Math 240C Homework Problem List for S2018

0.1 Homework C1. Due Friday, April 6, 2018

- Hand in: 1.3, 1.4, 1.5, 1.25, 1.26
- Look at: 1.23

0.2 Homework C2. Due Friday, April 13, 2018 (L^p inequalities)

- Hand in: 1.1, 1.2, 1.6, 1.7, 1.19, 1.20
- Look at: 1.21, 1.22

0.3 Homework C3. Due Friday, April 20, 2018 (Fourier Series problems)

- Hand in: 1.8, 1.10, 1.11, 1.12, 1.13, 1.14, 1.16
- Look at: 1.24 (done in class), 1.9, 1.15

Problems to Solve

Exercise 1.1. If (X, ρ) is a metric space and μ is a **finite** measure on (X, \mathcal{B}_X) , then for all $A \in \mathcal{B}_X$ and $\varepsilon > 0$ there exists a closed set F and open set V such that $F \subset A \subset V$ and $\mu(V \setminus F) = \mu(F \bigtriangleup V) < \varepsilon$.

You may find information in the supplement helpful for this problem. Here are some more suggestions.

- 1. Let \mathcal{B}_0 denote those $A \subset X$ such that for all $\varepsilon > 0$ there exists a closed set F and open set V such that $F \subset A \subset V$ and $d_{\mu}(F, V) = \mu(V \setminus F) < \varepsilon$.
- 2. Show \mathcal{B}_0 contains all closed (or open if you like).
- 3. Show \mathcal{B}_0 is a σ -algebra.
- 4. Explain why this proves the result.

Exercise 1.2. Let (X, ρ) be a metric space and μ be a measure on (X, \mathcal{B}_X) . If there exists open sets, $\{V_n\}_{n=1}^{\infty}$, of X such that $V_n \uparrow X$ and $\mu(V_n) < \infty$ for all n, then for all $A \in \mathcal{B}_X$ and $\varepsilon > 0$ there exists a closed set F and open set V such that $F \subset A \subset V$ and $d_{\mu}(F, V) = \mu(V \setminus F) < \varepsilon$. **Hints:**

- 1. Show it suffices to prove; for all $\varepsilon > 0$ and $A \in \mathcal{B}_X$, there exists an open set $V \subset X$ such that $A \subset V$ and $\mu(V \setminus A) < \varepsilon$.
- 2. Now you must verify the assertion above holds. For this, you may find it useful to apply Exercise 1.1 to the measures, $\mu_n : \mathcal{B}_X \to [0, \mu(V_n)]$, defined by $\mu_n(A) := \mu(A \cap V_n)$ for all $A \in \mathcal{B}_X$. The ε in Exercise 1.1 should be replaced by judiciously chosen small quantities depending on n.

Exercise 1.3 (Folland Problem 2.62 on p. 80.). Rotation invariance of surface measure on S^{n-1} .

Exercise 1.4 (Folland Problem 2.64 on p. 80.). On the integrability of $|x|^{a} |\log |x||^{b}$ for x near 0 and x near ∞ in \mathbb{R}^{n} .

Exercise 1.5. Show, using Problem 1.3 that

$$\int_{S^{d-1}} \omega_i \omega_j d\sigma\left(\omega\right) = \frac{1}{d} \delta_{ij} \sigma\left(S^{d-1}\right).$$

Hint: show $\int_{S^{d-1}} \omega_i^2 d\sigma(\omega)$ is independent of *i* and therefore

$$\int_{S^{d-1}} \omega_i^2 d\sigma\left(\omega\right) = \frac{1}{d} \sum_{j=1}^d \int_{S^{d-1}} \omega_j^2 d\sigma\left(\omega\right)$$

Exercise 1.6 (Folland 6.38 on p. 199.). Suppose (X, \mathcal{M}, μ) is a measure space, $f : X \to \mathbb{C}$ is a measurable function, $0 , <math>\lambda_f(\alpha) := \mu(|f| > \alpha)$ for all $\alpha \in (0, \infty)$, and

$$M_{p}(f) := \sum_{k=-\infty}^{\infty} 2^{kp} \lambda_{f} \left(2^{k} \right).$$

Show

$$(1 - 2^{-p}) M_p(f) \le \int_X |f|^p d\mu \le 2^p M_p(f)$$
(1.1)

which then implies $f \in L^{p}(\mu)$ iff $M_{p}(f) < \infty$.

Hint: first note that

$$\int_{X} |f|^{p} d\mu = \sum_{k \in \mathbb{Z}} \int_{\{2^{k} < |f| \le 2^{k+1}\}} |f|^{p} d\mu.$$
(1.2)

Exercise 1.7 (Folland 6.39 on p. 199.). Suppose (X, \mathcal{M}, μ) is a measure space, $f : X \to \mathbb{C}$ is a measurable function, $0 , and <math>f \in L^p(\mu)$. Show

$$\lim_{\alpha \to 0} \alpha^{p} \lambda_{f}(\alpha) = 0 = \lim_{\alpha \to \infty} \alpha^{p} \lambda_{f}(\alpha).$$

Hint: for the limit, $\lim_{\alpha\to 0} \alpha^p \lambda_f(\alpha) = 0$, start with the special case where f is a simple function.

Exercise 1.8. Show $\sum_{k=1}^{\infty} k^{-2} = \pi^2/6$, by taking f(x) = x on $[-\pi, \pi]$ and computing $||f||_2^2$ directly and then in terms of the Fourier Coefficients \tilde{f} of f.

Exercise 1.9 (Riemann Lebesgue Lemma for Fourier Series). Show for $f \in L^1\left(\left[-\pi, \pi\right]^d\right)$ that $\tilde{f} \in c_0(\mathbb{Z}^d)$, i.e. $\tilde{f} : \mathbb{Z}^d \to \mathbb{C}$ and $\lim_{k\to\infty} \tilde{f}(k) = 0$. Hint: If $f \in L^2\left(\left[-\pi, \pi\right]^d\right)$, this follows from Bessel's inequality. Now use a density argument.

Exercise 1.10. Suppose $f \in L^1([-\pi,\pi]^d)$ is a function such that $\tilde{f} \in \ell^1(\mathbb{Z}^d)$ and set

$$g(x) := \sum_{k \in \mathbb{Z}^d} \tilde{f}(k) e^{ik \cdot x}$$
 (pointwise)

- 4 1 Problems to Solve
- 1. Show $g \in C_{per}(\mathbb{R}^d)$.
- 2. Show g(x) = f(x) for m a.e. x in $[-\pi, \pi]^d$. Hint: Show $\tilde{g}(k) = \tilde{f}(k)$ and apply Exercise ?? or results proved in class.
- 3. Conclude that $f \in L^1([-\pi,\pi]^d) \cap L^\infty([-\pi,\pi]^d)$ and in particular $f \in L^p([-\pi,\pi]^d)$ for all $p \in [1,\infty]$.

Exercise 1.11 (Smoothness implies decay). We use the following notation below.

Notation: Given a multi-index $\alpha \in \mathbb{Z}_+^d$, let $|\alpha| = \alpha_1 + \cdots + \alpha_d$,

$$x^{\alpha} := \prod_{j=1}^{d} x_{j}^{\alpha_{j}}, \text{ and } \partial_{x}^{\alpha} = \left(\frac{\partial}{\partial x}\right)^{\alpha} := \prod_{j=1}^{d} \left(\frac{\partial}{\partial x_{j}}\right)^{\alpha_{j}}.$$

Further for $k \in \mathbb{N}_0$, let $f \in C_{per}^k(\mathbb{R}^d)$ iff $f \in C^k(\mathbb{R}^d) \cap C_{per}(\mathbb{R}^d)$, $\partial_x^{\alpha} f(x)$ exists and is continuous for $|\alpha| \leq k$.

Suppose $m \in \mathbb{N}_0$, α is a multi-index such that $|\alpha| \leq 2m$ and $f \in C^{2m}_{per}(\mathbb{R}^d)^1$.

1. Using integration by parts, show (using Notation above) that

$$(ik)^{\alpha}\tilde{f}(k) = \langle \partial^{\alpha}f|\varphi_k \rangle \text{ for all } k \in \mathbb{Z}^d.$$

Note: This equality implies

$$\left|\tilde{f}(k)\right| \leq \frac{1}{k^{\alpha}} \left\|\partial^{\alpha}f\right\|_{H} \leq \frac{1}{k^{\alpha}} \left\|\partial^{\alpha}f\right\|_{\infty}.$$

2. Now let $\Delta f = \sum_{i=1}^{d} \partial^2 f / \partial x_i^2$, Working as in part 1) show

$$\langle (1-\Delta)^m f | \varphi_k \rangle = (1+\|k\|^2)^m \tilde{f}(k).$$
 (1.3)

where $||k||^2 = \sum_{j=1}^d k_j^2$.

Exercise 1.12 (A Sobolev Imbedding Theorem). Suppose $s \in \mathbb{R}$ and $\{c_k \in \mathbb{C} : k \in \mathbb{Z}^d\}$ are coefficients such that

$$\sum_{k\in\mathbb{Z}^d}\left|c_k\right|^2(1+\left|k\right|^2)^s<\infty.$$

Show if $s > \frac{d}{2} + m$, the function f defined by

$$f\left(x\right) = \sum_{k \in \mathbb{Z}^d} c_k e^{ik \cdot x}$$

¹ We view $C_{per}(\mathbb{R}^d)$ as a subspace of $H = L^2\left([-\pi,\pi]^d\right)$ by identifying $f \in C_{per}(\mathbb{R}^d)$ with $f|_{[-\pi,\pi]^d} \in H$.

is in $C_{per}^{m}(\mathbb{R}^{d})$. **Hint**: Work as in the above remark to show

$$\sum_{k \in \mathbb{Z}^d} |c_k| \, |k^{\alpha}| < \infty \text{ for all } |\alpha| \le m.$$

Exercise 1.13 (Poisson Summation Formula). Let $F \in L^1(\mathbb{R}^d)$,

$$E := \left\{ x \in \mathbb{R}^d : \sum_{k \in \mathbb{Z}^d} |F(x + 2\pi k)| = \infty \right\}$$

and set (see Section ?? below for an introduction to the Fourier transform)

$$\hat{F}(k) := (2\pi)^{-d/2} \int_{\mathbb{R}^d} F(x) e^{-ik \cdot x} dx \text{ for } k \in \mathbb{Z}^d.$$

Further **assume** $\hat{F} \in \ell^1(\mathbb{Z}^d)$. [This can be achieved by assuming F is sufficiently differentiable with the derivatives being integrable like in Exercise 1.11.]

1. Show m(E) = 0 and $E + 2\pi k = E$ for all $k \in \mathbb{Z}^d$. Hint: Compute $\int_{[-\pi,\pi]^d} \sum_{k \in \mathbb{Z}^d} |F(x+2\pi k)| dx$. 2. Let $\left(\sum_{k \in \mathbb{Z}^d} |F(x+2\pi k)| + 2\pi k\right)$ for $x \notin E$

$$f(x) := \begin{cases} \sum_{k \in \mathbb{Z}^d} r(x + 2\pi k) & \text{if } x \in E, \\ 0 & \text{if } x \in E. \end{cases}$$

Show $f \in L^1([-\pi,\pi]^d)$ and $\tilde{f}(k) = (2\pi)^{-d/2} \hat{F}(k)$. 3. Using item 2) and the assumptions on F, show

$$f(x) = \sum_{k \in \mathbb{Z}^d} \tilde{f}(k) e^{ik \cdot x} = \sum_{k \in \mathbb{Z}^d} (2\pi)^{-d/2} \hat{F}(k) e^{ik \cdot x} \text{ for } m - \text{a.e. } x,$$

i.e.

$$\sum_{k \in \mathbb{Z}^d} F(x + 2\pi k) = (2\pi)^{-d/2} \sum_{k \in \mathbb{Z}^d} \hat{F}(k) e^{ik \cdot x} \text{ for } m - \text{a.e. } x$$
(1.4)

and form this conclude that $f \in L^1([-\pi,\pi]^d) \cap L^\infty([-\pi,\pi]^d)$. **Hint:** see the hint for item 2. of Exercise 1.10.

4. Suppose we now assume that $F \in C(\mathbb{R}^d)$ and F satisfies $|F(x)| \leq C(1 + |x|)^{-s}$ for some s > d and $C < \infty$. Under these added assumptions on F, show Eq. (1.4) holds for **all** $x \in \mathbb{R}^d$ and in particular

$$\sum_{k \in \mathbb{Z}^d} F(2\pi k) = (2\pi)^{-d/2} \sum_{k \in \mathbb{Z}^d} \hat{F}(k).$$

1 Problems to Solve 5

Exercise 1.14 (Heat Equation 1.). Let $[0, \infty) \times \mathbb{R} \ni (t, x) \to u(t, x)$ be a continuous function such that $u(t, \cdot) \in C_{per}(\mathbb{R})$ for all $t \ge 0$, $\dot{u} := u_t$, u_x , and u_{xx} exists and are continuous when t > 0. Further assume that u satisfies the heat equation $\dot{u} = \frac{1}{2}u_{xx}$. Let $\tilde{u}(t,k) := \langle u(t,\cdot)|\varphi_k \rangle$ for $k \in \mathbb{Z}$. Show for t > 0 and $k \in \mathbb{Z}$ that $\tilde{u}(t,k)$ is differentiable in t and $\frac{d}{dt}\tilde{u}(t,k) = -k^2\tilde{u}(t,k)/2$. Use this result to show

$$u(t,x) = \sum_{k \in \mathbb{Z}} e^{-\frac{t}{2}k^2} \tilde{f}(k) e^{ikx}$$
(1.5)

where f(x) := u(0, x) and as above

$$\tilde{f}(k) = \langle f | \varphi_k \rangle = \int_{-\pi}^{\pi} f(y) e^{-iky} dy = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) e^{-iky} dm(y).$$

Notice from Eq. (1.5) that $(t, x) \to u(t, x)$ is C^{∞} for t > 0.

Exercise 1.15 (Heat Equation 2.). Let
$$q_t(x) := \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} e^{-\frac{t}{2}k^2} e^{ikx}$$
. Show;

1. Eq. (1.5) may be rewritten as

$$u(t,x) = \int_{-\pi}^{\pi} q_t(x-y)f(y) \, dy$$

and

2. $q_t(x)$ may be expresses

$$q_t(x) = \sum_{k \in \mathbb{Z}} p_t(x + k2\pi)$$

where $p_t(x) := \frac{1}{\sqrt{2\pi t}}e^{-\frac{1}{2t}x^2}$. 3. Also show u(t, x) may be written as

$$u(t,x) = (p_t * f)(x) := \int_{\mathbb{R}^d} p_t(x-y)f(y) \, dy.$$

Hint: To show $q_t(x) = \sum_{k \in \mathbb{Z}} p_t(x + k2\pi)$, use the Poisson summation formula (Exercise 1.13) and the Gaussian integration identity,

$$\hat{p}_t(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} p_t\left(x\right) e^{i\omega x} dx = \frac{1}{\sqrt{2\pi}} e^{-\frac{t}{2}\omega^2}.$$
(1.6)

Exercise 1.16 (Wave Equation). Let $u \in C^2(\mathbb{R} \times \mathbb{R})$ be such that $u(t, \cdot) \in C_{per}(\mathbb{R})$ for all $t \in \mathbb{R}$. Further assume that u solves the wave equation, $u_{tt} = u_{xx}$. Let f(x) := u(0, x) and $g(x) = \dot{u}(0, x)$. Show $\tilde{u}(t, k) := \langle u(t, \cdot), \varphi_k \rangle$ for $k \in \mathbb{Z}$ is twice continuously differentiable in t and $\frac{d^2}{dt^2}\tilde{u}(t, k) = -k^2\tilde{u}(t, k)$. Use this result to show

 $u(t,x) = \sum_{k \in \mathbb{Z}} \left(\tilde{f}(k) \cos(kt) + \tilde{g}(k) \frac{\sin kt}{k} \right) e^{ikx}$ (1.7)

with the sum converging absolutely. Also show that u(t, x) may be written as

$$u(t,x) = \frac{1}{2} \left[f(x+t) + f(x-t) \right] + \frac{1}{2} \int_{-t}^{t} g(x+\tau) d\tau.$$
(1.8)

Hint: To show Eq. (1.7) implies (1.8) use

$$\cos kt = \frac{e^{ikt} + e^{-ikt}}{2},$$
$$\sin kt = \frac{e^{ikt} - e^{-ikt}}{2i}, \text{ and }$$
$$\frac{e^{ik(x+t)} - e^{ik(x-t)}}{ik} = \int_{-t}^{t} e^{ik(x+\tau)} d\tau.$$

Exercise 1.17. Let $f \in L^1((-\pi,\pi])$ which we extend to a 2π – periodic function on \mathbb{R} and continue to denote by f. If there exists $q \in \mathbb{N}$ such that $f\left(x + \frac{2\pi}{q}\right) = f(x)$ for m – a.e. x, then $\tilde{f}(k) = 0$ unless q divides k.

Exercise 1.18. In this problem we assume the notation from subsection ?? with d = 1. For simplicity of notation we identify $L^2((-\pi,\pi], d\theta)$ with 2π – periodic functions on \mathbb{R} via,

$$L^{2}\left((-\pi,\pi],d\theta\right)\ni f\longleftrightarrow \sum_{n\in\mathbb{Z}}f\left(x+n2\pi\right)\mathbf{1}_{\left(-\pi,\pi\right]}\left(x+n2\pi\right)\in L^{2}_{per}\left(\mathbb{R}\right).$$

Given $\alpha \in \mathbb{R}$ let $(U_{\alpha}f)(\theta) = f(\theta + \alpha 2\pi)$ wherein we have used the above identification. If $\alpha \notin \mathbb{Q}$ show

$$M_{\alpha} = \operatorname{Nul}\left(U_{\alpha} - I\right) = \mathbb{C} \cdot 1$$

If $\alpha \in \mathbb{Q}$ write $\alpha = \frac{p}{q}$ where gcd(q, p) = 1, i.e. p and q are relatively prime. In this case show $M_{\alpha} = Nul(U_{\alpha} - I)$ consists of those $f \in L^{2}_{per}(\mathbb{R})$ such that $f\left(x + \frac{2\pi}{q}\right) = f(x)$ for m – a.e. x. [Consequently, combining this exercise with Mean Ergodic Theorem **??** shows,

$$\frac{1}{n}\sum_{k=0}^{n-1}U_{\alpha}^{k} \xrightarrow{s} P_{M_{\alpha}}$$

where M_{α} depends on α as described above.]

6 1 Problems to Solve

Exercise 1.19 (Folland 6.27 on p. 196. Hilbert's Inequality). Hint: See Theorem ?? which is Theorem 6.20 in Folland .

Exercise 1.20 (Folland 6.22). Exercise, Folland 6.22 on p. 192.

Exercise 1.21 (Global Integration by Parts Formula). Suppose that $f, g : \mathbb{R} \to \mathbb{C}$ are locally absolutely continuous functions² such that f'g, fg', and fg are all Lebesgue integrable functions on \mathbb{R} . Prove the following integration by parts formula;

$$\int_{\mathbb{R}} f'(x) \cdot g(x) \, dx = -\int_{\mathbb{R}} f(x) \cdot g'(x) \, dx. \tag{1.9}$$

Similarly show that; if $f, g: [0, \infty) \to [0, \infty)$ are locally absolutely continuous functions such that f'g, fg', and fg are all Lebesgue integrable functions on $[0, \infty)$, then

$$\int_{0}^{\infty} f'(x) \cdot g(x) \, dx = -f(0) \, g(0) - \int_{0}^{\infty} f(x) \cdot g'(x) \, dx. \tag{1.10}$$

Outline: 1. First use the theory developed to see that Eq. (1.9) holds if f(x) = 0 for $|x| \ge N$ for some $N < \infty$.

2. Let $\psi : \mathbb{R} \to [0,1]$ be a continuously differentiable function such that $\psi(x) = 1$ if $|x| \leq 1$ and $\psi(x) = 0$ if $|x| \geq 2.^3$ For any $\varepsilon > 0$ let $\psi_{\varepsilon}(x) = \psi(\varepsilon x)$ Write out the identity in Eq. (1.9) with f(x) being replaced by $f(x) \psi_{\varepsilon}(x)$.

3. Now use the dominated convergence theorem to pass to the limit as $\varepsilon \downarrow 0$ in the identity you found in step 2.

4. A similar outline works to prove Eq. (1.10).

Exercise 1.22 (Heisenberg's Inequality). Suppose that $f : \mathbb{R} \to \mathbb{C}$ is a locally absolutely continuous function⁴, show

$$\int_{\mathbb{R}} |f(x)|^2 dx \le 2 \left[\int_{\mathbb{R}} |xf(x)|^2 dx \right]^{1/2} \left[\int_{\mathbb{R}} |f'(x)|^2 dx \right]^{1/2}.$$
 (1.11)

Hint: assuming the right hand side of the above inequality is finite show

$$\int_{\mathbb{R}} \left| f\left(x\right) \right|^2 dx = -2 \operatorname{Re} \int_{\mathbb{R}} x \bar{f}\left(x\right) f'\left(x\right) dx.$$
(1.12)

 2 This means that f and g restricted to any bounded interval in $\mathbb R$ are absolutely continuous on that interval.

Exercise 1.23. Let

$$f(t) = \begin{cases} e^{-1/t} \text{ if } t > 0\\ 0 \text{ if } t \le 0. \end{cases}$$

Show $f \in C^{\infty}(\mathbb{R}, [0, 1])$. **Hints:** you might start by first showing $\lim_{t\downarrow 0} f^{(n)}(t) = 0$ for all $n \in \mathbb{N}_0$.

Exercise 1.24. Show $C_c^{\infty}(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d, m)$ for any $1 \leq p < \infty$.

Exercise 1.25. If $f \in L^1_{loc}(\mathbb{R}^d, m)$ and $\varphi \in C^1_c(\mathbb{R}^d)$, then $f * \varphi \in C^1(\mathbb{R}^d)$ and $\partial_i(f * \varphi) = f * \partial_i \varphi$. Moreover if $\varphi \in C^\infty_c(\mathbb{R}^d)$ then $f * \varphi \in C^\infty(\mathbb{R}^d)$.

Exercise 1.26 (Integration by Parts). Suppose that $(x, y) \in \mathbb{R} \times \mathbb{R}^{d-1} \to f(x, y) \in \mathbb{C}$ and $(x, y) \in \mathbb{R} \times \mathbb{R}^{d-1} \to g(x, y) \in \mathbb{C}$ are measurable functions such that for each fixed $y \in \mathbb{R}^d$, $x \to f(x, y)$ and $x \to g(x, y)$ are continuously differentiable. Also assume $f \cdot g$, $\partial_x f \cdot g$ and $f \cdot \partial_x g$ are integrable relative to Lebesgue measure on $\mathbb{R} \times \mathbb{R}^{d-1}$, where $\partial_x f(x, y) := \frac{d}{dt} f(x+t, y)|_{t=0}$. Show

$$\int_{\mathbb{R}\times\mathbb{R}^{d-1}}\partial_x f(x,y)\cdot g(x,y)dxdy = -\int_{\mathbb{R}\times\mathbb{R}^{d-1}}f(x,y)\cdot\partial_x g(x,y)dxdy.$$
 (1.13)

(Note: this result and Fubini's theorem proves Lemma ??.)

Hints: Let $\psi \in C_c^{\infty}(\mathbb{R})$ be a function which is 1 in a neighborhood of $0 \in \mathbb{R}$ and set $\psi_{\varepsilon}(x) = \psi(\varepsilon x)$. First verify Eq. (1.13) with f(x, y) replaced by $\psi_{\varepsilon}(x) f(x, y)$ by doing the x – integral first. Then use the dominated convergence theorem to prove Eq. (1.13) by passing to the limit, $\varepsilon \downarrow 0$.

³ You may assume the existence of such a ψ , we will deal with this later.

⁴ This means that f restricted to any bounded interval in \mathbb{R} are absolutely continuous on that interval.