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Math 240C Homework Problem List for S2018

0.1 Homework C1. Due Friday, April 6, 2018

• Hand in: 1.3, 1.4, 1.5, 1.25, 1.26
• Look at: 1.23

0.2 Homework C2. Due Friday, April 13, 2018 (Lp

inequalities)

• Hand in: 1.1, 1.2, 1.6, 1.7, 1.19, 1.20
• Look at: 1.21, 1.22

0.3 Homework C3. Due Friday, April 20, 2018 (Fourier
Series problems)

• Hand in: 1.8, 1.10, 1.11, 1.12, 1.13, 1.14, 1.16
• Look at: 1.24 (done in class), 1.9, 1.15
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Problems to Solve

Exercise 1.1. If (X, ρ) is a metric space and µ is a finite measure on (X,BX) ,
then for all A ∈ BX and ε > 0 there exists a closed set F and open set V such
that F ⊂ A ⊂ V and µ (V \ F ) = µ (F 4 V ) < ε.

You may find information in the supplement helpful for this problem. Here
are some more suggestions.

1. Let B0 denote those A ⊂ X such that for all ε > 0 there exists a closed set
F and open set V such that F ⊂ A ⊂ V and dµ (F, V ) = µ (V \ F ) < ε.

2. Show B0 contains all closed (or open if you like).
3. Show B0 is a σ-algebra.
4. Explain why this proves the result.

Exercise 1.2. Let (X, ρ) be a metric space and µ be a measure on (X,BX) . If
there exists open sets, {Vn}∞n=1 , of X such that Vn ↑ X and µ (Vn) <∞ for all
n, then for all A ∈ BX and ε > 0 there exists a closed set F and open set V
such that F ⊂ A ⊂ V and dµ (F, V ) = µ (V \ F ) < ε. Hints:

1. Show it suffices to prove; for all ε > 0 and A ∈ BX , there exists an open set
V ⊂ X such that A ⊂ V and µ (V \A) < ε.

2. Now you must verify the assertion above holds. For this, you may find it
useful to apply Exercise 1.1 to the measures, µn : BX → [0, µ (Vn)] , defined
by µn (A) := µ (A ∩ Vn) for all A ∈ BX . The ε in Exercise 1.1 should be
replaced by judiciously chosen small quantities depending on n.

Exercise 1.3 (Folland Problem 2.62 on p. 80. ). Rotation invariance of
surface measure on Sn−1.

Exercise 1.4 (Folland Problem 2.64 on p. 80. ). On the integrability of

|x|a |log |x||b for x near 0 and x near ∞ in Rn.

Exercise 1.5. Show, using Problem 1.3 that∫
Sd−1

ωiωjdσ (ω) =
1

d
δijσ

(
Sd−1

)
.

Hint: show
∫
Sd−1 ω

2
i dσ (ω) is independent of i and therefore∫
Sd−1

ω2
i dσ (ω) =

1

d

d∑
j=1

∫
Sd−1

ω2
jdσ (ω) .

Exercise 1.6 (Folland 6.38 on p. 199.). Suppose (X,M, µ) is a measure
space, f : X → C is a measurable function, 0 < p < ∞, λf (α) := µ (|f | > α)
for all α ∈ (0,∞) , and

Mp (f) :=

∞∑
k=−∞

2kpλf
(
2k
)
.

Show (
1− 2−p

)
Mp (f) ≤

∫
X

|f |p dµ ≤ 2pMp (f) (1.1)

which then implies f ∈ Lp (µ) iff Mp (f) <∞.
Hint: first note that∫

X

|f |p dµ =
∑
k∈Z

∫
{2k<|f |≤2k+1}

|f |p dµ. (1.2)

Exercise 1.7 (Folland 6.39 on p. 199.). Suppose (X,M, µ) is a measure
space, f : X → C is a measurable function, 0 < p <∞, and f ∈ Lp (µ) . Show

lim
α→0

αpλf (α) = 0 = lim
α→∞

αpλf (α) .

Hint: for the limit, limα→0 α
pλf (α) = 0, start with the special case where

f is a simple function.

Exercise 1.8. Show
∑∞
k=1 k

−2 = π2/6, by taking f (x) = x on [−π, π] and

computing ‖f‖22 directly and then in terms of the Fourier Coefficients f̃ of f.

Exercise 1.9 (Riemann Lebesgue Lemma for Fourier Series). Show for

f ∈ L1
(

[−π, π]
d
)

that f̃ ∈ c0(Zd), i.e. f̃ : Zd → C and limk→∞ f̃(k) = 0. Hint:

If f ∈ L2
(

[−π, π]
d
)
, this follows from Bessel’s inequality. Now use a density

argument.

Exercise 1.10. Suppose f ∈ L1([−π, π]
d
) is a function such that f̃ ∈ `1(Zd)

and set
g (x) :=

∑
k∈Zd

f̃(k)eik·x (pointwise).
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1. Show g ∈ Cper
(
Rd
)
.

2. Show g (x) = f (x) for m – a.e. x in [−π, π]
d
. Hint: Show g̃(k) = f̃(k) and

apply Exercise ?? or results proved in class.
3. Conclude that f ∈ L1([−π, π]

d
) ∩ L∞([−π, π]

d
) and in particular f ∈

Lp([−π, π]
d
) for all p ∈ [1,∞].

Exercise 1.11 (Smoothness implies decay). We use the following notation
below.

Notation: Given a multi-index α ∈ Zd+, let |α| = α1 + · · ·+ αd,

xα :=

d∏
j=1

x
αj
j , and ∂αx =

(
∂

∂x

)α
:=

d∏
j=1

(
∂

∂xj

)αj
.

Further for k ∈ N0, let f ∈ Ckper
(
Rd
)

iff f ∈ Ck
(
Rd
)
∩ Cper

(
Rd
)
, ∂αx f (x)

exists and is continuous for |α| ≤ k.
Suppose m ∈ N0, α is a multi-index such that |α| ≤ 2m and f ∈ C2m

per

(
Rd
)
1.

1. Using integration by parts, show (using Notation above) that

(ik)αf̃(k) = 〈∂αf |ϕk〉 for all k ∈ Zd.

Note: This equality implies∣∣∣f̃(k)
∣∣∣ ≤ 1

kα
‖∂αf‖H ≤

1

kα
‖∂αf‖∞ .

2. Now let ∆f =
∑d
i=1 ∂

2f/∂x2i , Working as in part 1) show

〈(1−∆)mf |ϕk〉 = (1 + ‖k‖2)mf̃(k). (1.3)

where ‖k‖2 =
∑d
j=1 k

2
j .

Exercise 1.12 (A Sobolev Imbedding Theorem). Suppose s ∈ R and{
ck ∈ C : k ∈ Zd

}
are coefficients such that∑

k∈Zd
|ck|2 (1 + |k|2)s <∞.

Show if s > d
2 +m, the function f defined by

f (x) =
∑
k∈Zd

cke
ik·x

1 We view Cper(Rd) as a subspace of H = L2
(
[−π, π]d

)
by identifying f ∈ Cper(Rd)

with f |[−π,π]d ∈ H.

is in Cmper
(
Rd
)
. Hint: Work as in the above remark to show∑

k∈Zd
|ck| |kα| <∞ for all |α| ≤ m.

Exercise 1.13 (Poisson Summation Formula). Let F ∈ L1
(
Rd
)
,

E :=

x ∈ Rd :
∑
k∈Zd

|F (x+ 2πk)| =∞


and set (see Section ?? below for an introduction to the Fourier transform)

F̂ (k) := (2π)
−d/2

∫
Rd
F (x) e−ik·xdx for k ∈ Zd.

Further assume F̂ ∈ `1(Zd). [This can be achieved by assuming F is sufficiently
differentiable with the derivatives being integrable like in Exercise 1.11.]

1. Show m(E) = 0 and E + 2πk = E for all k ∈ Zd. Hint: Compute∫
[−π,π]d

∑
k∈Zd |F (x+ 2πk)| dx.

2. Let

f (x) :=

{∑
k∈Zd F (x+ 2πk) for x /∈ E

0 if x ∈ E.

Show f ∈ L1([−π, π]
d
) and f̃(k) = (2π)

−d/2
F̂ (k).

3. Using item 2) and the assumptions on F, show

f (x) =
∑
k∈Zd

f̃(k)eik·x =
∑
k∈Zd

(2π)
−d/2

F̂ (k)eik·x for m – a.e. x,

i.e. ∑
k∈Zd

F (x+ 2πk) = (2π)
−d/2 ∑

k∈Zd
F̂ (k)eik·x for m – a.e. x (1.4)

and form this conclude that f ∈ L1([−π, π]
d
) ∩ L∞([−π, π]

d
).

Hint: see the hint for item 2. of Exercise 1.10.
4. Suppose we now assume that F ∈ C

(
Rd
)

and F satisfies |F (x)| ≤ C(1 +
|x|)−s for some s > d and C < ∞. Under these added assumptions on F,
show Eq. (1.4) holds for all x ∈ Rd and in particular∑

k∈Zd
F (2πk) = (2π)

−d/2 ∑
k∈Zd

F̂ (k).
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Exercise 1.14 (Heat Equation 1.). Let [0,∞) × R 3(t, x) → u(t, x) be a
continuous function such that u(t, ·) ∈ Cper(R) for all t ≥ 0, u̇ := ut, ux, and
uxx exists and are continuous when t > 0. Further assume that u satisfies the
heat equation u̇ = 1

2uxx. Let ũ(t, k) := 〈u(t, ·)|ϕk〉 for k ∈ Z. Show for t > 0

and k ∈ Z that ũ(t, k) is differentiable in t and d
dt ũ(t, k) = −k2ũ(t, k)/2. Use

this result to show
u(t, x) =

∑
k∈Z

e−
t
2k

2

f̃(k)eikx (1.5)

where f (x) := u(0, x) and as above

f̃(k) = 〈f |ϕk〉 =

∫ π

−π
f (y) e−ikydy =

1

2π

∫ π

−π
f (y) e−ikydm (y) .

Notice from Eq. (1.5) that (t, x)→ u(t, x) is C∞ for t > 0.

Exercise 1.15 (Heat Equation 2.). Let qt (x) := 1
2π

∑
k∈Z e

− t2k
2

eikx. Show;

1. Eq. (1.5) may be rewritten as

u(t, x) =

∫ π

−π
qt(x− y)f (y) dy

and
2. qt (x) may be expresses

qt (x) =
∑
k∈Z

pt(x+ k2π)

where pt (x) := 1√
2πt

e−
1
2tx

2

.

3. Also show u(t, x) may be written as

u(t, x) = (pt ∗ f) (x) :=

∫
Rd
pt(x− y)f (y) dy.

Hint: To show qt (x) =
∑
k∈Z pt(x + k2π), use the Poisson summation

formula (Exercise 1.13) and the Gaussian integration identity,

p̂t(ω) =
1√
2π

∫
R
pt (x) eiωxdx =

1√
2π
e−

t
2ω

2

. (1.6)

Exercise 1.16 (Wave Equation). Let u ∈ C2(R × R) be such that u(t, ·) ∈
Cper(R) for all t ∈ R. Further assume that u solves the wave equation, utt = uxx.
Let f (x) := u(0, x) and g (x) = u̇(0, x). Show ũ(t, k) := 〈u(t, ·), ϕk〉 for k ∈ Z
is twice continuously differentiable in t and d2

dt2 ũ(t, k) = −k2ũ(t, k). Use this
result to show

u(t, x) =
∑
k∈Z

(
f̃(k) cos(kt) + g̃(k)

sin kt

k

)
eikx (1.7)

with the sum converging absolutely. Also show that u(t, x) may be written as

u(t, x) =
1

2
[f(x+ t) + f(x− t)] +

1

2

∫ t

−t
g(x+ τ)dτ. (1.8)

Hint: To show Eq. (1.7) implies (1.8) use

cos kt =
eikt + e−ikt

2
,

sin kt =
eikt − e−ikt

2i
, and

eik(x+t) − eik(x−t)

ik
=

∫ t

−t
eik(x+τ)dτ.

Exercise 1.17. Let f ∈ L1 ((−π, π]) which we extend to a 2π – periodic
function on R and continue to denote by f. If there exists q ∈ N such that

f
(
x+ 2π

q

)
= f (x) for m – a.e. x, then f̃ (k) = 0 unless q divides k.

Exercise 1.18. In this problem we assume the notation from subsection ??
with d = 1. For simplicity of notation we identify L2 ((−π, π], dθ) with 2π –
periodic functions on R via,

L2 ((−π, π], dθ) 3 f ←→
∑
n∈Z

f (x+ n2π) 1(−π,π] (x+ n2π) ∈ L2
per (R) .

Given α ∈ R let (Uαf) (θ) = f (θ + α2π) wherein we have used the above
identification. If α /∈ Q show

Mα = Nul (Uα − I) = C · 1.

If α ∈ Q write α = p
q where gcd (q, p) = 1, i.e. p and q are relatively prime.

In this case show Mα = Nul (Uα − I) consists of those f ∈ L2
per (R) such that

f
(
x+ 2π

q

)
= f (x) for m – a.e. x. [Consequently, combining this exercise with

Mean Ergodic Theorem ?? shows,

1

n

n−1∑
k=0

Ukα
s→ PMα

where Mα depends on α as described above.]
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Exercise 1.19 (Folland 6.27 on p. 196. Hilbert’s Inequality). Hint: See
Theorem ?? which is Theorem 6.20 in Folland .

Exercise 1.20 (Folland 6.22). Exercise, Folland 6.22 on p. 192.

Exercise 1.21 (Global Integration by Parts Formula). Suppose that f, g :
R→ C are locally absolutely continuous functions2 such that f ′g, fg′, and fg
are all Lebesgue integrable functions on R. Prove the following integration by
parts formula; ∫

R
f ′ (x) · g (x) dx = −

∫
R
f (x) · g′ (x) dx. (1.9)

Similarly show that; if f, g : [0,∞) → [0,∞) are locally absolutely continuous
functions such that f ′g, fg′, and fg are all Lebesgue integrable functions on
[0,∞), then∫ ∞

0

f ′ (x) · g (x) dx = −f (0) g (0)−
∫ ∞
0

f (x) · g′ (x) dx. (1.10)

Outline: 1. First use the theory developed to see that Eq. (1.9) holds if
f (x) = 0 for |x| ≥ N for some N <∞.

2. Let ψ : R → [0, 1] be a continuously differentiable function such that
ψ (x) = 1 if |x| ≤ 1 and ψ (x) = 0 if |x| ≥ 2.3 For any ε > 0 let ψε (x) = ψ(εx)
Write out the identity in Eq. (1.9) with f (x) being replaced by f (x)ψε (x) .

3. Now use the dominated convergence theorem to pass to the limit as ε ↓ 0
in the identity you found in step 2.

4. A similar outline works to prove Eq. (1.10).

Exercise 1.22 (Heisenberg’s Inequality). Suppose that f : R → C is a
locally absolutely continuous function4, show∫

R
|f (x)|2 dx ≤ 2

[∫
R
|xf (x)|2 dx

]1/2 [∫
R
|f ′ (x)|2 dx

]1/2
. (1.11)

Hint: assuming the right hand side of the above inequality is finite show∫
R
|f (x)|2 dx = −2 Re

∫
R
xf̄ (x) f ′ (x) dx. (1.12)

2 This means that f and g restricted to any bounded interval in R are absolutely
continuous on that interval.

3 You may assume the existence of such a ψ, we will deal with this later.
4 This means that f restricted to any bounded interval in R are absolutely continuous
on that interval.

Exercise 1.23. Let

f(t) =

{
e−1/t if t > 0

0 if t ≤ 0.

Show f ∈ C∞(R, [0, 1]).Hints: you might start by first showing limt↓0 f
(n) (t) =

0 for all n ∈ N0.

Exercise 1.24. Show C∞c
(
Rd
)

is dense in Lp
(
Rd,m

)
for any 1 ≤ p <∞.

Exercise 1.25. If f ∈ L1
loc(Rd,m) and ϕ ∈ C1

c

(
Rd
)
, then f ∗ϕ ∈ C1

(
Rd
)

and

∂i(f ∗ ϕ) = f ∗ ∂iϕ. Moreover if ϕ ∈ C∞c
(
Rd
)

then f ∗ ϕ ∈ C∞
(
Rd
)
.

Exercise 1.26 (Integration by Parts). Suppose that (x, y) ∈ R× Rd−1 →
f(x, y) ∈ C and (x, y) ∈ R× Rd−1 → g(x, y) ∈ C are measurable functions
such that for each fixed y ∈ Rd, x → f(x, y) and x → g(x, y) are continuously
differentiable. Also assume f · g, ∂xf · g and f · ∂xg are integrable relative to
Lebesgue measure on R× Rd−1, where ∂xf(x, y) := d

dtf(x+ t, y)|t=0. Show∫
R×Rd−1

∂xf(x, y) · g(x, y)dxdy = −
∫
R×Rd−1

f(x, y) · ∂xg(x, y)dxdy. (1.13)

(Note: this result and Fubini’s theorem proves Lemma ??.)
Hints: Let ψ ∈ C∞c (R) be a function which is 1 in a neighborhood of

0 ∈ R and set ψε (x) = ψ(εx). First verify Eq. (1.13) with f(x, y) replaced by
ψε (x) f(x, y) by doing the x – integral first. Then use the dominated conver-
gence theorem to prove Eq. (1.13) by passing to the limit, ε ↓ 0.
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