Math 240C Homework Problem List for S2018

0.1 Homework C1. Due Friday, April 6, 2018

- Hand in: 1.3 [1.4 [1.5 1.25 [1.26
- Look at: 1.23
0.2 Homework C2. Due Friday, April 13, 2018 (L^{p} inequalities)
- Hand in: 1.1 [1.2 1.6 [1.7] 1.19 [1.20
- Look at: 1.21 |1.22
0.3 Homework C3. Due Friday, April 20, 2018 (Fourier Series problems)
- Hand in: 1.8 , 1.10 , 1.11] [1.12, 1.13$][1.14]$
- Look at: 1.24 (done in class), 1.9$]$ 1.15
0.4 Homework C4. Due Friday, April 27, 2018 (Fourier Transform problems)
- Hand in: 1.27 [1.29, $1.30,1.31,[1.32,1.33$
- Look at: 1.28

Problems to Solve

Exercise 1.1. If (X, ρ) is a metric space and μ is a finite measure on $\left(X, \mathcal{B}_{X}\right)$, then for all $A \in \mathcal{B}_{X}$ and $\varepsilon>0$ there exists a closed set F and open set V such that $F \subset A \subset V$ and $\mu(V \backslash F)=\mu(F \triangle V)<\varepsilon$.

You may find information in the supplement helpful for this problem. Here are some more suggestions.

1. Let \mathcal{B}_{0} denote those $A \subset X$ such that for all $\varepsilon>0$ there exists a closed set F and open set V such that $F \subset A \subset V$ and $d_{\mu}(F, V)=\mu(V \backslash F)<\varepsilon$.
2. Show \mathcal{B}_{0} contains all closed (or open if you like).
3. Show \mathcal{B}_{0} is a σ-algebra.
4. Explain why this proves the result.

Exercise 1.2. Let (X, ρ) be a metric space and μ be a measure on $\left(X, \mathcal{B}_{X}\right)$. If there exists open sets, $\left\{V_{n}\right\}_{n=1}^{\infty}$, of X such that $V_{n} \uparrow X$ and $\mu\left(V_{n}\right)<\infty$ for all n, then for all $A \in \mathcal{B}_{X}$ and $\varepsilon>0$ there exists a closed set F and open set V such that $F \subset A \subset V$ and $d_{\mu}(F, V)=\mu(V \backslash F)<\varepsilon$. Hints:

1. Show it suffices to prove; for all $\varepsilon>0$ and $A \in \mathcal{B}_{X}$, there exists an open set $V \subset X$ such that $A \subset V$ and $\mu(V \backslash A)<\varepsilon$.
2. Now you must verify the assertion above holds. For this, you may find it useful to apply Exercise 1.1 to the measures, $\mu_{n}: \mathcal{B}_{X} \rightarrow\left[0, \mu\left(V_{n}\right)\right]$, defined by $\mu_{n}(A):=\mu\left(A \cap V_{n}\right)$ for all $A \in \mathcal{B}_{X}$. The ε in Exercise 1.1 should be replaced by judiciously chosen small quantities depending on n.
Exercise 1.3 (Folland Problem 2.62 on p. 80.). Rotation invariance of surface measure on S^{n-1}.

Exercise 1.4 (Folland Problem 2.64 on p. 80.). On the integrability of $|x|^{a}|\log | x| |^{b}$ for x near 0 and x near ∞ in \mathbb{R}^{n}.
Exercise 1.5. Show, using Problem 1.3 that

$$
\int_{S^{d-1}} \omega_{i} \omega_{j} d \sigma(\omega)=\frac{1}{d} \delta_{i j} \sigma\left(S^{d-1}\right)
$$

Hint: show $\int_{S^{d-1}} \omega_{i}^{2} d \sigma(\omega)$ is independent of i and therefore

$$
\int_{S^{d-1}} \omega_{i}^{2} d \sigma(\omega)=\frac{1}{d} \sum_{j=1}^{d} \int_{S^{d-1}} \omega_{j}^{2} d \sigma(\omega)
$$

Exercise 1.6 (Folland 6.38 on p. 199.). Suppose (X, \mathcal{M}, μ) is a measure space, $f: X \rightarrow \mathbb{C}$ is a measurable function, $0<p<\infty, \lambda_{f}(\alpha):=\mu(|f|>\alpha)$ for all $\alpha \in(0, \infty)$, and

$$
M_{p}(f):=\sum_{k=-\infty}^{\infty} 2^{k p} \lambda_{f}\left(2^{k}\right) .
$$

Show

$$
\begin{equation*}
\left(1-2^{-p}\right) M_{p}(f) \leq \int_{X}|f|^{p} d \mu \leq 2^{p} M_{p}(f) \tag{1.1}
\end{equation*}
$$

which then implies $f \in L^{p}(\mu)$ iff $M_{p}(f)<\infty$.
Hint: first note that

$$
\begin{equation*}
\int_{X}|f|^{p} d \mu=\sum_{k \in \mathbb{Z}} \int_{\left\{2^{k}<|f| \leq 2^{k+1}\right\}}|f|^{p} d \mu . \tag{1.2}
\end{equation*}
$$

Exercise 1.7 (Folland 6.39 on p. 199.). Suppose (X, \mathcal{M}, μ) is a measure space, $f: X \rightarrow \mathbb{C}$ is a measurable function, $0<p<\infty$, and $f \in L^{p}(\mu)$. Show

$$
\lim _{\alpha \rightarrow 0} \alpha^{p} \lambda_{f}(\alpha)=0=\lim _{\alpha \rightarrow \infty} \alpha^{p} \lambda_{f}(\alpha)
$$

Hint: for the limit, $\lim _{\alpha \rightarrow 0} \alpha^{p} \lambda_{f}(\alpha)=0$, start with the special case where f is a simple function.

Exercise 1.8. Show $\sum_{k=1}^{\infty} k^{-2}=\pi^{2} / 6$, by taking $f(x)=x$ on $[-\pi, \pi]$ and computing $\|f\|_{2}^{2}$ directly and then in terms of the Fourier Coefficients \tilde{f} of f.

Exercise 1.9 (Riemann Lebesgue Lemma for Fourier Series). Show for $f \in L^{1}\left([-\pi, \pi]^{d}\right)$ that $\tilde{f} \in c_{0}\left(\mathbb{Z}^{d}\right)$, i.e. $\tilde{f}: \mathbb{Z}^{d} \rightarrow \mathbb{C}$ and $\lim _{k \rightarrow \infty} \tilde{f}(k)=0$. Hint: If $f \in L^{2}\left([-\pi, \pi]^{d}\right)$, this follows from Bessel's inequality. Now use a density argument.

Exercise 1.10. Suppose $f \in L^{1}\left([-\pi, \pi]^{d}\right)$ is a function such that $\tilde{f} \in \ell^{1}\left(\mathbb{Z}^{d}\right)$ and set

$$
g(x):=\sum_{k \in \mathbb{Z}^{d}} \tilde{f}(k) e^{i k \cdot x} \text { (pointwise) }
$$

1. Show $g \in C_{\text {per }}\left(\mathbb{R}^{d}\right)$.
2. Show $g(x)=f(x)$ for m - a.e. x in $[-\pi, \pi]^{d}$. Hint: Show $\tilde{g}(k)=\tilde{f}(k)$ and apply Exercise ?? or results proved in class.
3. Conclude that $f \in L^{1}\left([-\pi, \pi]^{d}\right) \cap L^{\infty}\left([-\pi, \pi]^{d}\right)$ and in particular $f \in$ $L^{p}\left([-\pi, \pi]^{d}\right)$ for all $p \in[1, \infty]$

Exercise 1.11 (Smoothness implies decay). We use the following notation below.

Notation: Given a multi-index $\alpha \in \mathbb{Z}_{+}^{d}$, let $|\alpha|=\alpha_{1}+\cdots+\alpha_{d}$,

$$
x^{\alpha}:=\prod_{j=1}^{d} x_{j}^{\alpha_{j}}, \text { and } \partial_{x}^{\alpha}=\left(\frac{\partial}{\partial x}\right)^{\alpha}:=\prod_{j=1}^{d}\left(\frac{\partial}{\partial x_{j}}\right)^{\alpha_{j}}
$$

Further for $k \in \mathbb{N}_{0}$, let $f \in C_{\text {per }}^{k}\left(\mathbb{R}^{d}\right)$ iff $f \in C^{k}\left(\mathbb{R}^{d}\right) \cap C_{\text {per }}\left(\mathbb{R}^{d}\right), \partial_{x}^{\alpha} f(x)$ exists and is continuous for $|\alpha| \leq k$.

Suppose $m \in \mathbb{N}_{0}, \alpha$ is a multi-index such that $|\alpha| \leq 2 m$ and $f \in C_{p e r}^{2 m}\left(\mathbb{R}^{d}\right) 1^{1}$

1. Using integration by parts, show (using Notation ??) that

$$
(i k)^{\alpha} \tilde{f}(k)=\left\langle\partial^{\alpha} f \mid \varphi_{k}\right\rangle \text { for all } k \in \mathbb{Z}^{d} .
$$

Note: This equality implies

$$
|\tilde{f}(k)| \leq \frac{1}{k^{\alpha}}\left\|\partial^{\alpha} f\right\|_{H} \leq \frac{1}{k^{\alpha}}\left\|\partial^{\alpha} f\right\|_{\infty}
$$

2. Now let $\Delta f=\sum_{i=1}^{d} \partial^{2} f / \partial x_{i}^{2}$, Working as in part 1) show

$$
\begin{equation*}
\left\langle(1-\Delta)^{m} f \mid \varphi_{k}\right\rangle=\left(1+\|k\|^{2}\right)^{m} \tilde{f}(k) \tag{1.3}
\end{equation*}
$$

where $\|k\|^{2}=\sum_{j=1}^{d} k_{j}^{2}$.
Exercise 1.12 (A Sobolev Imbedding Theorem). Suppose $s \in \mathbb{R}$ and $\left\{c_{k} \in \mathbb{C}: k \in \mathbb{Z}^{d}\right\}$ are coefficients such that

$$
\sum_{k \in \mathbb{Z}^{d}}\left|c_{k}\right|^{2}\left(1+|k|^{2}\right)^{s}<\infty .
$$

Show if $s>\frac{d}{2}+m$, the function f defined by

$$
f(x)=\sum_{k \in \mathbb{Z}^{d}} c_{k} e^{i k \cdot x}
$$

[^0]is in $C_{p e r}^{m}\left(\mathbb{R}^{d}\right)$. Hint: Work as in the above remark to show
$$
\sum_{k \in \mathbb{Z}^{d}}\left|c_{k}\right|\left|k^{\alpha}\right|<\infty \text { for all }|\alpha| \leq m
$$

Exercise 1.13 (Poisson Summation Formula). Let $F \in L^{1}\left(\mathbb{R}^{d}\right)$,

$$
E:=\left\{x \in \mathbb{R}^{d}: \sum_{k \in \mathbb{Z}^{d}}|F(x+2 \pi k)|=\infty\right\}
$$

and set (see Section ?? below for an introduction to the Fourier transform)

$$
\hat{F}(k):=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} F(x) e^{-i k \cdot x} d x \text { for } k \in \mathbb{Z}^{d}
$$

Further assume $\hat{F} \in \ell^{1}\left(\mathbb{Z}^{d}\right)$. [This can be achieved by assuming F is sufficiently differentiable with the derivatives being integrable like in Exercise 1.11.]

1. Show $m(E)=0$ and $E+2 \pi k=E$ for all $k \in \mathbb{Z}^{d}$. Hint: Compute $\int_{[-\pi, \pi]^{d}} \sum_{k \in \mathbb{Z}^{d}}|F(x+2 \pi k)| d x$.
2. Let

$$
f(x):=\left\{\begin{array}{cc}
\sum_{k \in \mathbb{Z}^{d}} F(x+2 \pi k) & \text { for } \quad x \notin E \\
0 & \text { if } x \in E .
\end{array}\right.
$$

Show $f \in L^{1}\left([-\pi, \pi]^{d}\right)$ and $\tilde{f}(k)=(2 \pi)^{-d / 2} \hat{F}(k)$.
3. Using item 2) and the assumptions on F, show

$$
f(x)=\sum_{k \in \mathbb{Z}^{d}} \tilde{f}(k) e^{i k \cdot x}=\sum_{k \in \mathbb{Z}^{d}}(2 \pi)^{-d / 2} \hat{F}(k) e^{i k \cdot x} \text { for } m \text { - a.e. } x
$$

i.e.

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}^{d}} F(x+2 \pi k)=(2 \pi)^{-d / 2} \sum_{k \in \mathbb{Z}^{d}} \hat{F}(k) e^{i k \cdot x} \text { for } m-\text { a.e. } x \tag{1.4}
\end{equation*}
$$

and form this conclude that $f \in L^{1}\left([-\pi, \pi]^{d}\right) \cap L^{\infty}\left([-\pi, \pi]^{d}\right)$.
Hint: see the hint for item 2. of Exercise 1.10 .
4. Suppose we now assume that $F \in C\left(\mathbb{R}^{d}\right)$ and F satisfies $|F(x)| \leq C(1+$ $|x|)^{-s}$ for some $s>d$ and $C<\infty$. Under these added assumptions on F, show Eq. 1.4 holds for all $x \in \mathbb{R}^{d}$ and in particular

$$
\sum_{k \in \mathbb{Z}^{d}} F(2 \pi k)=(2 \pi)^{-d / 2} \sum_{k \in \mathbb{Z}^{d}} \hat{F}(k) .
$$

Exercise 1.14 (Heat Equation 1.). Let $[0, \infty) \times \mathbb{R} \ni(t, x) \rightarrow u(t, x)$ be a continuous function such that $u(t, \cdot) \in C_{p e r}(\mathbb{R})$ for all $t \geq 0, \dot{u}:=u_{t}, u_{x}$, and $u_{x x}$ exists and are continuous when $t>0$. Further assume that u satisfies the heat equation $\dot{u}=\frac{1}{2} u_{x x}$. Let $\tilde{u}(t, k):=\left\langle u(t, \cdot) \mid \varphi_{k}\right\rangle$ for $k \in \mathbb{Z}$. Show for $t>0$ and $k \in \mathbb{Z}$ that $\tilde{u}(t, k)$ is differentiable in t and $\frac{d}{d t} \tilde{u}(t, k)=-k^{2} \tilde{u}(t, k) / 2$. Use this result to show

$$
\begin{equation*}
u(t, x)=\sum_{k \in \mathbb{Z}} e^{-\frac{t}{2} k^{2}} \tilde{f}(k) e^{i k x} \tag{1.5}
\end{equation*}
$$

where $f(x):=u(0, x)$ and as above

$$
\tilde{f}(k)=\left\langle f \mid \varphi_{k}\right\rangle=\int_{-\pi}^{\pi} f(y) e^{-i k y} d y=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) e^{-i k y} d m(y)
$$

Notice from Eq. 1.5 that $(t, x) \rightarrow u(t, x)$ is C^{∞} for $t>0$.
Exercise 1.15 (Heat Equation 2.). Let $q_{t}(x):=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} e^{-\frac{t}{2} k^{2}} e^{i k x}$. Show;

1. Eq. 1.5 may be rewritten as

$$
u(t, x)=\int_{-\pi}^{\pi} q_{t}(x-y) f(y) d y
$$

and
2. $q_{t}(x)$ may be expresses

$$
q_{t}(x)=\sum_{k \in \mathbb{Z}} p_{t}(x+k 2 \pi)
$$

where $p_{t}(x):=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{1}{2 t} x^{2}}$.
3. Also show $u(t, x)$ may be written as

$$
u(t, x)=\left(p_{t} * f\right)(x):=\int_{\mathbb{R}^{d}} p_{t}(x-y) f(y) d y
$$

Hint: To show $q_{t}(x)=\sum_{k \in \mathbb{Z}} p_{t}(x+k 2 \pi)$, use the Poisson summation formula (Exercise 1.13) and the Gaussian integration identity,

$$
\begin{equation*}
\hat{p}_{t}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} p_{t}(x) e^{i \omega x} d x=\frac{1}{\sqrt{2 \pi}} e^{-\frac{t}{2} \omega^{2}} \tag{1.6}
\end{equation*}
$$

Exercise 1.16 (Wave Equation). Let $u \in C^{2}(\mathbb{R} \times \mathbb{R})$ be such that $u(t, \cdot) \in$ $C_{\text {per }}(\mathbb{R})$ for all $t \in \mathbb{R}$. Further assume that u solves the wave equation, $u_{t t}=u_{x x}$. Let $f(x):=u(0, x)$ and $g(x)=\dot{u}(0, x)$. Show $\tilde{u}(t, k):=\left\langle u(t, \cdot), \varphi_{k}\right\rangle$ for $k \in \mathbb{Z}$ is twice continuously differentiable in t and $\frac{d^{2}}{d t^{2}} \tilde{u}(t, k)=-k^{2} \tilde{u}(t, k)$. Use this result to show

$$
\begin{equation*}
u(t, x)=\sum_{k \in \mathbb{Z}}\left(\tilde{f}(k) \cos (k t)+\tilde{g}(k) \frac{\sin k t}{k}\right) e^{i k x} \tag{1.7}
\end{equation*}
$$

with the sum converging absolutely. Also show that $u(t, x)$ may be written as

$$
\begin{equation*}
u(t, x)=\frac{1}{2}[f(x+t)+f(x-t)]+\frac{1}{2} \int_{-t}^{t} g(x+\tau) d \tau \tag{1.8}
\end{equation*}
$$

Hint: To show Eq. 1.7 implies 1.8 use

$$
\begin{aligned}
\cos k t & =\frac{e^{i k t}+e^{-i k t}}{2}, \\
\sin k t & =\frac{e^{i k t}-e^{-i k t}}{2 i}, \text { and } \\
\frac{e^{i k(x+t)}-e^{i k(x-t)}}{i k} & =\int_{-t}^{t} e^{i k(x+\tau)} d \tau .
\end{aligned}
$$

Exercise 1.17. Let $f \in L^{1}((-\pi, \pi])$ which we extend to a 2π - periodic function on \mathbb{R} and continue to denote by f. If there exists $q \in \mathbb{N}$ such that $f\left(x+\frac{2 \pi}{q}\right)=f(x)$ for m - a.e. x, then $\tilde{f}(k)=0$ unless q divides k.

Exercise 1.18. In this problem we assume the notation from subsection ?? with $d=1$. For simplicity of notation we identify $L^{2}((-\pi, \pi], d \theta)$ with $2 \pi-$ periodic functions on \mathbb{R} via,

$$
L^{2}((-\pi, \pi], d \theta) \ni f \longleftrightarrow \sum_{n \in \mathbb{Z}} f(x+n 2 \pi) 1_{(-\pi, \pi]}(x+n 2 \pi) \in L_{\text {per }}^{2}(\mathbb{R})
$$

Given $\alpha \in \mathbb{R}$ let $\left(U_{\alpha} f\right)(\theta)=f(\theta+\alpha 2 \pi)$ wherein we have used the above identification. If $\alpha \notin \mathbb{Q}$ show

$$
M_{\alpha}=\operatorname{Nul}\left(U_{\alpha}-I\right)=\mathbb{C} \cdot 1
$$

If $\alpha \in \mathbb{Q}$ write $\alpha=\frac{p}{q}$ where $\operatorname{gcd}(q, p)=1$, i.e. p and q are relatively prime. In this case show $M_{\alpha}=\operatorname{Nul}\left(U_{\alpha}-I\right)$ consists of those $f \in L_{\text {per }}^{2}(\mathbb{R})$ such that $f\left(x+\frac{2 \pi}{q}\right)=f(x)$ for m - a.e. x. [Consequently, combining this exercise with Mean Ergodic Theorem ?? shows,

$$
\frac{1}{n} \sum_{k=0}^{n-1} U_{\alpha}^{k} \xrightarrow{s} P_{M_{\alpha}}
$$

where M_{α} depends on α as described above.]

Exercise 1.19 (Folland 6.27 on p. 196. Hilbert's Inequality). Hint: See Theorem ?? which is Theorem 6.20 in Folland .

Exercise 1.20 (Folland 6.22). Exercise, Folland 6.22 on p. 192.

Exercise 1.21 (Global Integration by Parts Formula). Suppose that f, g : $\mathbb{R} \rightarrow \mathbb{C}$ are locally absolutely continuous functions ${ }^{2}$ such that $f^{\prime} g, f g^{\prime}$, and $f g$ are all Lebesgue integrable functions on \mathbb{R}. Prove the following integration by parts formula;

$$
\begin{equation*}
\int_{\mathbb{R}} f^{\prime}(x) \cdot g(x) d x=-\int_{\mathbb{R}} f(x) \cdot g^{\prime}(x) d x \tag{1.9}
\end{equation*}
$$

Similarly show that; if $f, g:[0, \infty) \rightarrow[0, \infty)$ are locally absolutely continuous functions such that $f^{\prime} g, f g^{\prime}$, and $f g$ are all Lebesgue integrable functions on $[0, \infty)$, then

$$
\begin{equation*}
\int_{0}^{\infty} f^{\prime}(x) \cdot g(x) d x=-f(0) g(0)-\int_{0}^{\infty} f(x) \cdot g^{\prime}(x) d x \tag{1.10}
\end{equation*}
$$

Outline: 1. First use the theory developed to see that Eq. 1.9 holds if $f(x)=0$ for $|x| \geq N$ for some $N<\infty$.
2. Let $\psi: \mathbb{R} \rightarrow[0,1]$ be a continuously differentiable function such that $\psi(x)=1$ if $|x| \leq 1$ and $\psi(x)=0$ if $|x| \geq 2 \square^{3}$ For any $\varepsilon>0$ let $\psi_{\varepsilon}(x)=\psi(\varepsilon x)$ Write out the identity in Eq. (1.9) with $f(x)$ being replaced by $f(x) \psi_{\varepsilon}(x)$.
3. Now use the dominated convergence theorem to pass to the limit as $\varepsilon \downarrow 0$ in the identity you found in step 2 .
4. A similar outline works to prove Eq. 1.10.

Exercise 1.22 (Heisenberg's Inequality). Suppose that $f: \mathbb{R} \rightarrow \mathbb{C}$ is a locally absolutely continuous function ${ }^{4}$, show

$$
\begin{equation*}
\int_{\mathbb{R}}|f(x)|^{2} d x \leq 2\left[\int_{\mathbb{R}}|x f(x)|^{2} d x\right]^{1 / 2}\left[\int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x\right]^{1 / 2} \tag{1.11}
\end{equation*}
$$

Hint: assuming the right hand side of the above inequality is finite show

$$
\begin{equation*}
\int_{\mathbb{R}}|f(x)|^{2} d x=-2 \operatorname{Re} \int_{\mathbb{R}} x \bar{f}(x) f^{\prime}(x) d x \tag{1.12}
\end{equation*}
$$

[^1]Exercise 1.23. Let

$$
f(t)=\left\{\begin{array}{cl}
e^{-1 / t} & \text { if } t>0 \\
0 & \text { if } t \leq 0
\end{array}\right.
$$

Show $f \in C^{\infty}(\mathbb{R},[0,1])$. Hints: you might start by first showing $\lim _{t \downarrow 0} f^{(n)}(t)=$ 0 for all $n \in \mathbb{N}_{0}$.

Exercise 1.24. Show $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is dense in $L^{p}\left(\mathbb{R}^{d}, m\right)$ for any $1 \leq p<\infty$.
Exercise 1.25. If $f \in L_{l o c}^{1}\left(\mathbb{R}^{d}, m\right)$ and $\varphi \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$, then $f * \varphi \in C^{1}\left(\mathbb{R}^{d}\right)$ and $\partial_{i}(f * \varphi)=f * \partial_{i} \varphi$. Moreover if $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ then $f * \varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$.
Exercise 1.26 (Integration by Parts). Suppose that $(x, y) \in \mathbb{R} \times \mathbb{R}^{d-1} \rightarrow$ $f(x, y) \in \mathbb{C}$ and $(x, y) \in \mathbb{R} \times \mathbb{R}^{d-1} \rightarrow g(x, y) \in \mathbb{C}$ are measurable functions such that for each fixed $y \in \mathbb{R}^{d}, x \rightarrow f(x, y)$ and $x \rightarrow g(x, y)$ are continuously differentiable. Also assume $f \cdot g, \partial_{x} f \cdot g$ and $f \cdot \partial_{x} g$ are integrable relative to Lebesgue measure on $\mathbb{R} \times \mathbb{R}^{d-1}$, where $\partial_{x} f(x, y):=\left.\frac{d}{d t} f(x+t, y)\right|_{t=0}$. Show

$$
\begin{equation*}
\int_{\mathbb{R} \times \mathbb{R}^{d-1}} \partial_{x} f(x, y) \cdot g(x, y) d x d y=-\int_{\mathbb{R} \times \mathbb{R}^{d-1}} f(x, y) \cdot \partial_{x} g(x, y) d x d y \tag{1.13}
\end{equation*}
$$

(Note: this result and Fubini's theorem proves Lemma ??.)
Hints: Let $\psi \in C_{c}^{\infty}(\mathbb{R})$ be a function which is 1 in a neighborhood of $0 \in \mathbb{R}$ and set $\psi_{\varepsilon}(x)=\psi(\varepsilon x)$. First verify Eq. 1.13) with $f(x, y)$ replaced by $\psi_{\varepsilon}(x) f(x, y)$ by doing the x - integral first. Then use the dominated convergence theorem to prove Eq. (1.13) by passing to the limit, $\varepsilon \downarrow 0$.

Exercise 1.27 (Wirtinger's inequality, Folland 8.18). Given $a>0$ and $f \in C^{1}([0, a], \mathbb{C})$ such that $f(0)=f(a)=0$, show ${ }^{5}$

$$
\int_{0}^{a}|f(x)|^{2} d x \leq\left(\frac{a}{\pi}\right)^{2} \int_{0}^{a}\left|f^{\prime}(x)\right|^{2} d x
$$

Hint: to use the notation above, let $\pi L=a$ and extend f to $[-a, 0]$ by setting $f(-x)=-f(x)$ for $0 \leq x \leq a$. Now compute $\int_{0}^{a}|f(x)|^{2} d x$ and $\int_{0}^{a}\left|f^{\prime}(x)\right|^{2} d x$ in terms of their Fourier coefficients, $\left\langle f \mid \varphi_{k}^{L}\right\rangle_{L}$ and $\left\langle f^{\prime} \mid \varphi_{k}^{L}\right\rangle_{L}$ respectively.

Exercise 1.28. Let

$$
\begin{equation*}
L=\sum_{|\alpha| \leq k} a_{\alpha}(x) \partial^{\alpha} \tag{1.14}
\end{equation*}
$$

with $a_{\alpha} \in \mathcal{P}$. Show $L(\mathcal{S}) \subset \mathcal{S}$ and in particular $\partial^{\alpha} f$ and $x^{\alpha} f$ are back in \mathcal{S} for all multi-indices α.

[^2]Exercise 1.29. In this problem let $d=1$ so that $x, \xi \in \mathbb{R}=\mathbb{R}^{1}$. For any $m>0$, show

$$
\mathcal{F}\left[e^{-m|x|}\right](\xi)=\frac{2 m}{\sqrt{2 \pi}} \frac{1}{m^{2}+\xi^{2}}
$$

and

$$
\mathcal{F}\left(\frac{1}{m^{2}+\xi^{2}}\right)(x)=\frac{\sqrt{2 \pi}}{2 m} e^{-m|x|}
$$

More precisely these equations mean;

$$
\begin{aligned}
\mathcal{F}\left[x \rightarrow e^{-m|x|}\right](\xi) & =\frac{2 m}{\sqrt{2 \pi}} \frac{1}{m^{2}+\xi^{2}} \text { and } \\
\mathcal{F}\left(\xi \rightarrow \frac{1}{m^{2}+\xi^{2}}\right)(x) & =\frac{\sqrt{2 \pi}}{2 m} e^{-m|x|}
\end{aligned}
$$

or equivalently,

$$
\mathcal{F}\left[e^{-m|\cdot|}\right]=\frac{2 m}{\sqrt{2 \pi}} \frac{1}{m^{2}+(\cdot)^{2}} \text { and } \mathcal{F}\left(\frac{1}{m^{2}+(\cdot)^{2}}\right)=\frac{\sqrt{2 \pi}}{2 m} e^{-m|\cdot|}
$$

Exercise 1.30. Using the identity

$$
\frac{1}{\xi^{2}+1}=\int_{0}^{\infty} e^{-s\left(\xi^{2}+1\right)} d s
$$

along with Exercise 1.29 and the known Fourier transform of Gaussians to show

$$
\begin{equation*}
e^{-|x|}=\int_{0}^{\infty} d s \frac{1}{\sqrt{\pi s}} e^{-s} e^{-\frac{x^{2}}{4 s}} \text { for all } x \in \mathbb{R} \tag{1.15}
\end{equation*}
$$

Thus we have written $e^{-|x|}$ as an average of Gaussians.
Exercise 1.31. Now let $x \in \mathbb{R}^{d}$ and $|x|^{2}:=\sum_{i=1}^{d} x_{i}^{2}$ be the standard Euclidean norm. Show for all $m>0$ that

$$
\begin{equation*}
\mathcal{F}\left[e^{-m|x|}\right](\xi)=\frac{2^{d / 2}}{\sqrt{\pi}} \Gamma\left(\frac{d+1}{2}\right) \frac{m}{\left(m^{2}+|\xi|^{2}\right)^{\frac{d+1}{2}}} \tag{1.16}
\end{equation*}
$$

where $\Gamma(x)$ in the gamma function defined as

$$
\Gamma(x):=\int_{0}^{\infty} t^{x} e^{-t} \frac{d t}{t}
$$

Hint: By Exercise 1.30 with x replaced by $m|x|$ we know that

$$
e^{-m|x|}=\int_{0}^{\infty} d s \frac{1}{\sqrt{\pi s}} e^{-s} e^{-\frac{m^{2}}{4 s}|x|^{2}} \text { for all } x \in \mathbb{R}^{d}
$$

Exercise 1.32. Show for $f \in \mathcal{S}(\mathbb{R})$ that;

1. For all $x \in \mathbb{R}$,

$$
|f(x)| \leq \frac{1}{\sqrt{2 \pi}}\|\hat{f}\|_{1}=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}}|\hat{f}(k)| d k
$$

and

$$
|f(x)| \leq \frac{1}{\sqrt{2}}\left[\int_{\mathbb{R}}|\hat{f}(k)|^{2}\left(1+k^{2}\right) d k\right]^{1 / 2}
$$

2. Use the last displayed inequality and the basic properties of the Fourier transform to prove the "Sobolev inequality,"

$$
|f(x)|^{2} \leq \frac{1}{2}\left[\|f\|_{2}^{2}+\left\|f^{\prime}\right\|_{2}^{2}\right] \text { for all } x \in \mathbb{R}
$$

where

$$
\|f\|_{2}^{2}:=\int_{\mathbb{R}}|f(x)|^{2} d x
$$

Exercise 1.33 (Sampling Theorem). Let

$$
\operatorname{sinc} x=\left\{\begin{array}{cc}
\frac{\sin \pi x}{\pi x} & \text { if } x \neq 0 \\
1 & \text { if } x=0
\end{array}\right.
$$

and for any $a \in(0, \infty)$, let

$$
\mathcal{H}_{a}=\left\{f \in L^{2}(m): \hat{f}(\xi)=0 \text { a.e. when }|\xi|>\pi a\right\} .
$$

Show

1. Show that every $f \in \mathcal{H}_{a}$ has a version $\left.{ }^{6}\right] f_{0} \in C_{0}(\mathbb{R})$ and moreover,

$$
\begin{equation*}
\left\|f_{0}\right\|_{u} \leq \sqrt{a}\|f\|_{L^{2}(m)} \tag{1.17}
\end{equation*}
$$

[We now identify f with this continuous version.] Hint: after identifying $L^{2}([-\pi a, \pi a], \lambda)$ as a subspace of $L^{2}(\mathbb{R}, \lambda)$ one has

$$
\mathcal{H}_{a}=\mathcal{F}^{-1} L^{2}([-\pi a, \pi a], \lambda)
$$

2. Show by direct computation that

$$
\mathcal{F}^{-1}\left[\frac{1}{\sqrt{2 \pi} a} e^{-i n \xi / a} 1_{|\xi| \leq \pi a}\right](x)=\operatorname{sinc}(a x-n)
$$

${ }^{6}$ We say that f_{0} is a version of f if $f(x)=f_{0}(x)$ for m - a.e. x.
3. If $f \in \mathcal{H}_{a}$ then (assuming f is the C_{0} - version as in part a), show

$$
f(x)=\sum_{k=-\infty}^{\infty} f(k / a) \operatorname{sinc}(a x-k)
$$

where the series converges both uniformly and in L^{2}. [Hint: Start by writing $\hat{f}(\xi)$ for $|\xi| \leq \pi a$ as a Fourier expansion in the orthonormal basis $\left\{e^{-i n \xi / a}\right\}_{n=-\infty}^{\infty}$ for $\left.L^{2}\left([-\pi a, \pi a], \frac{m}{2 \pi a}\right).\right]$

In the terminology of signal analysis, a signal of band width $2 \pi a$ is completely determined by sampling its value at a sequence of points $\{k / 2 \pi a\}$ whose spacing is the reciprocal of the bandwidth.

[^0]: ${ }^{1}$ We view $C_{p e r}\left(\mathbb{R}^{d}\right)$ as a subspace of $H=L^{2}\left([-\pi, \pi]^{d}\right)$ by identifying $f \in C_{p e r}\left(\mathbb{R}^{d}\right)$ with $\left.f\right|_{[-\pi, \pi]^{d}} \in H$.

[^1]: ${ }^{2}$ This means that f and g restricted to any bounded interval in \mathbb{R} are absolutely continuous on that interval.
 ${ }^{3}$ You may assume the existence of such a ψ, we will deal with this later.
 ${ }^{4}$ This means that f restricted to any bounded interval in \mathbb{R} are absolutely continuous on that interval.

[^2]: ${ }^{5}$ This inequality is sharp as is seen by taking $f(x)=\sin (\pi x / a)$.

