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12. Hilbert Spaces

12.1. Hilbert Spaces Basics.

Definition 12.1. Let H be a complex vector space. An inner product on H is a
function, h·, ·i : H ×H → C, such that

(1) hax+ by, zi = ahx, zi+ bhy, zi i.e. x→ hx, zi is linear.
(2) hx, yi = hy, xi.
(3) kxk2 ≡ hx, xi ≥ 0 with equality kxk2 = 0 iff x = 0.

Notice that combining properties (1) and (2) that x → hz, xi is anti-linear for
fixed z ∈ H, i.e.

hz, ax+ byi = āhz, xi+ b̄hz, yi.
We will often find the following formula useful:

kx+ yk2 = hx+ y, x+ yi = kxk2 + kyk2 + hx, yi+ hy, xi
= kxk2 + kyk2 + 2Rehx, yi(12.1)

Theorem 12.2 (Schwarz Inequality). Let (H, h·, ·i) be an inner product space, then
for all x, y ∈ H

|hx, yi| ≤ kxkkyk
and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y 6= 0. First off notice
that if x = αy for some α ∈ C, then hx, yi = α kyk2 and hence

|hx, yi| = |α| kyk2 = kxkkyk.
Moreover, in this case α := hx,yi

kyk2 .
Now suppose that x ∈ H is arbitrary, let z ≡ x − kyk−2hx, yiy. (So z is the

“orthogonal projection” of x onto y, see Figure 28.) Then

Figure 28. The picture behind the proof.

0 ≤ kzk2 =
°°°°x− hx, yikyk2 y

°°°°2 = kxk2 + |hx, yi|2kyk4 kyk2 − 2Rehx, hx, yikyk2 yi

= kxk2 − |hx, yi|
2

kyk2
from which it follows that 0 ≤ kyk2kxk2 − |hx, yi|2 with equality iff z = 0 or
equivalently iff x = kyk−2hx, yiy.
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Corollary 12.3. Let (H, h·, ·i) be an inner product space and kxk :=phx, xi. Then
k · k is a norm on H. Moreover h·, ·i is continuous on H ×H, where H is viewed as
the normed space (H, k·k).
Proof. The only non-trivial thing to verify that k·k is a norm is the triangle

inequality:

kx+ yk2 = kxk2 + kyk2 + 2Rehx, yi ≤ kxk2 + kyk2 + 2kxk kyk
= (kxk+ kyk)2

where we have made use of Schwarz’s inequality. Taking the square root of this
inequality shows kx+ yk ≤ kxk+ kyk. For the continuity assertion:

|hx, yi− hx0, y0i| = |hx− x0, yi+ hx0, y − y0i|
≤ kykkx− x0k+ kx0kky − y0k
≤ kykkx− x0k+ (kxk+ kx− x0k) ky − y0k
= kykkx− x0k+ kxkky − y0k+ kx− x0kky − y0k

from which it follows that h·, ·i is continuous.
Definition 12.4. Let (H, h·, ·i) be an inner product space, we say x, y ∈ H are
orthogonal and write x ⊥ y iff hx, yi = 0. More generally if A ⊂ H is a set,
x ∈ H is orthogonal to A and write x ⊥ A iff hx, yi = 0 for all y ∈ A. Let
A⊥ = {x ∈ H : x ⊥ A} be the set of vectors orthogonal to A. We also say that a
set S ⊂ H is orthogonal if x ⊥ y for all x, y ∈ S such that x 6= y. If S further
satisfies, kxk = 1 for all x ∈ S, then S is said to be orthonormal.

Proposition 12.5. Let (H, h·, ·i) be an inner product space then
(1) (Parallelogram Law)

(12.2) kx+ yk2 + kx− yk2 = 2kxk2 + 2kyk2
for all x, y ∈ H.

(2) (Pythagorean Theorem) If S ⊂ H is a finite orthonormal set, then

(12.3) k
X
x∈S

xk2 =
X
x∈S

kxk2.

(3) If A ⊂ H is a set, then A⊥ is a closed linear subspace of H.

Remark 12.6. See Proposition 12.37 in the appendix below for the “converse” of
the parallelogram law.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations:

kx+ yk2 + kx− yk2 = kxk2 + kyk2 + 2Rehx, yi+ kxk2 + kyk2 − 2Rehx, yi
= 2kxk2 + 2kyk2,

and

k
X
x∈S

xk2 = h
X
x∈S

x,
X
y∈S

yi =
X
x,y∈S

hx, yi

=
X
x∈S

hx, xi =
X
x∈S

kxk2.
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Item 3. is a consequence of the continuity of h·, ·i and the fact that
A⊥ = ∩x∈A ker(h·, xi)

where ker(h·, xi) = {y ∈ H : hy, xi = 0} — a closed subspace of H.

Definition 12.7. A Hilbert space is an inner product space (H, h·, ·i) such that
the induced Hilbertian norm is complete.

Example 12.8. Let (X,M, µ) be a measure space then H := L2(X,M, µ) with
inner product

(f, g) =

Z
X

f · ḡdµ

is a Hilbert space. In Exercise 12.6 you will show every Hilbert space H is “equiv-
alent” to a Hilbert space of this form.

Definition 12.9. A subset C of a vector space X is said to be convex if for all
x, y ∈ C the line segment [x, y] := {tx+ (1− t)y : 0 ≤ t ≤ 1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 12.10. Suppose that H is a Hilbert space and M ⊂ H be a closed convex
subset of H. Then for any x ∈ H there exists a unique y ∈M such that

kx− yk = d(x,M) = inf
z∈M

kx− zk.

Moreover, ifM is a vector subspace of H, then the point y may also be characterized
as the unique point in M such that (x− y) ⊥M.

Proof. By replacing M by M − x := {m− x : m ∈ M} we may assume x = 0.
Let δ := d(0,M) = infm∈M kmk and y, z ∈M, see Figure 29.

Figure 29. The geometry of convex sets.

By the parallelogram law and the convexity of M,

(12.4) 2kyk2+2kzk2 = ky+zk2+ky−zk2 = 4ky + z

2
||2+ky−zk2 ≥ 4δ2+ky−zk2.

Hence if kyk = kzk = δ, then 2δ2 + 2δ2 ≥ 4δ2 + ky − zk2, so that ky − zk2 = 0.
Therefore, if a minimizer for d(0, ·)|M exists, it is unique.
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Existence. Let yn ∈M be chosen such that kynk = δn → δ ≡ d(0,M). Taking
y = ym and z = yn in Eq. (12.4) shows 2δ2m + 2δ

2
n ≥ 4δ2 + kyn − ymk2. Passing to

the limit m,n→∞ in this equation implies,

2δ2 + 2δ2 ≥ 4δ2 + lim sup
m,n→∞

kyn − ymk2.

Therefore {yn}∞n=1 is Cauchy and hence convergent. Because M is closed, y :=
lim
n→∞ yn ∈M and because k·k is continuous,

kyk = lim
n→∞ kynk = δ = d(0,M).

So y is the desired point in M which is closest to 0.
Now for the second assertion we further assume that M is a closed subspace of

H and x ∈ H. Let y ∈ M be the closest point in M to x. Then for w ∈ M, the
function

g(t) ≡ kx− (y + tw)k2 = kx− yk2 − 2tRehx− y, wi+ t2kwk2

has a minimum at t = 0. Therefore 0 = g0(0) = −2Rehx − y, wi. Since w ∈ M is
arbitrary, this implies that (x− y) ⊥ M. Finally suppose y ∈ M is any point such
that (x− y) ⊥M. Then for z ∈M, by Pythagorean’s theorem,

kx− zk2 = kx− y + y − zk2 = kx− yk2 + ky − zk2 ≥ kx− yk2

which shows d(x,M)2 ≥ kx− yk2. That is to say y is the point in M closest to x.

Definition 12.11. Suppose that A : H → H is a bounded operator. The adjoint
of A, denote A∗, is the unique operator A∗ : H → H such that hAx, yi = hx,A∗yi.
(The proof that A∗ exists and is unique will be given in Proposition 12.16 below.)
A bounded operator A : H → H is self - adjoint or Hermitian if A = A∗.

Definition 12.12. Let H be a Hilbert space and M ⊂ H be a closed subspace.
The orthogonal projection of H onto M is the function PM : H → H such that for
x ∈ H, PM (x) is the unique element in M such that (x− PM (x)) ⊥M .

Proposition 12.13. Let H be a Hilbert space and M ⊂ H be a closed subspace.
The orthogonal projection PM satisfies:

(1) PM is linear (and hence we will write PMx rather than PM (x).
(2) P 2M = PM (PM is a projection).
(3) P ∗M = PM , (PM is self-adjoint).
(4) Ran(PM ) =M and ker(PM ) =M⊥.

Proof.

(1) Let x1, x2 ∈ H and α ∈ F, then PMx1 + αPMx2 ∈M and

PMx1 + αPMx2 − (x1 + αx2) = [PMx1 − x1 + α(PMx2 − x2)] ∈M⊥

showing PMx1 + αPMx2 = PM (x1 + αx2), i.e. PM is linear.
(2) Obviously Ran(PM ) = M and PMx = x for all x ∈ M . Therefore P 2M =

PM .
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(3) Let x, y ∈ H, then since (x− PMx) and (y − PMy) are in M⊥,

hPMx, yi = hPMx, PMy + y − PMyi
= hPMx, PMyi
= hPMx+ (x− PM ), PMyi
= hx, PMyi.

(4) It is clear that Ran(PM ) ⊂M. Moreover, if x ∈M, then PMx = x implies
that Ran(PM ) =M. Now x ∈ ker(PM ) iff PMx = 0 iff x = x− 0 ∈M⊥.

Corollary 12.14. Suppose that M ⊂ H is a proper closed subspace of a Hilbert
space H, then H =M ⊕M⊥.

Proof. Given x ∈ H, let y = PMx so that x− y ∈M⊥. Then x = y+ (x− y) ∈
M +M⊥. If x ∈M ∩M⊥, then x ⊥ x, i.e. kxk2 = hx, xi = 0. So M ∩M⊥ = {0} .

Proposition 12.15 (Riesz Theorem). Let H∗ be the dual space of H (Notation
3.63). The map

(12.5) z ∈ H
j−→ h·, zi ∈ H∗

is a conjugate linear isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x, z ∈ H,

|hx, zi| ≤ kxk kzk for all x ∈ H

with equality when x = z. This implies that kjzkH∗ = kh·, zikH∗ = kzk . Therefore
j is isometric and this shows that j is injective. To finish the proof we must show
that j is surjective. So let f ∈ H∗ which we assume with out loss of generality is
non-zero. Then M = ker(f) — a closed proper subspace of H. Since, by Corollary
12.14, H = M ⊕ M⊥, f : H/M ∼= M⊥ → F is a linear isomorphism. This
shows that dim(M⊥) = 1 and hence H = M ⊕ Fx0 where x0 ∈ M⊥ \ {0} .28
Choose z = λx0 ∈M⊥ such that f(x0) = hx0, zi. (So λ = f̄(x0)/ kx0k2 .) Then for
x = m+ λx0 with m ∈M and λ ∈ F,

f(x) = λf(x0) = λhx0, zi = hλx0, zi = hm+ λx0, zi = hx, zi
which shows that f = jz.

Proposition 12.16 (Adjoints). Let H and K be Hilbert spaces and A : H → K
be a bounded operator. Then there exists a unique bounded operator A∗ : K → H
such that

(12.6) hAx, yiK = hx,A∗yiH for all x ∈ H and y ∈ K.

Moreover (A+ λB)∗ = A∗ + λ̄B∗, A∗∗ := (A∗)∗ = A, kA∗k = kAk and kA∗Ak =
kAk2 for all A,B ∈ L(H,K) and λ ∈ C.

28Alternatively, choose x0 ∈M⊥\{0} such that f(x0) = 1. For x ∈M⊥ we have f(x−λx0) = 0
provided that λ := f(x). Therefore x − λx0 ∈ M ∩M⊥ = {0} , i.e. x = λx0. This again shows
that M⊥ is spanned by x0.
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Proof. For each y ∈ K, then map x → hAx, yiK is in H∗ and therefore there
exists by Proposition 12.15 a unique vector z ∈ H such that

hAx, yiK = hx, ziH for all x ∈ H.

This shows there is a unique map A∗ : K → H such that hAx, yiK = hx,A∗(y)iH
for all x ∈ H and y ∈ K. To finish the proof, we need only show A∗ is linear and
bounded. To see A∗ is linear, let y1, y2 ∈ K and λ ∈ C, then for any x ∈ H,

hAx, y1 + λy2iK = hAx, y1iK + λ̄hAx, y2iK
= hx,A∗(y1)iK + λ̄hx,A∗(y2)iK
= hx,A∗(y1) + λA∗(y2)iK

and by the uniqueness of A∗(y1 + λy2) we find

A∗(y1 + λy2) = A∗(y1) + λA∗(y2).

This shows A∗ is linear and so we will now write A∗y instead of A∗(y). Since

hA∗y, xiH = hx,A∗yiH = hAx, yiK = hy,AxiK
it follows that A∗∗ = A. he assertion that (A+ λB)

∗
= A∗ + λ̄B∗ is left to the

reader, see Exercise 12.1.
The following arguments prove the assertions about norms of A and A∗ :

kA∗k = sup
k∈K:kkk=1

kA∗kk = sup
k∈K:kkk=1

sup
h∈H:khk=1

|hA∗k, hi|

= sup
h∈H:khk=1

sup
k∈K:kkk=1

|hk,Ahi| = sup
h∈H:khk=1

kAhk = kAk ,

kA∗Ak ≤ kA∗k kAk = kAk2 and
kAk2 = sup

h∈H:khk=1
|hAh,Ahi| = sup

h∈H:khk=1
|hh,A∗Ahi|

≤ sup
h∈H:khk=1

kA∗Ahk = kA∗Ak ,

wherein these arguments we have repeatedly made use of the Inequality.

Exercise 12.1. Let H,K,M be Hilbert space, A,B ∈ L(H,K), C ∈ L(K,M) and
λ ∈ C. Show (A+ λB)

∗
= A∗ + λ̄B∗ and (CA)∗ = A∗C∗ ∈ L(M,H).

Exercise 12.2. Let H = Cn and K = Cm equipped with the usual inner products,
i.e. hz, wiH = z · w̄ for z,w ∈ H. Let A be an m× n matrix thought of as a linear
operator from H to K. Show the matrix associated to A∗ : K → H is the conjugate
transpose of A.

Exercise 12.3. Let K : L2(ν) → L2(µ) be the operator defined in Exercise 9.12.
Show K∗ : L2(µ)→ L2(ν) is the operator given by

K∗g(y) =
Z
X

k̄(x, y)g(x)dµ(x).

Definition 12.17. {uα}α∈A ⊂ H is an orthonormal set if uα ⊥ uβ for all α 6= β
and kuαk = 1.
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Proposition 12.18 (Bessel’s Inequality). Let {uα}α∈A be an orthonormal set, then
(12.7)

X
α∈A

|hx, uαi|2 ≤ kxk2 for all x ∈ H.

In particular the set {α ∈ A : hx, uαi 6= 0} is at most countable for all x ∈ H.

Proof. Let Γ ⊂ A be any finite set. Then

0 ≤ kx−
X
α∈Γ

hx, uαiuαk2 = kxk2 − 2Re
X
α∈Γ

hx, uαi huα, xi+
X
α∈Γ

|hx, uαi|2

= kxk2 −
X
α∈Γ

|hx, uαi|2

showing that X
α∈Γ

|hx, uαi|2 ≤ kxk2.

Taking the supremum of this equation of Γ ⊂⊂ A then proves Eq. (12.7).

Proposition 12.19. Suppose A ⊂ H is an orthogonal set. Then s =
P

v∈A v

exists in H iff
P

v∈A kvk2 <∞. (In particular A must be at most a countable set.)
Moreover, if

P
v∈A kvk2 <∞, then

(1) ksk2 =Pv∈A kvk2 and
(2) hs, xi =Pv∈Ahv, xi for all x ∈ H.

Similarly if {vn}∞n=1 is an orthogonal set, then s =
∞P
n=1

vn exists in H iff

∞P
n=1

kvnk2 < ∞. In particular if
∞P
n=1

vn exists, then it is independent of rearrange-

ments of {vn}∞n=1.
Proof. Suppose s =

P
v∈A v exists. Then there exists Γ ⊂⊂ A such thatX

v∈Λ
kvk2 =

°°°°°X
v∈Λ

v

°°°°°
2

≤ 1

for all Λ ⊂⊂ A\Γ ,wherein the first inequality we have used Pythagorean’s theorem.
Taking the supremum over such Λ shows that

P
v∈A\Γ kvk2 ≤ 1 and thereforeX

v∈A
kvk2 ≤ 1 +

X
v∈Γ

kvk2 <∞.

Conversely, suppose that
P

v∈A kvk2 <∞. Then for all > 0 there exists Γ ⊂⊂ A
such that if Λ ⊂⊂ A \ Γ ,

(12.8)

°°°°°X
v∈Λ

v

°°°°°
2

=
X
v∈Λ

kvk2 < 2.

Hence by Lemma 3.72,
P

v∈A v exists.
For item 1, let Γ be as above and set s :=

P
v∈Γ v. Then

|ksk− ks k| ≤ ks− s k <
and by Eq. (12.8),

0 ≤
X
v∈A

kvk2 − ks k2 =
X
v/∈Γ

kvk2 ≤ 2.
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Letting ↓ 0 we deduce from the previous two equations that ks k → ksk and
ks k2 →P

v∈A kvk2 as ↓ 0 and therefore ksk2 =
P

v∈A kvk2.
Item 2. is a special case of Lemma 3.72.

For the final assertion, let sN ≡
NP
n=1

vn and suppose that limN→∞ sN = s exists

in H and in particular {sN}∞N=1 is Cauchy. So for N > M.

NX
n=M+1

kvnk2 = ksN − sMk2 → 0 as M,N →∞

which shows that
∞P
n=1

kvnk2 is convergent, i.e.
∞P
n=1

kvnk2 <∞.

Remark: We could use the last result to prove Item 1. Indeed, if
P

v∈A kvk2 <
∞, then A is countable and so we may writer A = {vn}∞n=1 . Then s = limN→∞ sN
with sN as above. Since the norm k·k is continuous on H, we have

ksk2 = lim
N→∞

ksNk2 = lim
N→∞

°°°°°
NX
n=1

vn

°°°°°
2

= lim
N→∞

NX
n=1

kvnk2 =
∞X
n=1

kvnk2 =
X
v∈A

kvk2.

Corollary 12.20. Suppose H is a Hilbert space, β ⊂ H is an orthonormal set and
M = span β. Then

PMx =
X
u∈β
hx, uiu,(12.9)

X
u∈β

|hx, ui|2 = kPMxk2 and(12.10)

X
u∈β
hx, uihu, yi = hPMx, yi(12.11)

for all x, y ∈ H.

Proof. By Bessel’s inequality,
P

u∈β |hx, ui|2 ≤ kxk2 for all x ∈ H and hence
by Proposition 12.18, Px :=

P
u∈βhx, uiu exists in H and for all x, y ∈ H,

(12.12) hPx, yi =
X
u∈β
hhx, uiu, yi =

X
u∈β
hx, uihu, yi.

Taking y ∈ β in Eq. (12.12) gives hPx, yi = hx, yi, i.e. that hx − Px, yi = 0
for all y ∈ β. So (x− Px) ⊥ span β and by continuity we also have (x− Px) ⊥
M = span β. Since Px is also in M, it follows from the definition of PM that
Px = PMx proving Eq. (12.9). Equations (12.10) and (12.11) now follow from
(12.12), Proposition 12.19 and the fact that hPMx, yi = hP 2Mx, yi = hPMx, PMyi
for all x, y ∈ H.

12.2. Hilbert Space Basis.

Definition 12.21 (Basis). Let H be a Hilbert space. A basis β of H is a maximal
orthonormal subset β ⊂ H.

Proposition 12.22. Every Hilbert space has an orthonormal basis.
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Proof. Let F be the collection of all orthonormal subsets of H ordered by
inclusion. If Φ ⊂ F is linearly ordered then ∪Φ is an upper bound. By Zorn’s
Lemma (see Theorem B.7) there exists a maximal element β ∈ F .
An orthonormal set β ⊂ H is said to be complete if β⊥ = {0} . That is to say

if hx, ui = 0 for all u ∈ β then x = 0.

Lemma 12.23. Let β be an orthonormal subset of H then the following are equiv-
alent:

(1) β is a basis,
(2) β is complete and
(3) span β = H.

Proof. If β is not complete, then there exists a unit vector x ∈ β⊥ \ {0} .
The set β ∪ {x} is an orthonormal set properly containing β, so β is not maximal.
Conversely, if β is not maximal, there exists an orthonormal set β1 ⊂ H such that
β & β1. Then if x ∈ β1 \ β, we have hx, ui = 0 for all u ∈ β showing β is not
complete. This proves the equivalence of (1) and (2). If β is not complete and
x ∈ β⊥ \ {0} , then span β ⊂ x⊥ which is a proper subspace of H. Conversely

if span β is a proper subspace of H,β⊥ = span β
⊥
is a non-trivial subspace by

Corollary 12.14 and β is not complete. This shows that (2) and (3) are equivalent.

Theorem 12.24. Let β ⊂ H be an orthonormal set. Then the following are
equivalent:

(1) β is complete or equivalently a basis.
(2) x =

P
u∈β
hx, uiu for all x ∈ H.

(3) hx, yi = P
u∈β
hx, ui hu, yi for all x, y ∈ H.

(4) kxk2 = P
u∈β

|hx, ui|2 for all x ∈ H.

Proof. Let M = span β and P = PM .
(1) ⇒ (2) By Corollary 12.20,

P
u∈β
hx, uiu = PMx. Therefore

x−
X
u∈β
hx, uiu = x− PMx ∈M⊥ = β⊥ = {0} .

(2) ⇒ (3) is a consequence of Proposition 12.19.
(3) ⇒ (4) is obvious, just take y = x.
(4) ⇒ (1) If x ∈ β⊥, then by 4), kxk = 0, i.e. x = 0. This shows that β is

complete.

Proposition 12.25. A Hilbert space H is separable iff H has a countable ortho-
normal basis β ⊂ H. Moreover, if H is separable, all orthonormal bases of H are
countable.

Proof. Let D ⊂ H be a countable dense set D = {un}∞n=1. By Gram-Schmidt
process there exists β = {vn}∞n=1 an orthonormal set such that span{vn : n =
1, 2 . . . , N} ⊇ span{un : n = 1, 2 . . . ,N}. So if hx, vni = 0 for all n then hx, uni = 0
for all n. Since D ⊂ H is dense we may choose {wk} ⊂ D such that x = limk→∞wk

and therefore hx, xi = limk→∞hx,wki = 0. That is to say x = 0 and β is complete.
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Conversely if β ⊂ H is a countable orthonormal basis, then the countable set

D =

X
u∈β

auu : au ∈ Q+ iQ : #{u : au 6= 0} <∞


is dense in H.
Finally let β = {un}∞n=1 be an orthonormal basis and β1 ⊂ H be another ortho-

normal basis. Then the sets

Bn = {v ∈ β1 : hv, uni 6= 0}

are countable for each n ∈ N and hence B :=
∞S
n=1

Bn is a countable subset of β1.

Suppose there exists v ∈ β1 \ B, then hv, uni = 0 for all n and since β = {un}∞n=1
is an orthonormal basis, this implies v = 0 which is impossible since kvk = 1.
Therefore β1 \B = ∅ and hence β1 = B is countable.

Definition 12.26. A linear map U : H → K is an isometry if kUxkK = kxkH
for all x ∈ H and U is unitary if U is also surjective.

Exercise 12.4. Let U : H → K be a linear map, show the following are equivalent:

(1) U : H → K is an isometry,
(2) hUx,Ux0iK = hx, x0iH for all x, x0 ∈ H, (see Eq. (12.16) below)
(3) U∗U = idH .

Exercise 12.5. Let U : H → K be a linear map, show the following are equivalent:

(1) U : H → K is unitary
(2) U∗U = idH and UU∗ = idK .
(3) U is invertible and U−1 = U∗.

Exercise 12.6. Let H be a Hilbert space. Use Theorem 12.24 to show there exists
a set X and a unitary map U : H → 2(X). Moreover, if H is separable and
dim(H) = ∞, then X can be taken to be N so that H is unitarily equivalent to
2 = 2(N).

Remark 12.27. Suppose that {un}∞n=1 is a total subset of H, i.e. span{un} = H.
Let {vn}∞n=1 be the vectors found by performing Gram-Schmidt on the set {un}∞n=1.
Then {vn}∞n=1 is an orthonormal basis for H.
Example 12.28. (1) Let H = L2([−π, π], dm) = L2((−π, π), dm) and

en(θ) =
1√
2π
einθ for n ∈ Z. Simple computations show β := {en}n∈Z is an

orthonormal set. We now claim that β is an orthonormal basis. To see this
recall that Cc((−π, π)) is dense in L2((−π, π), dm). Any f ∈ Cc((−π, π))
may be extended to be a continuous 2π — periodic function on R and hence
by Exercise 11.9), f may uniformly (and hence in L2) be approximated by
a trigonometric polynomial. Therefore β is a total orthonormal set, i.e. β
is an orthonormal basis.

(2) Let H = L2([−1, 1], dm) and A := {1, x, x2, x3 . . . }. Then A is total in
H by the Stone-Weierstrass theorem and a similar argument as in the first
example or directly from Exercise 11.12. The result of doing Gram-Schmidt
on this set gives an orthonormal basis of H consisting of the “Legendre
Polynomials.”
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(3) Let H = L2(R, e− 1
2x

2

dx).Exercise 11.12 implies A := {1, x, x2, x3 . . . } is
total in H and the result of doing Gram-Schmidt on A now gives an ortho-
normal basis for H consisting of “Hermite Polynomials.”

Remark 12.29 (An Interesting Phenomena). Let H = L2([−1, 1], dm) and B :=
{1, x3, x6, x9, . . . }. Then again A is total in H by the same argument as in item 2.
Example 12.28. This is true even though B is a proper subset of A. Notice that A
is an algebraic basis for the polynomials on [−1, 1] while B is not! The following
computations may help relieve some of the reader’s anxiety. Let f ∈ L2([−1, 1], dm),
then, making the change of variables x = y1/3, shows that

(12.13)
Z 1

−1
|f(x)|2 dx =

Z 1

−1

¯̄̄
f(y1/3)

¯̄̄2 1
3
y−2/3dy =

Z 1

−1

¯̄̄
f(y1/3)

¯̄̄2
dµ(y)

where dµ(y) = 1
3y
−2/3dy. Since µ([−1, 1]) = m([−1, 1]) = 2, µ is a finite mea-

sure on [−1, 1] and hence by Exercise 11.12 A := {1, x, x2, x3 . . . } is a total in
L2([−1, 1], dµ). In particular for any > 0 there exists a polynomial p(y) such thatZ 1

−1

¯̄̄
f(y1/3)− p(y)

¯̄̄2
dµ(y) < 2.

However, by Eq. (12.13) we have

2 >

Z 1

−1

¯̄̄
f(y1/3)− p(y)

¯̄̄2
dµ(y) =

Z 1

−1

¯̄
f(x)− p(x3)

¯̄2
dx.

Alternatively, if f ∈ C([−1, 1]), then g(y) = f(y1/3) is back in C([−1, 1]). There-
fore for any > 0, there exists a polynomial p(y) such that

> kg − pku = sup {|g(y)− p(y)| : y ∈ [−1, 1]}
= sup

©¯̄
g(x3)− p(x3)

¯̄
: x ∈ [−1, 1]ª = sup©¯̄f(x)− p(x3)

¯̄
: x ∈ [−1, 1]ª .

This gives another proof the polynomials in x3 are dense in C([−1, 1]) and hence
in L2([−1, 1]).
12.3. Weak Convergence. Suppose H is an infinite dimensional Hilbert space
and {xn}∞n=1 is an orthonormal subset of H. Then, by Eq. (12.1), kxn − xmk2 = 2
for all m 6= n and in particular, {xn}∞n=1 has no convergent subsequences. From
this we conclude that C := {x ∈ H : kxk ≤ 1} , the closed unit ball in H, is not
compact. To overcome this problems it is sometimes useful to introduce a weaker
topology on X having the property that C is compact.

Definition 12.30. Let (X, k·k) be a Banach space and X∗ be its continuous dual.
The weak topology, τw, on X is the topology generated by X∗. If {xn}∞n=1 ⊂ X

is a sequence we will write xn
w→ x as n → ∞ to mean that xn → x in the weak

topology.

Because τw = τ(X∗) ⊂ τk·k := τ({kx− ·k : x ∈ X} , it is harder for a function
f : X → F to be continuous in the τw — topology than in the norm topology, τk·k.
In particular if φ : X → F is a linear functional which is τw — continuous, then φ is
τk·k — continuous and hence φ ∈ X∗.

Proposition 12.31. Let {xn}∞n=1 ⊂ X be a sequence, then xn
w→ x ∈ X as n→∞

iff φ(x) = limn→∞ φ(xn) for all φ ∈ X∗.
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Proof. By definition of τw, we have xn
w→ x ∈ X iff for all Γ ⊂⊂ X∗ and > 0

there exists an N ∈ N such that |φ(x)− φ(xn)| < for all n ≥ N and φ ∈ Γ.
This later condition is easily seen to be equivalent to φ(x) = limn→∞ φ(xn) for all
φ ∈ X∗.
The topological space (X, τw) is still Hausdorff, however to prove this one needs

to make use of the Hahn Banach Theorem 18.16 below. For the moment we will
concentrate on the special case where X = H is a Hilbert space in which case
H∗ = {φz := h·, zi : z ∈ H} , see Propositions 12.15. If x, y ∈ H and z := y−x 6= 0,
then

0 < := kzk2 = φz(z) = φz(y)− φz(x).

Thus Vx := {w ∈ H : |φz(x)− φz(w)| < /2} and Vy := {w ∈ H : |φz(y)− φz(w)| < /2}
are disjoint sets from τw which contain x and y respectively. This shows that (H, τw)
is a Hausdorff space. In particular, this shows that weak limits are unique if they
exist.

Remark 12.32. Suppose that H is an infinite dimensional Hilbert space {xn}∞n=1 is
an orthonormal subset of H. Then Bessel’s inequality (Proposition 12.18) implies
xn

w→ 0 ∈ H as n→∞. This points out the fact that if xn
w→ x ∈ H as n→∞, it

is no longer necessarily true that kxk = limn→∞ kxnk . However we do always have
kxk ≤ lim infn→∞ kxnk because,

kxk2 = lim
n→∞hxn, xi ≤ lim infn→∞ [kxnk kxk] = kxk lim inf

n→∞ kxnk .
Proposition 12.33. Let H be a Hilbert space, β ⊂ H be an orthonormal basis for
H and {xn}∞n=1 ⊂ H be a bounded sequence, then the following are equivalent:

(1) xn
w→ x ∈ H as n→∞.

(2) hx, yi = limn→∞hxn, yi for all y ∈ H.
(3) hx, yi = limn→∞hxn, yi for all y ∈ β.

Moreover, if cy := limn→∞hxn, yi exists for all y ∈ β, then
P

y∈β |cy|2 <∞ and

xn
w→ x :=

P
y∈β cyy ∈ H as n→∞.

Proof. 1. =⇒ 2. This is a consequence of Propositions 12.15 and 12.31. 2. =⇒
3. is trivial.
3. =⇒ 1. Let M := supn kxnk and H0 denote the algebraic span of β. Then for

y ∈ H and z ∈ H0,

|hx− xn, yi| ≤ |hx− xn, zi|+ |hx− xn, y − zi| ≤ |hx− xn, zi|+ 2M ky − zk .
Passing to the limit in this equation implies lim supn→∞ |hx− xn, yi| ≤ 2M ky − zk
which shows lim supn→∞ |hx− xn, yi| = 0 since H0 is dense in H.
To prove the last assertion, let Γ ⊂⊂ β. Then by Bessel’s inequality (Proposition

12.18), X
y∈Γ

|cy|2 = lim
n→∞

X
y∈Γ

|hxn, yi|2 ≤ lim inf
n→∞ kxnk2 ≤M2.

Since Γ ⊂⊂ β was arbitrary, we conclude that
P

y∈β |cy|2 ≤M <∞ and hence we
may define x :=

P
y∈β cyy. By construction we have

hx, yi = cy = lim
n→∞hxn, yi for all y ∈ β

and hence xn
w→ x ∈ H as n→∞ by what we have just proved.
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Theorem 12.34. Suppose that {xn}∞n=1 ⊂ H is a bounded sequence. Then there
exists a subsequence yk := xnk of {xn}∞n=1 and x ∈ X such that yk

w→ x as k →∞.

Proof. This is a consequence of Proposition 12.33 and a Cantor’s diagonalization
argument which is left to the reader, see Exercise 12.14.

Theorem 12.35 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that H is a
separable Hilbert space, C := {x ∈ H : kxk ≤ 1} is the closed unit ball in H and
{en}∞n=1 is an orthonormal basis for H. Then

(12.14) ρ(x, y) :=
∞X
n=1

1

2n
|hx− y, eni|

defines a metric on C which is compatible with the weak topology on C, τC :=
(τw)C = {V ∩ C : V ∈ τw} . Moreover (C, ρ) is a compact metric space.
Proof. The routine check that ρ is a metric is left to the reader. Let τρ be

the topology on C induced by ρ. For any y ∈ H and n ∈ N, the map x ∈ H →
hx− y, eni = hx, eni− hy, eni is τw continuous and since the sum in Eq. (12.14) is
uniformly convergent for x, y ∈ C, it follows that x → ρ(x, y) is τC — continuous.
This implies the open balls relative to ρ are contained in τC and therefore τρ ⊂
τC . For the converse inclusion, let z ∈ H, x → φz(x) = hz, xi be an element of
H∗, and for N ∈ N let zN :=

PN
n=1hz, enien. Then φzN =

PN
n=1hz, eniφen is ρ

continuous, being a finite linear combination of the φen which are easily seen to be
ρ — continuous. Because zN → z as N →∞ it follows that

sup
x∈C

|φz(x)− φzN (x)| = kz − zNk→ 0 as N →∞.

Therefore φz|C is ρ — continuous as well and hence τC = τ(φz|C : z ∈ H) ⊂ τρ.
The last assertion follows directly from Theorem 12.34 and the fact that sequen-

tial compactness is equivalent to compactness for metric spaces.

Theorem 12.36 (Weak and Strong Differentiability). Suppose that f ∈ L2(Rn)
and v ∈ Rn \ {0} . Then the following are equivalent:

(1) There exists {tn}∞n=1 ⊂ R\ {0} such that limn→∞ tn = 0 and

sup
n

°°°°f(·+ tnv)− f(·)
tn

°°°°
2

<∞.

(2) There exists g ∈ L2(Rn) such that hf, ∂vφi = −hg, φi for all φ ∈ C∞c (Rn).
(3) There exists g ∈ L2(Rn) and fn ∈ C∞c (Rn) such that fn

L2→ f and ∂vfn
L2→ g

as n→∞.
(4) There exists g ∈ L2 such that

f(·+ tv)− f(·)
t

L2→ g as t→ 0.

(See Theorem 19.7 for the Lp generalization of this theorem.)

Proof. 1. =⇒ 2. We may assume, using Theorem 12.34 and passing to a
subsequence if necessary, that f(·+tnv)−f(·)

tn

w→ g for some g ∈ L2(Rn). Now for
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φ ∈ C∞c (Rn),

hg, φi = lim
n→∞h

f(·+ tnv)− f(·)
tn

, φi = lim
n→∞hf,

φ(·− tnv)− φ(·)
tn

i

= hf, lim
n→∞

φ(·− tnv)− φ(·)
tn

i = −hf, ∂vφi,
wherein we have used the translation invariance of Lebesgue measure and the dom-
inated convergence theorem.
2. =⇒ 3. Let φ ∈ C∞c (Rn,R) such that

R
Rn φ(x)dx = 1 and let φm(x) =

mnφ(mx), then by Proposition 11.24, hm := φm ∗ f ∈ C∞(Rn) for all m and

∂vhm(x) = ∂vφm ∗ f(x) =
Z
Rn

∂vφm(x− y)f(y)dy = hf,−∂v [φm (x− ·)]i
= hg, φm (x− ·)i = φm ∗ g(x).

By Theorem 11.21, hm → f ∈ L2(Rn) and ∂vhm = φm ∗ g → g in L2(Rn) as
m → ∞. This shows 3. holds except for the fact that hm need not have compact
support. To fix this let ψ ∈ C∞c (Rn, [0, 1]) such that ψ = 1 in a neighborhood of 0
and let ψ (x) = ψ( x) and (∂vψ) (x) := (∂vψ) ( x). Then

∂v (ψ hm) = ∂vψ hm + ψ ∂vhm = (∂vψ) hm + ψ ∂vhm

so that ψ hm → hm in L2 and ∂v (ψ hm)→ ∂vhm in L2 as ↓ 0. Let fm = ψ mhm
where m is chosen to be greater than zero but small enough so that

kψ mhm − hmk2 + k∂v (ψ mhm)→ ∂vhmk2 < 1/m.

Then fm ∈ C∞c (Rn), fm → f and ∂vfm → g in L2 as m→∞.
3. =⇒ 4. By the fundamental theorem of calculus

τ−tvfm(x)− fm(x)

t
=

fm(x+ tv)− fm(x)

t

=
1

t

Z 1

0

d

ds
fm(x+ stv)ds =

Z 1

0

(∂vfm) (x+ stv)ds.(12.15)

Let

Gt(x) :=

Z 1

0

τ−stvg(x)ds =
Z 1

0

g(x+ stv)ds

which is defined for almost every x and is in L2(Rn) by Minkowski’s inequality for
integrals, Theorem 9.27. Therefore

τ−tvfm(x)− fm(x)

t
−Gt(x) =

Z 1

0

[(∂vfm) (x+ stv)− g(x+ stv)] ds

and hence again by Minkowski’s inequality for integrals,°°°°τ−tvfm − fm
t

−Gt

°°°°
2

≤
Z 1

0

kτ−stv (∂vfm)− τ−stvgk2 ds =
Z 1

0

k∂vfm − gk2 ds.

Letting m→∞ in this equation implies (τ−tvf − f) /t = Gt a.e. Finally one more
application of Minkowski’s inequality for integrals implies,°°°°τ−tvf − f

t
− g

°°°°
2

= kGt − gk2 =
°°°°Z 1

0

(τ−stvg − g) ds

°°°°
2

≤
Z 1

0

kτ−stvg − gk2 ds.
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By the dominated convergence theorem and Proposition 11.13, the latter term tends
to 0 as t→ 0 and this proves 4. The proof is now complete since 4. =⇒ 1. is trivial.

12.4. Supplement 1: Converse of the Parallelogram Law.

Proposition 12.37 (Parallelogram Law Converse). If (X, k·k) is a normed space
such that Eq. (12.2) holds for all x, y ∈ X, then there exists a unique inner product
on h·, ·i such that kxk := phx, xi for all x ∈ X. In this case we say that k·k is a
Hilbertian norm.

Proof. If k·k is going to come from an inner product h·, ·i, it follows from Eq.
(12.1) that

2Rehx, yi = kx+ yk2 − kxk2 − kyk2
and

−2Rehx, yi = kx− yk2 − kxk2 − kyk2.
Subtracting these two equations gives the “polarization identity,”

4Rehx, yi = kx+ yk2 − kx− yk2.
Replacing y by iy in this equation then implies that

4Imhx, yi = kx+ iyk2 − kx− iyk2

from which we find

(12.16) hx, yi = 1

4

X
∈G

kx+ yk2

where G = {±1,±i} — a cyclic subgroup of S1 ⊂ C. Hence if h·, ·i is going to exists
we must define it by Eq. (12.16).
Notice that

hx, xi = 1

4

X
∈G

kx+ xk2 = kxk2 + ikx+ ixk2 − ikx− ixk2

= kxk2 + i
¯̄
1 + i|2¯̄ kxk2 − i

¯̄
1− i|2 ¯̄ kxk2 = kxk2 .

So to finish the proof of (4) we must show that hx, yi in Eq. (12.16) is an inner
product. Since

4hy, xi =
X
∈G

ky + xk2 =
X
∈G

k (y + x) k2

=
X
∈G

k y + 2xk2

= ky + xk2 + k− y + xk2 + ikiy − xk2 − ik− iy − xk2
= kx+ yk2 + kx− yk2 + ikx− iyk2 − ikx+ iyk2
= 4hx, yi

it suffices to show x → hx, yi is linear for all y ∈ H. (The rest of this proof may
safely be skipped by the reader.) For this we will need to derive an identity from
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Eq. (12.2). To do this we make use of Eq. (12.2) three times to find

kx+ y + zk2 = −kx+ y − zk2 + 2kx+ yk2 + 2kzk2
= kx− y − zk2 − 2kx− zk2 − 2kyk2 + 2kx+ yk2 + 2kzk2
= ky + z − xk2 − 2kx− zk2 − 2kyk2 + 2kx+ yk2 + 2kzk2
= −ky + z + xk2 + 2ky + zk2 + 2kxk2 − 2kx− zk2 − 2kyk2 + 2kx+ yk2 + 2kzk2.

Solving this equation for kx+ y + zk2 gives
(12.17) kx+ y + zk2 = ky + zk2 + kx+ yk2 − kx− zk2 + kxk2 + kzk2 − kyk2.
Using Eq. (12.17), for x, y, z ∈ H,

4Rehx+ z, yi = kx+ z + yk2 − kx+ z − yk2
= ky + zk2 + kx+ yk2 − kx− zk2 + kxk2 + kzk2 − kyk2
− ¡kz − yk2 + kx− yk2 − kx− zk2 + kxk2 + kzk2 − kyk2¢
= kz + yk2 − kz − yk2 + kx+ yk2 − kx− yk2
= 4Rehx, yi+ 4Rehz, yi.(12.18)

Now suppose that δ ∈ G, then since |δ| = 1,

4hδx, yi = 1

4

X
∈G

kδx+ yk2 = 1

4

X
∈G

kx+ δ−1 yk2

=
1

4

X
∈G

δkx+ δ yk2 = 4δhx, yi(12.19)

where in the third inequality, the substitution → δ was made in the sum. So Eq.
(12.19) says h±ix, yi = ±ihix, yi and h−x, yi = −hx, yi. Therefore

Imhx, yi = Re (−ihx, yi) = Reh−ix, yi
which combined with Eq. (12.18) shows

Imhx+ z, yi = Reh−ix− iz, yi = Reh−ix, yi+Reh−iz, yi
= Imhx, yi+ Imhz, yi

and therefore (again in combination with Eq. (12.18)),

hx+ z, yi = hx, yi+ hz, yi for all x, y ∈ H.

Because of this equation and Eq. (12.19) to finish the proof that x → hx, yi is
linear, it suffices to show hλx, yi = λhx, yi for all λ > 0. Now if λ = m ∈ N, then

hmx, yi = hx+ (m− 1)x, yi = hx, yi+ h(m− 1)x, yi
so that by induction hmx, yi = mhx, yi. Replacing x by x/m then shows that
hx, yi = mhm−1x, yi so that hm−1x, yi = m−1hx, yi and so if m,n ∈ N, we find

h n
m
x, yi = nh 1

m
x, yi = n

m
hx, yi

so that hλx, yi = λhx, yi for all λ > 0 and λ ∈ Q. By continuity, it now follows that
hλx, yi = λhx, yi for all λ > 0.
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12.5. Supplement 2. Non-complete inner product spaces. Part of Theorem
12.24 goes through when H is a not necessarily complete inner product space. We
have the following proposition.

Proposition 12.38. Let (H, h·, ·i) be a not necessarily complete inner product space
and β ⊂ H be an orthonormal set. Then the following two conditions are equivalent:

(1) x =
P
u∈β
hx, uiu for all x ∈ H.

(2) kxk2 = P
u∈β

|hx, ui|2 for all x ∈ H.

Moreover, either of these two conditions implies that β ⊂ H is a maximal ortho-
normal set. However β ⊂ H being a maximal orthonormal set is not sufficient to
conditions for 1) and 2) hold!

Proof. As in the proof of Theorem 12.24, 1) implies 2). For 2) implies 1) let
Λ ⊂⊂ β and consider°°°°°x−X

u∈Λ
hx, uiu

°°°°°
2

= kxk2 − 2
X
u∈Λ

|hx, ui|2 +
X
u∈Λ

|hx, ui|2

= kxk2 −
X
u∈Λ

|hx, ui|2 .

Since kxk2 = P
u∈β

|hx, ui|2, it follows that for every > 0 there exists Λ ⊂⊂ β such

that for all Λ ⊂⊂ β such that Λ ⊂ Λ,°°°°°x−X
u∈Λ

hx, uiu
°°°°°
2

= kxk2 −
X
u∈Λ

|hx, ui|2 <

showing that x =
P
u∈β
hx, uiu.

Suppose x = (x1, x2, . . . , xn, . . . ) ∈ β⊥. If 2) is valid then kxk2 = 0, i.e. x = 0. So
β is maximal. Let us now construct a counter example to prove the last assertion.
Take H = Span{ei}∞i=1 ⊂ 2 and let ũn = e1−(n+1)en+1 for n = 1, 2 . . . . Apply-

ing Gramn-Schmidt to {ũn}∞n=1 we construct an orthonormal set β = {un}∞n=1 ⊂ H.
I now claim that β ⊂ H is maximal. Indeed if x = (x1, x2, . . . , xn, . . . ) ∈ β⊥ then
x ⊥ un for all n, i.e.

0 = (x, ũn) = x1 − (n+ 1)xn+1.
Therefore xn+1 = (n+ 1)

−1
x1 for all n. Since x ∈ Span{ei}∞i=1, xN = 0 for some

N sufficiently large and therefore x1 = 0 which in turn implies that xn = 0 for all
n. So x = 0 and hence β is maximal in H. On the other hand, β is not maximal
in 2. In fact the above argument shows that β⊥ in 2 is given by the span of v =
(1, 12 ,

1
3 ,

1
4 ,

1
5 , . . . ). Let P be the orthogonal projection of 2 onto the Span(β) = v⊥.

Then ∞X
i=1

hx, uniun = Px = x− hx, vikvk2 v,

so that
∞P
i=1
hx, uniun = x iff x ∈ Span(β) = v⊥ ⊂ 2. For example if x =

(1, 0, 0, . . . ) ∈ H (or more generally for x = ei for any i), x /∈ v⊥ and hence
∞P
i=1
hx, uniun 6= x.
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12.6. Supplement 3: Conditional Expectation. In this section let (Ω,F , P )
be a probability space, i.e. (Ω,F , P ) is a measure space and P (Ω) = 1. Let G ⊂ F
be a sub — sigma algebra of F and write f ∈ Gb if f : Ω → C is bounded and f is
(G,BC) — measurable. In this section we will write

Ef :=

Z
Ω

fdP.

Definition 12.39 (Conditional Expectation). Let EG : L2(Ω,F , P )→ L2(Ω,G, P )
denote orthogonal projection of L2(Ω,F , P ) onto the closed subspace L2(Ω,G, P ).
For f ∈ L2(Ω,G, P ), we say that EGf ∈ L2(Ω,F , P ) is the conditional expecta-
tion of f.

Theorem 12.40. Let (Ω,F , P ) and G ⊂ F be as above and f, g ∈ L2(Ω,F , P ).
(1) If f ≥ 0, P — a.e. then EGf ≥ 0, P — a.e.
(2) If f ≥ g, P — a.e. there EGf ≥ EGg, P — a.e.
(3) |EGf | ≤ EG |f |, P — a.e.
(4) kEGfkL1 ≤ kfkL1 for all f ∈ L2. So by the B.L.T. Theorem 4.1, EG extends

uniquely to a bounded linear map from L1(Ω,F , P ) to L1(Ω,G, P ) which we
will still denote by EG .

(5) If f ∈ L1(Ω,F , P ) then F = EGf ∈ L1(Ω,G, P ) iff
E(Fh) = E(fh) for all h ∈ Gb.

(6) If g ∈ Gb and f ∈ L1(Ω,F , P ), then EG(gf) = g ·EGf, P — a.e.

Proof. By the definition of orthogonal projection for h ∈ Gb,
E(fh) = E(f ·EGh) = E(EGf · h).

So if f, h ≥ 0 then 0 ≤ E(fh) ≤ E(EGf ·h) and since this holds for all h ≥ 0 in Gb,
EGf ≥ 0, P — a.e. This proves (1). Item (2) follows by applying item (1). to f − g.
If f is real, ±f ≤ |f | and so by Item (2), ±EGf ≤ EG |f |, i.e. |EGf | ≤ EG |f |, P —
a.e. For complex f, let h ≥ 0 be a bounded and G — measurable function. Then

E [|EGf |h] = E
h
EGf · sgn (EGf)h

i
= E

h
f · sgn (EGf)h

i
≤ E [|f |h] = E [EG |f | · h] .

Since h is arbitrary, it follows that |EGf | ≤ EG |f | , P — a.e. Integrating this
inequality implies

kEGfkL1 ≤ E |EGf | ≤ E [EG |f | · 1] = E [|f |] = kfkL1 .
Item (5). Suppose f ∈ L1(Ω,F , P ) and h ∈ Gb. Let fn ∈ L2(Ω,F , P ) be a

sequence of functions such that fn → f in L1(Ω,F , P ). Then
E(EGf · h) = E( lim

n→∞EGfn · h) = lim
n→∞E(EGfn · h)

= lim
n→∞E(fn · h) = E(f · h).(12.20)

This equation uniquely determinesEG , for if F ∈ L1(Ω,G, P ) also satisfies E(F ·h) =
E(f · h) for all h ∈ Gb, then taking h = sgn (F −EGf) in Eq. (12.20) gives

0 = E((F −EGf)h) = E(|F −EGf |).
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This shows F = EGf, P — a.e. Item (6) is now an easy consequence of this charac-
terization, since if h ∈ Gb,

E [(gEGf)h] = E [EGf · hg] = E [f · hg] = E [gf · h] = E [EG (gf) · h] .
Thus EG (gf) = g ·EGf, P — a.e.

Proposition 12.41. If G0 ⊆ G1 ⊆ F . Then
(12.21) EG0EG1 = EG1EG0 = EG0 .

Proof. Equation (12.21) holds on L2(Ω,F , P ) by the basic properties of or-
thogonal projections. It then hold on L1(Ω,F , P ) by continuity and the density of
L2(Ω,F , P ) in L1(Ω,F , P ).
Example 12.42. Suppose that (X,M, µ) and (Y,N , ν) are two σ — finite measure
spaces. Let Ω = X × Y, F = M ⊗ N and P (dx, dy) = ρ(x, y)µ(dx)ν(dy) where
ρ ∈ L1(Ω,F , µ ⊗ ν) is a positive function such that

R
X×Y ρd (µ⊗ ν) = 1. Let

πX : Ω→ X be the projection map, πX(x, y) = x, and

G := σ(πX) = π−1X (M) = {A× Y : A ∈M} .
Then f : Ω → R is G — measurable iff f = F ◦ πX for some function F : X → R
which is N — measurable, see Lemma 6.62. For f ∈ L1(Ω,F , P ), we will now show
EGf = F ◦ πX where

F (x) =
1

ρ̄(x)
1(0,∞)(ρ̄(x)) ·

Z
Y

f(x, y)ρ(x, y)ν(dy),

ρ̄(x) :=
R
Y
ρ(x, y)ν(dy). (By convention,

R
Y
f(x, y)ρ(x, y)ν(dy) := 0 if

R
Y
|f(x, y)| ρ(x, y)ν(dy) =

∞.)
By Tonelli’s theorem, the set

E := {x ∈ X : ρ̄(x) =∞} ∪
½
x ∈ X :

Z
Y

|f(x, y)| ρ(x, y)ν(dy) =∞
¾

is a µ — null set. Since

E [|F ◦ πX |] =
Z
X

dµ(x)

Z
Y

dν(y) |F (x)| ρ(x, y) =
Z
X

dµ(x) |F (x)| ρ̄(x)

=

Z
X

dµ(x)

¯̄̄̄Z
Y

ν(dy)f(x, y)ρ(x, y)

¯̄̄̄
≤
Z
X

dµ(x)

Z
Y

ν(dy) |f(x, y)| ρ(x, y) <∞,

F ◦πX ∈ L1(Ω,G, P ). Let h = H ◦πX be a bounded G — measurable function, then

E [F ◦ πX · h] =
Z
X

dµ(x)

Z
Y

dν(y)F (x)H(x)ρ(x, y)

=

Z
X

dµ(x)F (x)H(x)ρ̄(x)

=

Z
X

dµ(x)H(x)

Z
Y

ν(dy)f(x, y)ρ(x, y)

= E [hf ]

and hence EGf = F ◦ πX as claimed.
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This example shows that conditional expectation is a generalization of the notion
of performing integration over a partial subset of the variables in the integrand.
Whereas to compute the expectation, one should integrate over all of the variables.
See also Exercise 12.8 to gain more intuition about conditional expectations.

Theorem 12.43 (Jensen’s inequality). Let (Ω,F , P ) be a probability space and
ϕ : R → R be a convex function. Assume f ∈ L1(Ω,F , P ;R) is a function such
that (for simplicity) ϕ(f) ∈ L1(Ω,F , P ;R), then ϕ(EGf) ≤ EG [ϕ(f)] , P — a.e.

Proof. Let us first assume that φ is C1 and f is bounded. In this case

(12.22) ϕ(x)− ϕ(x0) ≥ ϕ0(x0)(x− x0) for all x0, x ∈ R.
Taking x0 = EGf and x = f in this inequality implies

ϕ(f)− ϕ(EGf) ≥ ϕ0(EGf)(f −EGf)

and then applying EG to this inequality gives

EG [ϕ(f)]− ϕ(EGf) = EG [ϕ(f)− ϕ(EGf)] ≥ ϕ0(EGf)(EGf −EGEGf) = 0

The same proof works for general φ, one need only use Proposition 9.7 to replace
Eq. (12.22) by

ϕ(x)− ϕ(x0) ≥ ϕ0−(x0)(x− x0) for all x0, x ∈ R
where ϕ0−(x0) is the left hand derivative of φ at x0.
If f is not bounded, apply what we have just proved to fM = f1|f |≤M , to find

(12.23) EG
£
ϕ(fM )

¤ ≥ ϕ(EGfM ).

Since EG : L1(Ω,F , P ;R) → L1(Ω,F , P ;R) is a bounded operator and fM → f
and ϕ(fM ) → φ(f) in L1(Ω,F , P ;R) as M → ∞, there exists {Mk}∞k=1 such that
Mk ↑ ∞ and fMk → f and ϕ(fMk)→ φ(f), P — a.e. So passing to the limit in Eq.
(12.23) shows EG [ϕ(f)] ≥ ϕ(EGf), P — a.e.

12.7. Exercises.

Exercise 12.7. Let (X,M, µ) be a measure space and H := L2(X,M, µ). Given
f ∈ L∞(µ) let Mf : H → H be the multiplication operator defined by Mfg = fg.
Show M2

f =Mf iff there exists A ∈M such that f = 1A a.e.

Exercise 12.8. Suppose (Ω,F , P ) is a probability space and A := {Ai}∞i=1 ⊂ F
is a partition of Ω. (Recall this means Ω =

`∞
i=1Ai.) Let G be the σ — algebra

generated by A. Show:
(1) B ∈ G iff B = ∪i∈ΛAi for some Λ ⊂ N.
(2) g : Ω→ R is G — measurable iff g =

P∞
i=1 λi1Ai for some λi ∈ R.

(3) For f ∈ L1(Ω,F , P ), let E(f |Ai) := E [1Aif ] /P (Ai) if P (Ai) 6= 0 and
E(f |Ai) = 0 otherwise. Show

EGf =
∞X
i=1

E(f |Ai)1Ai .

Exercise 12.9. Folland 5.60 on p. 177.

Exercise 12.10. Folland 5.61 on p. 178 about orthonormal basis on product
spaces.

Exercise 12.11. Folland 5.67 on p. 178 regarding the mean ergodic theorem.
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Exercise 12.12 (Haar Basis). In this problem, let L2 denote L2([0, 1],m) with the
standard inner product,

ψ(x) = 1[0,1/2)(x)− 1[1/2,1)(x)
and for k, j ∈ N0 := N∪{0} with 0 ≤ j < 2k let

ψkj(x) := 2
k/2ψ(2kx− j).

The following pictures shows the graphs of ψ00, ψ1,0, ψ1,1, ψ2,1, ψ2,2 and ψ2,3 re-
spectively.
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(1) Show β := {1} ∪ ©ψkj : 0 ≤ k and 0 ≤ j < 2k
ª
is an orthonormal set, 1

denotes the constant function 1.
(2) For n ∈ N, let Mn := span

¡{1} ∪ ©ψkj : 0 ≤ k < n and 0 ≤ j < 2k
ª¢

.
Show

Mn = span
¡{1[j2−n,(j+1)2−n) : and 0 ≤ j < 2n

¢
.

(3) Show ∪∞n=1Mn is a dense subspace of L2 and therefore β is an orthonormal
basis for L2. Hint: see Theorem 11.3.
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(4) For f ∈ L2, let

Hnf := hf,1i1+
n−1X
k=0

2k−1X
j=0

hf, ψkjiψkj .

Show (compare with Exercise 12.8)

Hnf =
2n−1X
j=0

Ã
2n
Z (j+1)2−n

j2−n
f(x)dx

!
1[j2−n,(j+1)2−n)

and use this to show kf −Hnfku → 0 as n→∞ for all f ∈ C([0, 1]).

Exercise 12.13. Let O(n) be the orthogonal groups consisting of n × n real
orthogonal matrices O, i.e. OtrO = I. For O ∈ O(n) and f ∈ L2(Rn) let
UOf(x) = f(O−1x). Show

(1) UOf is well defined, namely if f = g a.e. then UOf = UOg a.e.
(2) UO : L2(Rn) → L2(Rn) is unitary and satisfies UO1UO2 = UO1O2 for all

O1, O2 ∈ O(n). That is to say the map O ∈ O(n) → U(L2(Rn)) — the
unitary operators on L2(Rn) is a group homomorphism, i.e. a “unitary
representation” of O(n).

(3) For each f ∈ L2(Rn), the map O ∈ O(n) → UOf ∈ L2(Rn) is continuous.
Take the topology on O(n) to be that inherited from the Euclidean topology
on the vector space of all n×n matrices. Hint: see the proof of Proposition
11.13.

Exercise 12.14. Prove Theorem 12.34. Hint: Let H0 := span {xn : n ∈ N} —
a separable Hilbert subspace of H. Let {λm}∞m=1 ⊂ H0 be an orthonormal basis
and use Cantor’s diagonalization argument to find a subsequence yk := xnk such
that cm := limk→∞hyk, λmi exists for all m ∈ N. Finish the proof by appealing to
Proposition 12.33.

Exercise 12.15. Suppose that {xn}∞n=1 ⊂ H and xn
w→ x ∈ H as n → ∞. Show

xn → x as n→∞ (i.e. limn→∞ kx− xnk = 0) iff limn→∞ kxnk = kxk .
Exercise 12.16. Show the vector space operations of X are continuous in the weak
topology. More explicitly show

(1) (x, y) ∈ X ×X → x+ y ∈ X is (τw ⊗ τw, τw) — continuous and
(2) (λ, x) ∈ F×X → λx ∈ X is (τF ⊗ τw, τw) — continuous.

Exercise 12.17. Euclidean group representation and its infinitesimal generators
including momentum and angular momentum operators.

Exercise 12.18. Spherical Harmonics.

Exercise 12.19. The gradient and the Laplacian in spherical coordinates.

Exercise 12.20. Legendre polynomials.

Exercise 12.21. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be more
precise, suppose H is an infinite dimensional Hilbert space and m is a measure on
BH which is invariant under translations and satisfies, m(B0( )) > 0 for all > 0.
Show m(V ) =∞ for all open subsets of H.
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12.8. Fourier Series Exercises.

Notation 12.44. Let Ck
per(Rd) denote the 2π — periodic functions in Ck(Rd),

Ck
per(Rd) :=

©
f ∈ Ck(Rd) : f(x+ 2πei) = f(x) for all x ∈ Rd and i = 1, 2, . . . , d

ª
.

Also let h·, ·i denote the inner product on the Hilbert space H := L2([−π, π]d) given
by

hf, gi :=
µ
1

2π

¶d Z
[−π,π]d

f(x)ḡ(x)dx.

Recall that
©
χk(x) := eik·x : k ∈ Zdª is an orthonormal basis for H in particular

for f ∈ H,

(12.24) f =
X
k∈Zd

hf, χkiχk

where the convergence takes place in L2([−π, π]d). For f ∈ L1([−π, π]d), we will
write f̃(k) for the Fourier coefficient,

(12.25) f̃(k) := hf, χki =
µ
1

2π

¶d Z
[−π,π]d

f(x)e−ik·xdx.

Lemma 12.45. Let s > 0, then the following are equivalent,

(12.26)
X
k∈Zd

1

(1 + |k|)s <∞,
X
k∈Zd

1

(1 + |k|2)s/2 <∞ and s > d.

Proof. Let Q := (0, 1]d and k ∈ Zd. For x = k + y ∈ (k +Q),

2 + |k| = 2 + |x− y| ≤ 2 + |x|+ |y| ≤ 3 + |x| and
2 + |k| = 2 + |x− y| ≥ 2 + |x|− |y| ≥ |x|+ 1

and therefore for s > 0,
1

(3 + |x|)s ≤
1

(2 + |k|)s ≤
1

(1 + |x|)s .

Thus we have shown
1

(3 + |x|)s ≤
X
k∈Zd

1

(2 + |k|)s 1Q+k(x) ≤
1

(1 + |x|)s for all x ∈ R
d.

Integrating this equation then showsZ
Rd

1

(3 + |x|)s dx ≤
X
k∈Zd

1

(2 + |k|)s ≤
Z
Rd

1

(1 + |x|)s dx

from which we conclude that

(12.27)
X
k∈Zd

1

(2 + |k|)s <∞ iff s > d.

Because the functions 1+ t, 2+ t, and
√
1 + t2 all behave like t as t→∞, the sums

in Eq. (12.26) may be compared with the one in Eq. (12.27) to finish the proof.

Exercise 12.22 (Riemann Lebesgue Lemma for Fourier Series). Show for f ∈
L1([−π, π]d) that f̃ ∈ c0(Zd), i.e. f̃ : Zd → C and limk→∞ f̃(k) = 0. Hint: If
f ∈ H, this follows form Bessel’s inequality. Now use a density argument.
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Exercise 12.23. Suppose f ∈ L1([−π, π]d) is a function such that f̃ ∈ 1(Zd) and
set

g(x) :=
X
k∈Zd

f̃(k)eik·x (pointwise).

(1) Show g ∈ Cper(Rd).
(2) Show g(x) = f(x) for m — a.e. x in [−π, π]d. Hint: Show g̃(k) = f̃(k) and

then use approximation arguments to showZ
[−π,π]d

f(x)h(x)dx =

Z
[−π,π]d

g(x)h(x)dx ∀ h ∈ C([−π, π]d).

(3) Conclude that f ∈ L1([−π, π]d) ∩ L∞([−π, π]d) and in particular f ∈
Lp([−π, π]d) for all p ∈ [1,∞].

Exercise 12.24. Suppose m ∈ N0, α is a multi-index such that |α| ≤ 2m and
f ∈ C2mper(Rd)29.

(1) Using integration by parts, show

(ik)αf̃(k) = h∂αf, χki.
Note: This equality implies¯̄̄

f̃(k)
¯̄̄
≤ 1

kα
k∂αfkH ≤

1

kα
k∂αfku .

(2) Now let ∆f =
Pd

i=1 ∂
2f/∂x2i , Working as in part 1) show

(12.28) h(1−∆)mf, χki = (1 + |k|2)mf̃(k).
Remark 12.46. Suppose that m is an even integer, α is a multi-index and f ∈
C
m+|α|
per (Rd), thenX

k∈Zd
|kα|

¯̄̄
f̃(k)

¯̄̄2

=

X
k∈Zd

|h∂αf, χki| (1 + |k|2)m/2(1 + |k|2)−m/2

2

=

X
k∈Zd

¯̄̄
h(1−∆)m/2∂αf, χki

¯̄̄
(1 + |k|2)−m/2

2

≤
X
k∈Zd

¯̄̄
h(1−∆)m/2∂αf, χki

¯̄̄2
·
X
k∈Zd

(1 + |k|2)−m

= Cm

°°°(1−∆)m/2∂αf
°°°2
H

where Cm :=
P

k∈Zd(1 + |k|2)−m <∞ iff m > d/2. So the smoother f is the faster
f̃ decays at infinity. The next problem is the converse of this assertion and hence
smoothness of f corresponds to decay of f̃ at infinity and visa-versa.

Exercise 12.25. Suppose s ∈ R and ©ck ∈ C : k ∈ Zdª are coefficients such thatX
k∈Zd

|ck|2 (1 + |k|2)s <∞.

29We view Cper(R) as a subspace of H by identifying f ∈ Cper(R) with f |[−π,π] ∈ H.
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Show if s > d
2 +m, the function f defined by

f(x) =
X
k∈Zd

cke
ik·x

is in Cm
per(Rd). Hint: Work as in the above remark to showX

k∈Zd
|ck| |kα| <∞ for all |α| ≤ m.

Exercise 12.26 (Poisson Summation Formula). Let F ∈ L1(Rd),

E :=

x ∈ Rd :
X
k∈Zd

|F (x+ 2πk)| =∞


and set

F̂ (k) := (2π)−d/2
Z
Rd

F (x)e−ik·xdx.

Further assume F̂ ∈ 1(Zd).
(1) Show m(E) = 0 and E + 2πk = E for all k ∈ Zd. Hint: ComputeR

[−π,π]d
P

k∈Zd |F (x+ 2πk)| dx.
(2) Let

f(x) :=

½ P
k∈Zd F (x+ 2πk) for x /∈ E

0 if x ∈ E.

Show f ∈ L1([−π, π]d) and f̃(k) = (2π)
−d/2

F̂ (k).
(3) Using item 2) and the assumptions on F, show f ∈ L1([−π, π]d) ∩

L∞([−π, π]d) and
f(x) =

X
k∈Zd

f̃(k)eik·x =
X
k∈Zd

(2π)−d/2 F̂ (k)eik·x for m — a.e. x,

i.e.

(12.29)
X
k∈Zd

F (x+ 2πk) = (2π)
−d/2 X

k∈Zd
F̂ (k)eik·x for m — a.e. x.

(4) Suppose we now assume that F ∈ C(Rd) and F satisfies 1) |F (x)| ≤ C(1+

|x|)−s for some s > d and C <∞ and 2) F̂ ∈ 1(Zd), then show Eq. (12.29)
holds for all x ∈ Rd and in particularX

k∈Zd
F (2πk) = (2π)

−d/2 X
k∈Zd

F̂ (k).

For simplicity, in the remaining problems we will assume that d = 1.

Exercise 12.27 (Heat Equation 1.). Let (t, x) ∈ [0,∞)×R→ u(t, x) be a contin-
uous function such that u(t, ·) ∈ Cper(R) for all t ≥ 0, u̇ := ut, ux, and uxx exists
and are continuous when t > 0. Further assume that u satisfies the heat equation
u̇ = 1

2uxx. Let ũ(t, k) := hu(t, ·), χki for k ∈ Z. Show for t > 0 and k ∈ Z that
ũ(t, k) is differentiable in t and d

dt ũ(t, k) = −k2ũ(t, k)/2. Use this result to show
(12.30) u(t, x) =

X
k∈Z

e−
t
2k

2

f̃(k)eikx
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where f(x) := u(0, x) and as above

f̃(k) = hf, χki = 1

2π

Z π

−π
f(y)e−ikydy.

Notice from Eq. (12.30) that (t, x)→ u(t, x) is C∞ for t > 0.

Exercise 12.28 (Heat Equation 2.). Let qt(x) := 1
2π

P
k∈Z e

− t
2k

2

eikx. Show that
Eq. (12.30) may be rewritten as

u(t, x) =

Z π

−π
qt(x− y)f(y)dy

and
qt(x) =

X
k∈Z

pt(x+ k2π)

where pt(x) := 1√
2πt

e−
1
2tx

2

. Also show u(t, x) may be written as

u(t, x) = pt ∗ f(x) :=
Z
Rd

pt(x− y)f(y)dy.

Hint: To show qt(x) =
P

k∈Z pt(x + k2π), use the Poisson summation formula
along with the Gaussian integration formula

p̂t(ω) =
1√
2π

Z
R
pt(x)e

iωxdx =
1√
2π

e−
t
2ω

2

.

Exercise 12.29 (Wave Equation). Let u ∈ C2(R×R) be such that u(t, ·) ∈ Cper(R)
for all t ∈ R. Further assume that u solves the wave equation, utt = uxx. Let
f(x) := u(0, x) and g(x) = u̇(0, x). Show ũ(t, k) := hu(t, ·), χki for k ∈ Z is twice
continuously differentiable in t and d2

dt2 ũ(t, k) = −k2ũ(t, k). Use this result to show

(12.31) u(t, x) =
X
k∈Z

µ
f̃(k) cos(kt) + g̃(k)

sin kt

k

¶
eikx

with the sum converging absolutely. Also show that u(t, x) may be written as

(12.32) u(t, x) =
1

2
[f(x+ t) + f(x− t)] +

1

2

Z t

−t
g(x+ τ)dτ.

Hint: To show Eq. (12.31) implies (12.32) use

cos kt =
eikt + e−ikt

2
, and sin kt =

eikt − e−ikt

2i
and

eik(x+t) − eik(x−t)

ik
=

Z t

−t
eik(x+τ)dτ.

Exercise 12.30. (Worked Example.) Let D := {z ∈ C : |z| < 1} be the open
unit disk in C ∼= R2, where we write z = x + iy = reiθ in the usual way. Also let
∆ = ∂2

∂x2 +
∂2

∂y2 and recall that ∆ may be computed in polar coordinates by the
formula,

∆u = r−1∂r
¡
r−1∂ru

¢
+
1

r2
∂2θu.

Suppose that u ∈ C(D̄) ∩ C2(D) and ∆u(z) = 0 for z ∈ D. Let g = u|∂D and

g̃(k) :=
1

2π

Z π

−π
g(eikθ)e−ikθdθ.
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(We are identifying S1 = ∂D :=
©
z ∈ D̄ : |z| = 1ª with [−π, π]/ (π ∼ −π) by the

map θ ∈ [−π, π]→ eiθ ∈ S1.) Let

(12.33) ũ(r, k) :=
1

2π

Z π

−π
u(reiθ)e−ikθdθ

then:

(1) ũ(r, k) satisfies the ordinary differential equation

r−1∂r (r∂rũ(r, k)) =
1

r2
k2ũ(r, k) for r ∈ (0, 1).

(2) Recall the general solution to

(12.34) r∂r (r∂ry(r)) = k2y(r)

may be found by trying solutions of the form y(r) = rα which then implies
α2 = k2 or α = ±k. From this one sees that ũ(r, k) may be written as
ũ(r, k) = Akr

|k| + Bkr
−|k| for some constants Ak and Bk when k 6= 0. If

k = 0, the solution to Eq. (12.34) is gotten by simple integration and the
result is ũ(r, 0) = A0 +B0 ln r. Since ũ(r, k) is bounded near the origin for
each k, it follows that Bk = 0 for all k ∈ Z.

(3) So we have shown

Akr
|k| = ũ(r, k) =

1

2π

Z π

−π
u(reiθ)e−ikθdθ

and letting r ↑ 1 in this equation implies

Ak =
1

2π

Z π

−π
u(eiθ)e−ikθdθ = g̃(k).

Therefore,

(12.35) u(reiθ) =
X
k∈Z

g̃(k)r|k|eikθ

for r < 1 or equivalently,

u(z) =
X
k∈N0

g̃(k)zk +
X
k∈N

g̃(−k)z̄k.

(4) Inserting the formula for g̃(k) into Eq. (12.35) gives

u(reiθ) =
1

2π

Z π

−π

ÃX
k∈Z

r|k|eik(θ−α)
!
u(eiα)dα for all r < 1.

Now by simple geometric series considerations we find, setting δ = θ − α,
thatX
k∈Z

r|k|eikδ =
∞X
k=0

rkeikδ +
∞X
k=1

rke−ikδ

=
1

1− reiδ
+

re−iδ

1− re−iδ
=
1− re−iδ + re−iδ

¡
1− reiδ

¢
1− 2r cos δ + r2

=
1− r2

1− 2r cos δ + r2
.
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Putting this altogether we have shown

u(reiθ) =
1

2π

Z π

−π
Pr(θ − α)u(eiα)dα

where

Pr(δ) :=
1− r2

1− 2r cos δ + r2

is the so called Poisson kernel.

Exercise 12.31. Show
P∞

k=1 k
−2 = π2/6, by taking f(x) = x on [−π, π] and

computing kfk22 directly and then in terms of the Fourier Coefficients f̃ of f.


