Math 240C Homework Problem List for S2018

0.1 Homework C1. Due Friday, April 6, 2018

- Hand in: 1.1, 1.2, 1.3, 1.5, 1.6
- Look at: 1.4

Problems to Solve

Exercise 1.1 (Folland Problem 2.62 on p. 80.). Rotation invariance of surface measure on S^{n-1} .

Exercise 1.2 (Folland Problem 2.64 on p. 80.). On the integrability of $|x|^{a} |\log |x||^{b}$ for x near 0 and x near ∞ in \mathbb{R}^{n} .

Exercise 1.3. Show, using Problem 1.1 that

$$\int_{S^{d-1}} \omega_i \omega_j d\sigma\left(\omega\right) = \frac{1}{d} \delta_{ij} \sigma\left(S^{d-1}\right).$$

Hint: show $\int_{S^{d-1}} \omega_i^2 d\sigma(\omega)$ is independent of *i* and therefore

$$\int_{S^{d-1}} \omega_i^2 d\sigma\left(\omega\right) = \frac{1}{d} \sum_{j=1}^d \int_{S^{d-1}} \omega_j^2 d\sigma\left(\omega\right)$$

Exercise 1.4. Let

$$f(t) = \begin{cases} e^{-1/t} \text{ if } t > 0\\ 0 \text{ if } t \le 0 \end{cases}$$

Show $f \in C^{\infty}(\mathbb{R}, [0, 1])$. **Hints:** you might start by first showing $\lim_{t\downarrow 0} f^{(n)}(t) = 0$ for all $n \in \mathbb{N}_0$.

Exercise 1.5. If $f \in L^1_{loc}(\mathbb{R}^d, m)$ and $\varphi \in C^1_c(\mathbb{R}^d)$, then $f * \varphi \in C^1(\mathbb{R}^d)$ and $\partial_i(f * \varphi) = f * \partial_i \varphi$. Moreover if $\varphi \in C^\infty_c(\mathbb{R}^d)$ then $f * \varphi \in C^\infty(\mathbb{R}^d)$.

Exercise 1.6 (Integration by Parts). Suppose that $(x, y) \in \mathbb{R} \times \mathbb{R}^{d-1} \to f(x, y) \in \mathbb{C}$ and $(x, y) \in \mathbb{R} \times \mathbb{R}^{d-1} \to g(x, y) \in \mathbb{C}$ are measurable functions such that for each fixed $y \in \mathbb{R}^d$, $x \to f(x, y)$ and $x \to g(x, y)$ are continuously differentiable. Also assume $f \cdot g$, $\partial_x f \cdot g$ and $f \cdot \partial_x g$ are integrable relative to Lebesgue measure on $\mathbb{R} \times \mathbb{R}^{d-1}$, where $\partial_x f(x, y) := \frac{d}{dt} f(x + t, y)|_{t=0}$. Show

$$\int_{\mathbb{R}\times\mathbb{R}^{d-1}}\partial_x f(x,y)\cdot g(x,y)dxdy = -\int_{\mathbb{R}\times\mathbb{R}^{d-1}}f(x,y)\cdot\partial_x g(x,y)dxdy.$$
 (1.1)

Hints: Let $\psi \in C_c^{\infty}(\mathbb{R})$ be a function which is 1 in a neighborhood of $0 \in \mathbb{R}$ and set $\psi_{\varepsilon}(x) = \psi(\varepsilon x)$. First verify Eq. (1.1) with f(x, y) replaced by $\psi_{\varepsilon}(x) f(x, y)$ by doing the x – integral first. Then use the dominated convergence theorem to prove Eq. (1.1) by passing to the limit, $\varepsilon \downarrow 0$.