 2tRe(x -y, w) + *]w]?

has a minimum at ¢ = 0. Therefore 0 = ¢’(0) = —2Re(x — y, w). Since w € M is
arbitrary, this implies that (z —y) L M. Finally suppose y € M is any point such
that (z —y) L M. Then for z € M, by Pythagorean’s theorem,

o —z* =l —y+y— 21" = o —ylI* + lly — 2l > = -yl

which shows d(z, M)? > ||z — y||*>. That is to say y is the point in M closest to z.
|

Definition 12.11. Suppose that A : H — H is a bounded operator. The adjoint
of A, denote A*, is the unique operator A* : H — H such that (Az,y) = (z, A*y).
(The proof that A* exists and is unique will be given in Proposition 12.16 below.)
A bounded operator A: H — H is self - adjoint or Hermitian if A = A*.

Definition 12.12. Let H be a Hilbert space and M C H be a closed subspace.
The orthogonal projection of H onto M is the function Pys : H — H such that for
x € H, Py(z) is the unique element in M such that (z — Py(x)) L M.

Proposition 12.13. Let H be a Hilbert space and M C H be a closed subspace.
The orthogonal projection Py satisfies:

(1) Pas is linear (and hence we will write Pyyx rather than Py (x).
(2) P% = Py (Pu is a projection).

(3) Pi; = Pur, (P is self-adjoint).

(4) Ran(Py) = M and ker(Py) = M*.

Proof.
(1) Let 1,20 € H and « € F, then Pyrxy + aPyze € M and
Pyzy 4+ aPyzg — (21 + axg) = [Pyxy — o1 + a(Pyae — x2)] € M+

showing Pprx1 + aPyxe = Py(21 + axs), i.e. Py is linear.
(2) Obviously Ran(Py) = M and Pyx = z for all x € M. Therefore P3, =
Py
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(3) Let @,y € H, then since (x — Py;x) and (y — Pyry) are in M+,

(Puz,y) = (Puz, Puy +y — Puy)
= (Pumz, Pypy)
= (Pyz + (z — Pum), Puy)
= (z, Ppy).

(4) Tt is clear that Ran(Pys) C M. Moreover, if € M, then Pyx =  implies
that Ran(Pys) = M. Now x € ker(Pyy) iff Pyx =0iff s =2 —-0¢€ M*.

Corollary 12.14. Suppose that M C H is a proper closed subspace of a Hilbert
space H, then H =M & M~*.

Proof. Given x € H, let y = Pyjz so that 1 —y € M*+. Thenx =y + (z —y) €
M+ M+ Ifz € MO ML, then z Lz, ie. ||z||> = (z,2) =0. So M N M+ = {0}.
[

Proposition 12.15 (Riesz Theorem). Let H* be the dual space of H (Notation
3.63). The map

(12.5) zeH -5 (z) e H*
is a conjugate linear isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x,z € H,

(2, 2)| < [|=[| ||2]] for all z € H

with equality when = = z. This implies that [|jz| ;. = ||(-,2)|| z- = ||2]|. Therefore
j is isometric and this shows that j is injective. To finish the proof we must show
that j is surjective. So let f € H* which we assume with out loss of generality is
non-zero. Then M = ker(f) — a closed proper subspace of H. Since, by Corollary
1214, H = M & M*, f : H/M = M+ — F is a linear isomorphism. This
shows that dim(M*) = 1 and hence H = M @ Fzy where o € M* \ {0} .8
Choose z = Azg € M1 such that f(xg) = (20,2). (So A = f(z0)/ ||zo||*.) Then for
T =m+ Axg with m € M and X € F,

f(x) = Af(xo) = Mzo, 2) = (Azo, 2) = (M + Az, 2) = (x, 2)
which shows that f = jz. m

Proposition 12.16 (Adjoints). Let H and K be Hilbert spaces and A : H — K
be a bounded operator. Then there exists a unique bounded operator A* : K — H
such that

(12.6) (Az, )k = (x, A"y)p for allz € H and y € K.

Moreover (A+ AB)" = A* + AB*, A** := (A*)* = A, ||A*| = | A|| and ||A*A| =
|A||® for all A,B € L(H,K) and X € C.

28 Alternatively, choose xg € M-\ {0} such that f(zo) = 1. For z € ML we have f(z—Azg) = 0
provided that X := f(z). Therefore * — Axg € M N M+ = {0}, i.e. * = Azo. This again shows
that M- is spanned by xo.
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Proof. For each y € K, then map x — (Ax,y)k is in H* and therefore there
exists by Proposition 12.15 a unique vector z € H such that
(Az,y)k = (z,2z)g for all z € H.

This shows there is a unique map A* : K — H such that (Az,y)x = (z, A*(y))u
for all x € H and y € K. To finish the proof, we need only show A* is linear and
bounded. To see A* is linear, let y;,y2 € K and A € C, then for any x € H,

(Az,y1 + My2) i = (Az,y1) k + MAz, yo)
= (2, A" (y1)) i + M, A*(2)) &
= (2, A"(y1) + A" (12))
and by the uniqueness of A*(y; + Ayz) we find
A% (y1 + Ay2) = A%(y1) + AA™ (2)-
This shows A* is linear and so we will now write A*y instead of A*(y). Since
(A", 2)m = (x, Ay)y = (Az,y)x = (y, Az)k

it follows that A** = A. he assertion that (A + AB)" = A* + AB* is left to the
reader, see Exercise 12.1.
The following arguments prove the assertions about norms of A and A* :

[A*[[= sup [[Ak[|= sup sup  |[(A"k, h)|
keK:|k|=1 keK:||k||=1 he H:|[h]|=1
= sup sup  [(k,Ah)[ = sup [|A’| = [[A]],
heH:||h||=1 keK:|[k||=1 heH:||h||=1

1A= Al < A" | Al = [|A]* and

IAIP = sup  [(Ah,AR)| = sup |(h, A*AR)]
heH:||n||=1 heH:||h||=1
< s AR = [|A%A],
heH:||h||=1

wherein these arguments we have repeatedly made use of the Inequality. m

Exercise 12.1. Let H, K, M be Hilbert space, A, B € L(H, K), C € L(K, M) and
A € C. Show (A+ AB)" = A* + AB* and (CA)" = A*C* € L(M, H).

Exercise 12.2. Let H = C" and K = C™ equipped with the usual inner products,
ie. (z,wyyg = z-w for z,w € H. Let A be an m X n matrix thought of as a linear
operator from H to K. Show the matrix associated to A* : K — H is the conjugate
transpose of A.

Exercise 12.3. Let K : L?(v) — L*(p) be the operator defined in Exercise 9.12.
Show K* : L?(u) — L?(v) is the operator given by

wazﬂamwwww.

Definition 12.17. {ug}aca C H is an orthonormal set if u, L ug for all @ # S
and |jus| = 1.
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Proposition 12.18 (Bessel’s Inequality). Let {us}aca be an orthonormal set, then
(12.7) Z (@, ua)|? < ||| for all x € H.

a€cA
In particular the set {a € A : (x,uq) # 0} is at most countable for all z € H.

Proof. Let I' C A be any finite set. Then
0< = (@ ua)ual® = [ll* = 2Re D (2, ua) (uar@) + D [(z,ua)?

acl acl acl
=llz* = >z, ua)l®
acl
showing that
> ey ua)? <l
acl
Taking the supremum of this equation of I' CC A then proves Eq. (12.7). m

Proposition 12.19. Suppose A C H is an orthogonal set. Then s = Y _, v
exists in H iff 3, c 4 [|v]|* < oo. (In particular A must be at most a countable set.)
Moreover, if 3, 4 |[v]|* < oo, then
2 2
(1) sl = 2peallvll” and
(2) (s,2) => ,calv,x) forallx € H.

o0
Similarly if {vn}52, is an orthogonal set, then s = > v, exists in H iff
o0 (oo} n=l
S lonll? < oo. In particular if > v, exists, then it is independent of rearrange-
n=1 n=1
ments of {v,}52 ;.

Proof. Suppose s =) _, v exists. Then there exists I' CC A such that

dolelP={>"v

vEA vEA

2
<1

for all A cC A\T' ,wherein the first inequality we have used Pythagorean’s theorem.
Taking the supremum over such A shows that »Z, c 4\ |v]|* < 1 and therefore

ol < 14+ 3 P < oo

vEA vel
Conversely, suppose that > 4 [|v]|* < co. Then for all € > 0 there exists I' CC A
such that if A cCc A\ T,
2

= ] <€

vEA

(12.8)

S

vEA

Hence by Lemma 3.72, 3  , v exists.
For item 1, let I'. be as above and set s, := ZUGFG v. Then

sl = lselll < lls — sell < e
and by Eq. (12.8),

2
0< S ol — flsel® = 37 oll? <

vEA vl
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Letting € | 0 we deduce from the previous two equations that ||s.|| — |s|| and
sell* = Syea llvl* as e | 0 and therefore [|s]|* = 32,¢ 4 [[v].

Item 2. is a special case of Lemma 3.72.
N

For the final assertion, let sy = Z v, and suppose that limy_ .o Sy = s exists

in H and in particular {sy}xy_; is Cauchy So for N > M.

N
Z HUnH2 = ||3N _SMH2 —0as M,N — o0
n=M+1

o0 o0
which shows that Y |lv,||? is convergent, i.e. > [jv,]|? < co.
n=1 n=1

Remark: We could use the last result to prove Item 1. Indeed, if }° . 4 [[v]|* <
o0, then A is countable and so we may writer A = {vn}zo:l . Then s = limpy_,oc SN

with sy as above. Since the norm ||-|| is continuous on H, we have
2 N oo
2 _ . 2 _ . o 2 _ 2 _ 2
Jsl* = Jim flsxl? = Jim = Jim 3 ol = 3 ol = 3 ol
n=1 n=1 vEA

Corollary 12.20. Suppose H is a Hilbert space, 8 C H is an orthonormal set and
M = span 3. Then

(12.9) Py = Z(x,u)u,

uef
(12.10) > [, uw)® = [|Pya|* and
ucpf
(12.11) > {w,u)(u,y) = (P, y)
uef

forall x,y € H.

Proof. By Bessel’s inequality, >, .5 [z, u)|> < ||lz||* for all z € H and hence
by Proposition 12.18, Px := 3" o(z,u)u exists in H and for all z,y € H,

(1212) <P£E,y> = Z<<$,U>U,y> = Z<$,U><U,y>
uep u€epB

Taking y € § in Eq. (12.12) gives (Pz,y) = (z,y), i.e. that (x — Pz,y) = 0
for all y € 8. So (x — Px) L span 8 and by continuity we also have (z — Pz) L
M = span . Since Pz is also in M, it follows from the definition of P); that
Pz = Pyx proving Eq. (12.9). Equations (12.10) and (12.11) now follow from
(12.12), Proposition 12.19 and the fact that (Pyz,y) = (Pz,y) = (Pyx, Pyy)
forallz,yc H. m

12.2. Hilbert Space Basis.

Definition 12.21 (Basis). Let H be a Hilbert space. A basis § of H is a maximal
orthonormal subset 5 C H.

Proposition 12.22. Fvery Hilbert space has an orthonormal basis.
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Proof. Let F be the collection of all orthonormal subsets of H ordered by
inclusion. If ® C F is linearly ordered then U® is an upper bound. By Zorn’s
Lemma (see Theorem B.7) there exists a maximal element 5 € 7. ®

An orthonormal set 8 C H is said to be complete if 3+ = {0} . That is to say
if (z,u) =0 for all v € 8 then z = 0.

Lemma 12.23. Let 8 be an orthonormal subset of H then the following are equiv-
alent:

(1) B is a basis,

(2) B is complete and

(3) span = H.

Proof. If 3 is not complete, then there exists a unit vector x € g+ \ {0}.
The set §U {z} is an orthonormal set properly containing (3, so 8 is not maximal.
Conversely, if 5 is not maximal, there exists an orthonormal set 81 C H such that
B & Bi. Then if x € 31\ B, we have (z,u) = 0 for all v € 8 showing 3 is not
complete. This proves the equivalence of (1) and (2). If 5 is not complete and
xz € B\ {0}, then span f C z* which is a proper subspace of H. Conversely

if span (3 is a proper subspace of H,3+ = span BL is a non-trivial subspace by
Corollary 12.14 and f is not complete. This shows that (2) and (3) are equivalent.
|

Theorem 12.24. Let B C H be an orthonormal set. Then the following are
equivalent:

(1) B is complete or equivalently a basis.

(2) = Xe:ﬂ@s ,u)u for all x € H.
3) (z,y) = %(I,u} (u,y) for all x,y € H.
(4) ||z||* = Ze:ﬁ [{(z,u)|? for all x € H.

Proof. Let M = span  and P = Py;.

(1) = (2) By Corollary 12.20, > (x,u)u = Pyrx. Therefore
u€eS

wfzw,u)u::cfPM:cGML =g+ ={0}.
u€eS

(2) = (3) is a consequence of Proposition 12.19.

(3) = (4) is obvious, just take y = x.

(4) = (1) If x € B+, then by 4), ||z|| = 0, i.e. = = 0. This shows that 3 is
complete. ®m

Proposition 12.25. A Hilbert space H is separable iff H has a countable ortho-
normal basis 5 C H. Moreover, if H is separable, all orthonormal bases of H are
countable.

Proof. Let D C H be a countable dense set D = {u,,}>2;. By Gram-Schmidt
process there exists 5 = {v,}32; an orthonormal set such that span{v, : n =
1,2...,N} Dspan{u, : n=1,2...,N}. So if (z,v,) = 0 for all n then (x,u,) =0
for all n. Since D C H is dense we may choose {wg} C D such that = limg_, - wg
and therefore (x, ) = limg_, o (z, wg) = 0. That is to say x = 0 and § is complete.
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Conversely if § C H is a countable orthonormal basis, then the countable set

D= Zauu:aue(@+i@:#{u:au7€0}<oo

u€eS

is dense in H.
Finally let 8 = {u,}52; be an orthonormal basis and 8; C H be another ortho-
normal basis. Then the sets

Bn, ={v e pr:(v,u,) # 0}

oo
are countable for each n € N and hence B := |J B, is a countable subset of f;.
n=1
Suppose there exists v € 31 \ B, then (v,u,) = 0 for all n and since 8 = {u,}52,
is an orthonormal basis, this implies v = 0 which is impossible since [jv|| = 1.

Therefore 81 \ B = 0 and hence 8, = B is countable. m

Definition 12.26. A linear map U : H — K is an isometry if ||Uz|, = [|z] 4
for all x € H and U is unitary if U is also surjective.

Exercise 12.4. Let U : H — K be a linear map, show the following are equivalent:
(1) U: H — K is an isometry,
(2) (Uz,Ux') g = (x,2')y for all z,a’ € H, (see Eq. (12.16) below)
(3) U*U =idy.

Exercise 12.5. Let U : H — K be a linear map, show the following are equivalent:
(1) U: H — K is unitary
(2) U*U =idyg and UU* = idg.
(3) U is invertible and U~ = U*.

Exercise 12.6. Let H be a Hilbert space. Use Theorem 12.24 to show there exists
a set X and a unitary map U : H — (?(X). Moreover, if H is separable and
dim(H) = oo, then X can be taken to be N so that H is unitarily equivalent to

2 = (2(N).

Remark 12.27. Suppose that {u,}52, is a total subset of H, i.e. span{u,} = H.
Let {v,, }22; be the vectors found by performing Gram-Schmidt on the set {u, }52 ;.
Then {v, }22, is an orthonormal basis for H.

Example 12.28. (1) Let H = L*([-m,7],dm) = L*(—m,m),dm) and
en(0) = \/%eme for n € Z. Simple computations show 3 := {e}, <5 is an
orthonormal set. We now claim that § is an orthonormal basis. To see this
recall that C.((—m,n)) is dense in L?((—m,7),dm). Any f € C.((—m,m))
may be extended to be a continuous 27 — periodic function on R and hence
by Exercise 11.9), f may uniformly (and hence in L?) be approximated by
a trigonometric polynomial. Therefore 3 is a total orthonormal set, i.e. 3
is an orthonormal basis.

(2) Let H = L*([-1,1],dm) and A := {1,2,2% 2%...}. Then A is total in
H by the Stone-Weierstrass theorem and a similar argument as in the first
example or directly from Exercise 11.12. The result of doing Gram-Schmidt
on this set gives an orthonormal basis of H consisting of the “Legendre
Polynomials.”
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(3) Let H = L%(R,e 3% dx).Exercise 11.12 implies A := {1,z,22,23 ...} is
total in H and the result of doing Gram-Schmidt on A now gives an ortho-
normal basis for H consisting of “Hermite Polynomials.”

Remark 12. 29 (An Interesting Phenomena). Let H = L?*([—1,1],dm) and B :=
{1,23,25 2% ... }. Then again A is total in H by the same argument as in item 2.
Example 12. 28 This is true even though B is a proper subset of A. Notice that A
is an algebraic basis for the polynomials on [—1,1] while B is not! The following
computations may help relieve some of the reader’s anxiety. Let f € L*([—1,1],dm),
then, making the change of variables z = y'/3, shows that

iy [ uera= [ e[ S ra= [ 6] s

—1

where du(y) = 1y=?/3dy. Since p([—1,1]) = m([-1,1]) = 2, p is a finite mea-
sure on [—1,1] nd hence by Exercise 11.12 A = {1,z,? :c3 .} is a total in
L?([-1,1],du). In particular for any € > 0 there exists a polynomlal p(y) such that

/_11 ‘f(yl/?’) —p(y))zdﬂ(y) _ e

However, by Eq. (12.13) we have

*> /11 ’f(yw)p(y)fdu(y)_/llif(z)p($3)|2dz'

Alternatively, if f € C([—1,1]), then g(y) = f(y'/3) is back in C([—1, 1]). There-
fore for any € > 0, there exists a polynomial p(y) such that

e> g —pll, =sup{lg(y) —pW)|:y € [-1,1]}

:sup{|g(x3) —p(x3)| 1x € [—1,1]} :sup{|f(x) —p(m3)| tx € [—1,1]}.

This gives another proof the polynomials in 23 are dense in C([—1,1]) and hence

in L2([-1, 1)).

12.3. Weak Convergence. Suppose H is an infinite dimensional Hilbert space
and {z, },-, is an orthonormal subset of H. Then, by Eq. (12.1), ||z, — z|]* =2
for all m # n and in particular, {z,,} -, has no convergent subsequences. From
this we conclude that C' := {z € H : ||z|| < 1}, the closed unit ball in H, is not
compact. To overcome this problems it is sometimes useful to introduce a weaker
topology on X having the property that C' is compact.

Definition 12.30. Let (X, ||-||) be a Banach space and X* be its continuous dual.
The weak topology, 7, on X is the topology generated by X*. If {z,} -, C X
is a sequence we will write x,, X 2 as n — oo to mean that z,, — z in the weak
topology.

Because 7, = 7(X*) C 7 := 7({[lx — || : @ € X}, it is harder for a function
[+ X — F to be continuous in the 7, — topology than in the norm topology, .-
In particular if ¢ : X — F is a linear functional which is 7,, — continuous, then ¢ is
7|.| — continuous and hence ¢ € X*.

Proposition 12.31. Let {:En}zo:l C X be a sequence, then z,, — x € X asn — 0o

iff ¢(x) =limy, oo ¢(zy) for all p € X*.
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Proof. By definition of 7,,, we have z,, — z € X iff for all T cC X* and ¢ > 0
there exists an N € N such that |¢(x) — ¢(z,)| < € for all n > N and ¢ € T.
This later condition is easily seen to be equivalent to ¢(z) = lim,, . ¢(z,) for all
peX*. nm

The topological space (X, 7,) is still Hausdorff, however to prove this one needs
to make use of the Hahn Banach Theorem 18.16 below. For the moment we will
concentrate on the special case where X = H is a Hilbert space in which case
H* ={¢,:={(,2): z € H}, see Propositions 12.15. If x,y € H and z := y—x # 0,
then

0<e:= 2" = ¢:(2) = $=(y) — 6:().
Thus V, :={w € H : |[¢p.(x) — ¢.(w)| < €/2} and V,, :={w € H : |p.(y) — ¢.(w)| <
are disjoint sets from 7, which contain z and y respectively. This shows that (H, 7,,)
is a Hausdorff space. In particular, this shows that weak limits are unique if they
exist.

Remark 12.32. Suppose that H is an infinite dimensional Hilbert space {z,},- | is
an orthonormal subset of H. Then Bessel’s inequality (Proposition 12.18) implies
z, — 0 € H as n — oco. This points out the fact that if z, — z € H as n — oo, it
is no longer necessarily true that ||z|| = lim, . ||z, | . However we do always have
lz]] < liminf, . ||zn| because,

lz|* = lim {2y, ) < liminf [|lz,]| |2]l] = ] L inf |2,
n—oo n—oo n—oo

Proposition 12.33. Let H be a Hilbert space, B C H be an orthonormal basis for
H and {xn}zo:l C H be a bounded sequence, then the following are equivalent:
(1) x, %2 € H asn — .
(2) (z,y) =lim,—oo(zpn,y) for ally € H.
(3) (x,y) =limp—o0(zn,y) for ally € 5.
Moreover, if ¢, := limy, oo (Tn, y) exists for all y € B, then 3° 4 |cy|2 < oo and

xngx::ZyeﬂcyyeHasnﬂoo.

Proof. 1. = 2. This is a consequence of Propositions 12.15 and 12.31. 2. —
3. is trivial.

3. = 1. Let M := sup,, ||x,|| and Hy denote the algebraic span of 3. Then for
y € H and z € Hy,

(2 = zn, y)| < [(@ =2, 2)| + (@ — 2,y — 2)| < (2 — 20, 2) [+ 2M [y — 2]

Passing to the limit in this equation implies limsup,, ., [(z — z,9)| < 2M ||y — 2|
which shows limsup,, . [{x — Z,,y)| = 0 since Hy is dense in H.
To prove the last assertion, let I' CC /3. Then by Bessel’s inequality (Proposition
12.18),
> ey = lim > [@n, ) < liminf [, |* < M.
n—oo n—oo
yel yel

Since I' CC 3 was arbitrary, we conclude that »° g |cy|2 < M < oo and hence we

may define x := Zye 5 CyY- By construction we have
(x,y) =cy = lim (z,,y) forall y €
n—oo

and hence z,, — x € H as n — oo by what we have just proved. m

€/2}



234 BRUCE K. DRIVER'

Theorem 12.34. Suppose that {z,},., C H is a bounded sequence. Then there
exists a subsequence yi 1= T, of {xn}zo:l and x € X such that yi — x as k — co.

Proof. This is a consequence of Proposition 12.33 and a Cantor’s diagonalization
argument which is left to the reader, see Exercise 12.14. m

Theorem 12.35 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that H is a
separable Hilbert space, C := {x € H : ||z|| < 1} is the closed unit ball in H and
{en},2, is an orthonormal basis for H. Then

(12.14) p(z,y) = Zzin [(z =y, en)l

defines a metric on C which is compatible with the weak topology on C, 1¢ =
(Tw)e ={V NC:V €ry,}. Moreover (C,p) is a compact metric space.

Proof. The routine check that p is a metric is left to the reader. Let 7, be
the topology on C' induced by p. For any y € H and n € N, the map x € H —
(x —y,en) = (x,en) — (y,en) is T, continuous and since the sum in Eq. (12.14) is
uniformly convergent for x,y € C, it follows that  — p(z,y) is 7¢ — continuous.
This implies the open balls relative to p are contained in 7¢ and therefore 7, C
7c. For the converse inclusion, let z € H, x — ¢.(z) = (z,2) be an element of
H*, and for N € N let zy = ZnN:1<z,en>en. Then ¢, = Zg:1<z,en>¢en is p
continuous, being a finite linear combination of the ¢., which are easily seen to be
p — continuous. Because zy — z as N — oo it follows that

Sug|¢z(=’5) —d.n(@)] =]z —2n|| > 0as N — oo.
xre

Therefore ¢.|c is p — continuous as well and hence 7¢ = 7(¢.|c : z € H) C 7,.
The last assertion follows directly from Theorem 12.34 and the fact that sequen-
tial compactness is equivalent to compactness for metric spaces. m

Theorem 12.36 (Weak and Strong Differentiability). Suppose that f € L*(R")
and v € R™\ {0}. Then the following are equivalent:

(1) There exists {t,},-, C R\ {0} such that lim, . t, =0 and

fC+twv) = f()

< 0Q.
129

2

(2) There exists g € L2(R™) such that {f,d,¢) = —(g,¢) for all p € C°(R™).
2 2

(3) There exists g € L*(R™) and f, € C2°(R™) such that f, L fand 0, fy L g

as n — o0o.
(4) There exists g € L* such that

fett) = f0) 22

. —gast—0.

(See Theorem 19.7 for the LP generalization of this theorem.)

sup
n

Proof. 1. = 2. We may assume, using Theorem 12.34 and passing to a
subsequence if necessary, that ’C(Htiz)ff() % g for some g € L*(R"). Now for
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¢ € C(R"),
= <f7nh_>rgo w> — _<f’av¢>’

wherein we have used the translation invariance of Lebesgue measure and the dom-
inated convergence theorem.

2. = 3. Let ¢ € C(R™,R) such that [, ¢(z)dz = 1 and let ¢, (z) =
m"¢(mz), then by Proposition 11.24, hy, := ¢, * f € C°(R™) for all m and

0uhn(2) = Bu 1) = [ Duom (s~ 1) (0)dy = (£, =00 [0 (2 =)

Rn

= (g, Om (x —-)) = Pm * g(z).
By Theorem 11.21, h,, — f € L?*(R") and Oyhy = ¢m x g — g in L?*(R") as
m — oo. This shows 3. holds except for the fact that h,, need not have compact
support. To fix this let ¢ € C°(R™,[0,1]) such that ) = 1 in a neighborhood of 0
and let ¢ (x) = ¢(ex) and (0,9), (x) := (0v¥) (ex). Then

Oy (wehm) = avwehm + 'l/}eavhm =€ (avd})e hom, + 'l/}eavhm
so that ¥chy, — hy, in L? and 0, (Yehim) — Ophy, in L? as € | 0. Let fo, = e, him
where €, is chosen to be greater than zero but small enough so that

Ve, fom — B ly + (|00 (Ye, hn) — Ovhinlly < 1/m.
Then f,, € C°(R"), fm — f and 9, fm, — g in L? as m — oo.
3. = 4. By the fundamental theorem of calculus
T—tvfm(x) — fm(x) _ fm(x + t’U) — fm(x)
t t

1 1
(12.15) :l/o d%fm(m—i-stv)ds:/o (O fm) (z + stv)ds.

t
Let

Gy(z) = /01 T_stvg(x)ds = /01 g(z + stv)ds

which is defined for almost every x and is in L?(R") by Minkowski’s inequality for
integrals, Theorem 9.27. Therefore

T—tvfm(xg — fm(z) Gulo) = /1 [(Byfm) (z + stv) — gz + stv)] ds
0

and hence again by Minkowski’s inequality for integrals,

1 1

T—tvJm — Jm

% < / ||T,Sm (avfm) - TfstngQdS = / Havfm - g||2d8.
2 0 0

Letting m — oo in this equation implies (7_, f — f) /t = G} a.e. Finally one more
application of Minkowski’s inequality for integrals implies,

1
/ (T_stvg — g) ds

— Gy

T tof —
e e

2

2 0
1
< / I st0g — gl ds.
0
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By the dominated convergence theorem and Proposition 11.13, the latter term tends
to 0 as t — 0 and this proves 4. The proof is now complete since 4. = 1. is trivial.
|

12.4. Supplement 1: Converse of the Parallelogram Law.

Proposition 12.37 (Parallelogram Law Converse). If (X, ||-||) ¢s a normed space
such that Eq. (12.2) holds for all x,y € X, then there exists a unique inner product

on (-,-) such that ||z|| := \/(z,x) for all x € X. In this case we say that ||-|| is a
Hilbertian norm.

Proof. If ||-|| is going to come from an inner product (-,-), it follows from Eq.
(12.1) that

2Re(z,y) = [|lz +y|I* - [|=]* — lly[I?

and
—2Re(z,y) = [l —y[I* = |=]* — [ly|1*.
Subtracting these two equations gives the “polarization identity,”
4Re(z,y) = [lz +yl* = |z — y[*.

Replacing y by 4y in this equation then implies that

Am(z,y) = [lz + iy||* — ||z — iy|®
from which we find

1
(12.16) (x,y) = ZZeHx—i—eyHQ
ecG

where G = {#£1,4i} — a cyclic subgroup of S C C. Hence if (-,-) is going to exists
we must define it by Eq. (12.16).
Notice that

1 . . . .
(w,2) = 7 D elle +eall? = [lall? + illz + ia]|* — ifle — iz
ecG
. . . . 2
= ol + 4 12l = |1 = ] > = 2]

So to finish the proof of (4) we must show that (z,y) in Eq. (12.16) is an inner
product. Since

My, a) =Y elly+eal? = ellely +ex) |?

eeG eeG

= elley + x|

ecG
= ly +al? + 1| —y +2l* +illiy — ]|* — il — iy — 2|
= [lz +ylI* + lz — ylI* +illz — iyl|* — il + iy|?
=4z, y)

it suffices to show & — (x,y) is linear for all y € H. (The rest of this proof may
safely be skipped by the reader.) For this we will need to derive an identity from
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Eq. (12.2). To do this we make use of Eq. (12.2) three times to find
lz+y+2l* =~z +y — 2[* + 2]z + y|* + 2||2]?
= llz —y — 2l = 2ll= — 2]I* - 2lly|I* + 2]z + ylI* + 2/|=]
= lly + 2 = all* = 2]}z — 21> = 2llyl* + 2[|= + ylI* + 2/l 2
=—lly+ 2+ + 2lly + 2lI* + 2ll=[* — 2]}z — 2] - 2[lylI* + 2]}z + y[|* + 21|21
Solving this equation for ||z + y + 2||? gives
(1217) o +y+ 207 = lly + 2l* + lz + ylI* = llo = 2l + [l=[I* + [|2]* = ly]*.
Using Eq. (12.17), for z,y,z € H,
ARe(w +2,y) = [lz+ 2+ yl* = 2+ 2 — y|”
= lly + 207 + o+ ylI* = llz — 2l + ll2]® + [I2]* = Iyl
= (llz = yl* + llz = yll* = llz — 21 + [lzl* + 21" — [ly]I*)
= llz+yl?* = llz =yl + o+ ylI* = llz — y|?
(12.18) = 4Re(z,y) + 4Re(z,y).

Now suppose that § € G, then since |§| = 1,

1 1 _
Mow,y) = 7 S elldr + eyl = 7 3 el + 6 ey

eeG eeG
L 2
(12.19) = Z;;eéHx—HkyH = 46(z, y)

where in the third inequality, the substitution ¢ — €§ was made in the sum. So Eq.
(12.19) says (£iz,y) = i(iz,y) and (—z,y) = —(x,y). Therefore

Im(z,y) = Re (—i(z,y)) = Re(—iz,y)
which combined with Eq. (12.18) shows
Im(z + z,y) = Re(—iz — iz,y) = Re(—iz,y) + Re(—iz,y)
= Im(z,y) + Im(z, y)
and therefore (again in combination with Eq. (12.18)),
(x+ z,y) = (z,y) + (2,y) for all z,y € H.

Because of this equation and Eq. (12.19) to finish the proof that x — (z,y) is
linear, it suffices to show (Az,y) = A(x,y) for all A > 0. Now if A =m € N, then

<m$7y> = <.’E + (m - 1)$,y> = <$7y> + <(m - 1):12‘7y>

so that by induction (mz,y) = m(z,y). Replacing = by z/m then shows that
(x,y) = m(m~tx,y) so that (m~tx,y) = m~{z,y) and so if m,n € N, we find
n 1 n

so that (Az,y) = Az, y) for all A > 0 and A € Q. By continuity, it now follows that
(Az,y) = Mz,y) forall A > 0. m
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12.5. Supplement 2. Non-complete inner product spaces. Part of Theorem
12.24 goes through when H is a not necessarily complete inner product space. We
have the following proposition.

Proposition 12.38. Let (H, (-,-)) be a not necessarily complete inner product space
and B C H be an orthonormal set. Then the following two conditions are equivalent:
(1) = > (x,u)u for allx € H.
u€eS
2) ll=l> = X [(z,uw)]? for allz € H.
u€eS

Moreover, either of these two conditions implies that 8 C H is a mazimal ortho-
normal set. However f C H being a mazximal orthonormal set is not sufficient to
conditions for 1) and 2) hold!

Proof. As in the proof of Theorem 12.24, 1) implies 2). For 2) implies 1) let
A CC B and consider

x — Z(mm)u

ueA

= Je* =2 [z, u)* + Y [z, w)?

ueA u€eA

= Jlall* = Ka,w)?.

ueEA

Since ||z||? = Y |[(z,u)|?, it follows that for every € > 0 there exists A, CC 3 such
u€ef
that for all A CC 8 such that A, C A,

2
2= wuyl| = ol = 3 o, u)f? < e
u€A

uEA

showing that z = > (z,u)u.
u€B

Suppose © = (1, %2, ..., Tn,...) € B, If 2) is valid then ||z|> = 0, i.e. 2 = 0. So
[ is maximal. Let us now construct a counter example to prove the last assertion.

Take H = Span{e; }$°, C ¢? and let @, = e; — (n+1)en41 forn =1,2.... Apply-
ing Gramn-Schmidt to {@, } - ; we construct an orthonormal set 8 = {u, }52, C H.
I now claim that 8 C H is maximal. Indeed if z = (21, %2,...,2pn,...) € B+ then
r L u, for all n, i.e.

0=(2,Up) =21 — (n+ Dzpy1.

Therefore 2,41 = (n+1)" "z for all n. Since x € Span{e;}2°,, zy = 0 for some
N sufficiently large and therefore xy = 0 which in turn implies that x,, = 0 for all
n. So x = 0 and hence § is maximal in H. On the other hand, § is not maximal
in £2. In fact the above argument shows that 8+ in £2 is given by the span of v =
(1,3,%,%:%,---). Let P be the orthogonal projection of ¢ onto the Span(3) = v*.
Then

o0

Z(m, Up)un, = Pr = <x702>v,

i=1 o]l

so that > (z,up)u, = =z iff x € Span(B) = vt C (2 For example if z =
i=1

(1,0,0,...) € H (or more generally for z = e; for any i), z ¢ v and hence

(o)

Sz, up)up £ x. W

=1
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12.6. Supplement 3: Conditional Expectation. In this section let (Q,F, P)
be a probability space, i.e. (Q, F, P) is a measure space and P(Q) =1. Let G C F
be a sub — sigma algebra of F and write f € G if f : Q — C is bounded and f is
(G, Be) — measurable. In this section we will write

Ef ::/QfdP.

Definition 12.39 (Conditional Expectation). Let Eg : L?(Q, F, P) — L*(Q,G, P)
denote orthogonal projection of L?(Q, F, P) onto the closed subspace L*(9, G, P).
For f € L?(Q,G, P), we say that Egf € L?(Q, F, P) is the conditional expecta-
tion of f.

Theorem 12.40. Let (2, F, P) and G C F be as above and f,g € L*(Q, F, P).
(1) If f >0, P — a.e. then Egf >0, P — a.e.

(2) If f > g, P — a.e. there Egf > Egg, P — a.e.
(3) |Egf| < Eglf], P ~ a.e.
4) 1Egfller <\ fllpr for all f € L% So by the B.L.T. Theorem 4.1, Eg extends

uniquely to a bounded linear map from LY (Q, F, P) to L*(2,G, P) which we
will still denote by Eg.
(5) If f € L (Q, F, P then F = Eqf € L'(Q,G, P) iff

E(Fh) = E(fh) for all h € Gy.
(6) If g€ Gy and f € LY(Q, F, P), then Eg(gf) =g- Egf, P — a.e.
Proof. By the definition of orthogonal projection for h € Gy,
E(fh) = E(f - Egh) = E(Egf - ).

Soif f,h >0 then 0 < E(fh) < E(Egf -h) and since this holds for all ~ > 0 in Gy,
Egf >0, P — a.e. This proves (1). Item (2) follows by applying item (1). to f —g.
If fisreal, +f < |f| and so by Item (2), £Fgf < Eg|f|, i.e. |Egf| < Eg|f|, P —
a.e. For complex f, let h > 0 be a bounded and G — measurable function. Then
E[|Egf|h) = E |Egf -sen(Egf)h| = E |f -sgn (Eg f)h
< E[|f[h] =E[Eg|f|-h].

Since h is arbitrary, it follows that |Egf| < Eg|f|, P — a.e. Integrating this
inequality implies

[Egfller < E|Egf| < E[Eg|f|-1] = E[lfl] = [l

Item (5). Suppose f € LY(Q,F,P) and h € Gy. Let f, € L*(Q,F,P) be a
sequence of functions such that f, — f in L'(Q, F, P). Then

E(Egf -h) = E(lim Egf,-h) = lim E(Egf, - h)
(12.20) = lim E(f,-h)=E(f-h).
This equation uniquely determines Eg, for if F € L'(Q, G, P) also satisfies E(F-h) =
E(f - h) for all h € Gy, then taking h = sgn (F' — Egf) in Eq. (12.20) gives
0=E((F—Egf)h) = E(|F - Eg[]).
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This shows F' = Egf, P — a.e. Item (6) is now an easy consequence of this charac-
terization, since if h € Gy,

El(gEgf)h| =E[Egf -hg]l=E[f -hg]l = Elgf -h] = E[Eg (gf) - h].
Thus Eg (gf) =g - Egf, P —ae. m
Proposition 12.41. IfGy C Gy C F. Then
(12.21) Eg,Eg, = Eg,Eg, = Eg,.
Proof. Equation (12.21) holds on L2(Q2,F, P) by the basic properties of or-

thogonal projections. It then hold on L'(£2, F, P) by continuity and the density of
L*(Q,F,P)in LY(Q,F,P). m

Example 12.42. Suppose that (X, M, ) and (Y, N, v) are two o — finite measure
spaces. Let Q@ = X x Y, F = M®N and P(dz,dy) = p(z,y)u(dx)v(dy) where
p € LY, F,p®v) is a positive function such that [ , pd(p®v) = 1. Let
mx : © — X be the projection map, wx (z,y) = x, and

G=o(rx)=mx (M) ={AxY :Aec M}.

Then f: Q — R is G — measurable iff f = F o wx for some function F': X — R
which is N/ — measurable, see Lemma 6.62. For f € L'(2, F, P), we will now show
Egf = F onmx where

F(z) = %uom) (5(x)) - /Y F(@,y)ple, y)v(dy),

ﬁ(w)) = [y p(z,y)v(dy). (By convention, [, f(z,y)p(z, y)v(dy) = 0if [} |f(z,y)] p(z,y)v(dy) =
00.
By Tonelli’s theorem, the set

Bi=f{ze X :plx) = oo} U {z e X+ [ 11(w0)l ol () —oo}

is a p — null set. Since

E(Fonx = /X dpu(z) /Y du(y) |F(@)| plaz,y) = /X dp(z) |F ()] plz)

= /X du(x)
< /X d(z) /Y v(dy) | (@,9)] plz,y) < oo,

Forx € Ll(Q, G, P). Let h = Homyx be a bounded G — measurable function, then

BFoms -t = [ duta) | dly)F@H@)play)

/Y v(dy)f(z,y)p(z, y)'

_ / dp(z) F(z) H(x)p(x)
X

= / du(z)H (z) / v(dy) f(z,y)p(z,y)
X Y
= E[hf]

and hence Egf = F o7y as claimed.
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This example shows that conditional expectation is a generalization of the notion
of performing integration over a partial subset of the variables in the integrand.
Whereas to compute the expectation, one should integrate over all of the variables.
See also Exercise 12.8 to gain more intuition about conditional expectations.

Theorem 12.43 (Jensen’s inequality). Let (Q,F, P) be a probability space and
¢ : R — R be a convex function. Assume f € L'(Q,F,P;R) is a function such
that (for simplicity) o(f) € LY(Q,F, P;R), then o(Egf) < Eg [o(f)], P — a.e.

Proof. Let us first assume that ¢ is C! and f is bounded. In this case
(12.22) o(z) — p(xo) > ¢’ (x0)(x — T0) for all o,z € R.
Taking 2o = Egf and = = f in this inequality implies

o(f) —e(Egf) = ¢'(Egf)(f — Egf)
and then applying Fg to this inequality gives

Eg [o(N)] —(Egf) = Egle(f) —¢(Egf)] = ¢'(Egf)(Egf — EgEgf) =0
The same proof works for general ¢, one need only use Proposition 9.7 to replace
Eq. (12.22) by
o(z) — p(wo) > ¢ (z0)(z — z0) for all zg,x € R
where ¢’ (zg) is the left hand derivative of ¢ at xg.
If f is not bounded, apply what we have just proved to fM = J15 1<, to find

(12.23) Eg [p(f*)] = o(Eg ).

Since Eg : LY(Q, F,P;R) — LY(Q,F, P;R) is a bounded operator and f™ — f
and p(fM) — ¢(f) in L*(Q,F, P;R) as M — oo, there exists {Mj,},-, such that
My, T oo and fMk — f and o(fMr) — ¢(f), P — a.e. So passing to the limit in Eq.
(12.23) shows Eg [p(f)] > ¢(Egf), P —a.e. m

12.7. Exercises.

Exercise 12.7. Let (X, M, 1) be a measure space and H := L?(X, M, u). Given
f € L>®(p) let My : H— H be the multiplication operator defined by Mg = fg.
Show M)% = My iff there exists A € M such that f =14 a.e.

Exercise 12.8. Suppose (2, F, P) is a probability space and A := {4;}°, C F
is a partition of Q. (Recall this means Q@ = [[;°, A;.) Let G be the o — algebra
generated by A. Show:
(1) Be G iff B=U;cpA; for some A C N.
(2) g: Q2 — Ris G — measurable iff g = Zf; Aila, for some \; € R.
(3) For f € LY(Q,F,P), let E(f|A;) := E[la,f]/P(A;) if P(A;) # 0 and
E(f|A;) = 0 otherwise. Show

Egf = E(flA)l4,.
i=1
Exercise 12.9. Folland 5.60 on p. 177.

Exercise 12.10. Folland 5.61 on p. 178 about orthonormal basis on product
spaces.

Exercise 12.11. Folland 5.67 on p. 178 regarding the mean ergodic theorem.
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Exercise 12.12 (Haar Basis). In this problem, let L? denote L%([0, 1], m) with the
standard inner product,

Y(x) = 1j9,1/2)(x) — 1j1/2,1)(x)
and for k,j € Ny := NU{0} with 0 < j < 2% let
Ui () = 26/ 2p(2k 2 — §).

The following pictures shows the graphs of oo, ¥1.0,%1,1,%2,1,%2,2 and 93 re-
spectively.

Plot of 1y, 0.

Plot of 4,0. Plot of 91 1.

Plot of 150. Plot of 51.

0 3
J{o 0z 05 075 1 J{q 025 05 075 1

1 '

2 e 2 —_

Plot of 152. Plot of 193.

(1) Show B := {1} U {ty;: 0 <k and 0 <j <2*} is an orthonormal set, 1
denotes the constant function 1.

(2) For n € N, let M, := span ({1} U {¢y; :0<k<nand0<j<2"}).
Show

Mn — sSpan ({1[j27n7(j+1)27n) :and 0 < j < 2”) .

(3) Show USS; M, is a dense subspace of L? and therefore 3 is an orthonormal
basis for L2. Hint: see Theorem 11.3.
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(4) For f € L?, let

n—12%—1

k=0 j=0

Show (compare with Exercise 12.8)

21 (G+D27
an = Z 2”/ f($)d$ 1[j2*"',(j+1)2’”)
=0 g2

and use this to show || f — H, f||, — 0 as n — oo for all f € C([0,1]).

Exercise 12.13. Let O(n) be the orthogonal groups consisting of n x n real
orthogonal matrices O, i.e. OO = I. For O € O(n) and f € L?*(R") let
Uof(z) = f(O~'x). Show

(1) Upf is well defined, namely if f = g a.e. then Up f = Upyg a.e.

(2) Uo : L*(R™) — L2(R") is unitary and satisfies Up,Uo, = Uop,0, for all
01,02 € O(n). That is to say the map O € O(n) — U(L?*(R™)) — the
unitary operators on L?(R") is a group homomorphism, i.e. a “unitary
representation” of O(n).

(3) For each f € L?(R"), the map O € O(n) — Uof € L?*(R") is continuous.
Take the topology on O(n) to be that inherited from the Euclidean topology
on the vector space of all n xn matrices. Hint: see the proof of Proposition
11.13.

Exercise 12.14. Prove Theorem 12.34. Hint: Let Hy := span{z, : n € N} —
a separable Hilbert subspace of H. Let {\,,},_; C Hp be an orthonormal basis
and use Cantor’s diagonalization argument to find a subsequence yj, := x,, such
that ¢, 1= limg— oo (Yk, Am) exists for all m € N. Finish the proof by appealing to

Proposition 12.33.

Exercise 12.15. Suppose that {z,}°°, C H and z, — = € H as n — oc. Show
Ty — xasn — oo (e lim, o ||z — 2] = 0) iff lim,— o ||Jza|| = |2 -
Exercise 12.16. Show the vector space operations of X are continuous in the weak
topology. More explicitly show

(1) (z,y) e X x X sz +ye€ X is (Ty @ Tw, Tw) — continuous and

(2) (Mx)eFx X — Az € X is (75 ® Ty, Tw) — continuous.

Exercise 12.17. Euclidean group representation and its infinitesimal generators
including momentum and angular momentum operators.

Exercise 12.18. Spherical Harmonics.
Exercise 12.19. The gradient and the Laplacian in spherical coordinates.
Exercise 12.20. Legendre polynomials.

Exercise 12.21. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be more
precise, suppose H is an infinite dimensional Hilbert space and m is a measure on
By which is invariant under translations and satisfies, m(Bo(€)) > 0 for all € > 0.
Show m(V) = oo for all open subsets of H.
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12.8. Fourier Series Exercises.

Notation 12.44. Let C%, (R?) denote the 27 — periodic functions in C*(R9),

per
Ck., (RY) :={f € C*RY): f(z + 2me;) = f(z) forall z e RY and i = 1,2,...,d} .

per

Also let (-, -) denote the inner product on the Hilbert space H := L?([—7, 7]%) given

by d
(f,9) = (%) /[—mr]d f(z)g(z)dz.

Recall that {xx(z) :=e**: k€ Z%} is an orthonormal basis for H in particular
for f € H,

(12.24) F=""(Fxr)xe
kezd

where the convergence takes place in L%([—m,7]?). For f € LY([—m,7]9), we will
write f(k) for the Fourier coefficient,

d
r 1 —ik-w
(12.25) Fb) o= () = (2—) | st
™ [—m,m]e
Lemma 12.45. Let s > 0, then the following are equivalent,
1 1
(12.26) —— < 00, ————— < o0 and s > d.
25 Ty < 2 T

Proof. Let Q := (0,1]? and k € Z¢. For x = k +y € (k + Q),
24|kl =2+ |z —y| <2+ |z[+|y| <3+ |z| and
24k =2+z -yl 22+ [z - |y[ = |z| + 1

and therefore for s > 0,

1 1 1
s < < 5
B+lz)” ~ 2+k)* — (1+]z])
Thus we have shown
1 1 1
— < ———1gk(x) < ——— for all z € RY.
3+ [a])® kZ 2+ [k 9 (1 +[a])®

Integrating this equation then shows

1 1 1
/Rd Gy ™S 2 Eay S / ™

kezZd
from which we conclude that

1
(12.27 < oxoiffs>d.
) 2 Ty

Because the functions 1+1¢, 2+1¢, and /1 + t2 all behave like ¢t as ¢ — oo, the sums
in Eq. (12.26) may be compared with the one in Eq. (12.27) to finish the proof. m

Exercise 12.22 (Riemann Lebesgue Lemma for Fourier Series). Show for f €
LY([-m, 7% that f € co(Z%), ie. f:Z% — C and limg o f(k) = 0. Hint: If
f € H, this follows form Bessel’s inequality. Now use a density argument.
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Exercise 12.23. Suppose f € L'([—m,7]?) is a function such that f € ¢*(Z?%) and
set
g(x) == Z f(k)e™™® (pointwise).
kezd
(1) Show g € Cpe,(RY).
(2) Show g(x) = f(z) for m — a.e. x in [—, x|% Hint: Show §(k) = f(k) and
then use approximation arguments to show

/ F@)h(z)dz = / g(@)h(@)dz ¥ h € C([—m, %),

[—m,m]¢ [—m,m]d

(3) Conclude that f € LY([-m, n]%) N L®([-m,7]?) and in particular f €
LP([—m,7]?) for all p € [1, ).

Exercise 12.24. Suppose m € Ny, « is a multi-index such that |a| < 2m and
f c CQm(Rd)ZQ.

per
(1) Using integration by parts, show

(ik)* f (k) = (0% f, Xk)-
Note: This equality implies

~ 1 1
3 ’ < 18%f|l,s < — [18°F]I.. -
7)< 2 10 s < 7= N £,
(2) Now let Af =0, 82 /022, Working as in part 1) show

(12.28) (L= 2)"f,xk) = (L+ [K[*)" f (k).

Remark 12.46. Suppose that m is an even integer, « is a multi-index and f €
crmHel(Rd), then

2 2

PORLRIFO) 1O F 0] (L IR 2(1 k)2

kezd kezd

2

>[4 = 2207 o | (1 [P

kezd
2
< Z ‘<(1_A>m/2aaf,xk>‘ . Z(1+|k,|2)—m
kezd kezd
2
— o m/2 aa
Con |1 = 2y 20 ¢

where Cyp, := >0 cpa(1+ k[*)™™ < oo iff m > d/2. So the smoother f is the faster

f decays at infinity. The next problem is the converse of this assertion and hence
smoothness of f corresponds to decay of f at infinity and visa-versa.

Exercise 12.25. Suppose s € R and {¢; € C: k € Z%} are coefficients such that

> el (14 [k[*)* < oo

kezd

29We view Cper(R) as a subspace of H by identifying f € Cper(R) with f|j_r ) € H.
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Show if s > % + m, the function f defined by
_ Z Ckeik-w
kezd

is in O, (R 4). Hint: Work as in the above remark to show

Z lex| [E%| < oo for all |al < m.
keZd

Exercise 12.26 (Poisson Summation Formula). Let F' € L'(R%),

E:={zecR¢: Z |F(z + 27k)| =
kezd

and set
ﬁ'(k) = (277)7(1/2/ F(x)e *odg.
Rd

Further assume F' € (*(Z%).
(1) Show m(E) = 0 and E + 27k = E for all k € Z? Hint: Compute
f[—w,w]d Y okezd |[F(x 4+ 21k)| da.
(2) Let
f@) = Yopeze Flx +27mk) for x¢ E
' 0 if zek.
Show f € LY([-m,@)%) and f(k) = (2r)” Y F(k).
(3) Using item 2) and the assumptions on F, show f € L([-m,7]%) N
L>([—m,7]?) and

= Z fk)et = Z 2m) Y2 F(k)e™* ™ for m — ae. x,

kezd kezd
i.e.
. + 27 ) “for m —a.e. x.
12.29 F(z + 27k) = (2m)~ Y2 etk f
kezd kezd

(4) Suppose we now assume that F' € C(RY) and F satisfies 1) |F(x)| < C(1+
|z|)~* for some s > d and C' < oo and 2) F' € ¢*(Z?), then show Eq. (12.29)
holds for all = € R? and in particular

Z F(27k) = (2m) —d/2 Z
kezd kezd
For simplicity, in the remaining problems we will assume that d = 1.
Exercise 12.27 (Heat Equation 1.). Let (¢,z) € [0,00) X R — u(t,x) be a contin-
uous function such that u(t,-) € Cper(R) for all t > 0, @ := w, uy, and ug, exists
and are continuous when ¢ > 0. Further assume that u satisfies the heat equation

U = Fuge. Let @(t, k) = (u(t,-), xx) for k € Z. Show for ¢ > 0 and k € Z that
a(t, k) is differentiable in ¢ and iﬂ(u k)= —l{:qu(t, k)/2. Use this result to show

(12.30) =3 et (ke

keZ
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where f(z) :=u(0,z) and as above
- 1 7 »
F) = (Fox) = 57 [ sw)evay,

Notice from Eq. (12.30) that (¢,2) — u(t,z) is C> for ¢t > 0.

Exercise 12.28 (Heat Equation 2.). Let ¢(z) := 5= >, e~ ¢k Show that
Eq. (12.30) may be rewritten as

utta) = [ " aele — ) F(y)dy

and

q(z) = Zpt(m + k27)
kEZ
1
27t

where p(z) := e~2r%". Also show u(t, z) may be written as

ut.a) = po fa) = [ pla =)

Hint: To show q:(x) = >, pi(w + k27), use the Poisson summation formula
along with the Gaussian integration formula

A 1 i

1 .
w)=— r)e'“Tdr = e
pt( ) \/%/Rpt( ) m
Exercise 12.29 (Wave Equation). Let u € C?(RxR) be such that u(t, ) € Cper(R)
for all ¢ € R. Further assume that u solves the wave equation, uy = ug,. Let
f(@) := u(0,2) and g(x) = 4(0,x). Show a(t, k) := (u(t,-), xx) for k € Z is twice

continuously differentiable in ¢ and %ﬁ(t, k) = —k%*a(t, k). Use this result to show
~ in kt .
(12.31) ult,e) =Y ( F(k) cos(kt) + (k) S”;C ) eika
kEZ

with the sum converging absolutely. Also show that u(¢,z) may be written as
t

1 1
(12.32) u(t,z) = 3 [flx+t)+ flz—t)]+ 5/ g(x + 7)dT.
—t
Hint: To show Eq. (12.31) implies (12.32) use
ikt | —ikt ikt _ o —ikt
cos kt = i, and sin kt = 'e

2 24

and ikh(o+t)  ik(z—t) t
e * e _ / eik(:c+‘r)d7_'
ik —t

Exercise 12.30. (Worked Example.) Let D := {z € C : |z| < 1} be the open
unit disk in C =2 R?, where we write z = z + iy = re'? in the usual way. Also let
2 2
A= % + 86_y2 and recall that A may be computed in polar coordinates by the
formula,
1

Au =119, (rilaru) + T—28§u.
Suppose that u € C(D) N C?(D) and Au(z) =0 for z € D. Let g = u|sp and

~ L™ ke —i

g(k) : / g(e*?)e= 0 qg.

:% -
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(We are identifying ' = 9D := {z € D: |2| = 1} with [~m, 7]/ (x ~ —) by the

map 0 € [—7, 7] — e € S'.) Let

(12.33) a(r,k) == QL/ u(re'®)e*0q9
[ -

then:

(1) a(r, k) satisfies the ordinary differential equation

r= 1o, (royi(r,k)) = %k%l(r, k) for r € (0,1).
r

(2) Recall the general solution to
(12.34) 0y (royy(r)) = k*y(r)

may be found by trying solutions of the form y(r) = r® which then implies
a? = k? or a = +k. From this one sees that @(r,k) may be written as
u(r k) = Apr®l + Byr—I¥l for some constants Aj and By, when k # 0. If
k = 0, the solution to Eq. (12.34) is gotten by simple integration and the
result is @(r,0) = Ag + BpInr. Since a(r, k) is bounded near the origin for
each k, it follows that By = 0 for all k € Z.

(3) So we have shown

Apr® = G(r k) = 2i/ u(re®)e*0dg
T

—T

and letting 7 T 1 in this equation implies

1™ i
Ay = Py u(e®)e=*0de = g(k).
Therefore,
(12.35) u(re') = Zg(k)rlkleike

keZ
for 7 < 1 or equivalently,
u(z) = > §lk)* + > g(—k)z".
keNg keN

(4) Inserting the formula for §(k) into Eq. (12.35) gives

u(re'?) = ZL/ <Z rkeik(e_a)> u(e')da for all r < 1.
)7

kEZ

Now by simple geometric series considerations we find, setting § = 0 — «,

that
oo oo
Z P IFl giks _ Z Pk eiks Z ko
kEZ k=0 k=1
1 re 1—re ™ +re (1 —re?)
_1frei5+1—re*i5_ 1—2rcosd +r2
1—1r2

1—2rcosd +r2’
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Putting this altogether we have shown
. 1 4 .
u(re') = 2—/ P.(6 — a)u(e")da
T J)—m

where
1— 72

P.()) = —mmmmmm—
(9) 1—2rcosd + r?
is the so called Poisson kernel.
Exercise 12.31. Show Y ;- k=2 = 7?/6, by taking f(z) = x on [—, 7] and
computing || f ||§ directly and then in terms of the Fourier Coefficients f of f.



