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1

The Polar Decomposition of Lebesgue Measure

Let
d
St =z e RY: Jzf? = fo =1} and
i=1
B ={zeR":0< |z <1}

be the unit sphere and 0-deleted “closed” ball in R? and let Bga—1 and Bg, be
the Borel o-algebras on these metric spaces. We further equip (0,00) x S9!
with product o-algebra B(g,o) ® Bga-1 which is also the Borel o-algebra on

(0,00) x S9! thought of as a product of two metric spaces. The maps @ :
R\ {0} — (0,00) x S9! and + : B’ — S9! defined by

®(z) == (|z|,|z| " z) for all z € R?\ {0} and
¢ (z) = |z| 'z for all 2 € B,

are both continuous and hence measurable. Similarly the inverse map, &~ :
(0,00) x S4=1 — R\ {0}, is given by 7! (r,w) = rw which is continuous and
therefore also measurable.

For E € Bga-1 and a > 0, let

E,:={rw:r€(0,a] and w € E} = &7 ((0,a] x E) € Bga.
Further observe that £y = ¢! (E) € Bg, C Bga and for a > 0, E, = aFE}.

Definition 1.1. The surface measure, o, on S ! is defined to be ¢ = d -

(Yem), i.e.
o(E):=d-m(FEy) for all E € Bga-1.

Let us now explain the intuition behind Definition If EC S 1is aset
and € > 0 is a small number, then the volume of

(Ll+e - E={rw:re(l,1+¢land w € E}

should be approximately given by m ((1,1+¢]- E) & o (E)e, see Figure
below.On the other hand

m((L,1+¢elE)=m (B \ Er) = [(1+e)*—1] -m(By).

Fig. 1.1. Motivating the definition of surface measure for a sphere.

Therefore we expect the area of E should be given by

d_
U(E):lgig{(lﬂg)l}m(El):d'm(Elf

The following theorem is an abstract version of integration in polar coordi-
nates.

Theorem 1.2 (Polar decomposition of m). Let pg be the measure on B(o,oo)

defined by dpg (r) = r4=tdr, i.e.

p(J) = /J?"dildr vVJe B(O,oo)v (1.1)

Then ®.m = p @0 on B(g,co) @ Bga-1.

Proof. Let £ be the m-system in Bg o) ® Bga-1 consisting of sets of the
form A = (a,b] X F e B(O,oo) ® Bga—1 with 0 <a <b < oo and E € Bga-1. For
such an A € £ we have

oY A)={rw:re(a,bland w € E} = B, \ E, = bEy \ aE.



2 1 The Polar Decomposition of Lebesgue Measure

Therefore by the basic scaling properties of m and the fundamental theorem of
calculus,

(@.m) (A) = m (bE1 \ aE1) = m(bEy) — m(aEy)
= bim (El) —a’m (El) = d-m(El)/brd_ldr (1.2)

= p((@.H) o (B) = (p® o) () (1.3)

Since (®.m) (A) = (p®@ o) (A) for all A € £, we may apply the multiplicative
system theorem|’| in the form of Proposition ?? to conclude that ®,m = p® o
on B(O,oo) ® Bga-1. |

Corollary 1.3 (Polar Coordinates). If f : R? — [0,00] is a (Bga,B)-
measurable function then

/f(x)dm(x) = f(rw)rd=t drdo (w). (1.4)
R4 (0,00) x S41

In particular if f: Ry — Ry is measurable then
de =0 (8471 h r)yrd=t dr = h r)dV 1.5
R[f(lx)x 75t [ st ar= [ mave) )

where
V(r) = m(B(0,r)) = r'm(B(0,1)) = d"'r'o (5.

[In Example ??, Ezxercise 72, and Proposition 77 below, we will use the general
change of variables Theorem 7?7 to give a explicit description for the surface
integrals relative to o.]

Proof. Equation (1.4) is a direct consequence of the abstract change of
variables theorem (Exercise ??)7Theorem and Tonelli’s Theorem ?7. Indeed
we have,

/fdm: / (fod ') od dm= / (fod™') d(®.m)

Rd R4\ {0} (0,00) x §d—1
= / (fo¢_1)d[p®0'] = frw)p (dr) o (dw)
(0,50) x 51 (0.50)x §—1
= / frw)ri=t drdo (w).
(0,00) x S41

Equation (|1.5)) is a special case of Eq. (1.4]). ]

1 Or you could use the 7-A theorem.
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Ezample 1.4 (0 (S*) = 2m). Let E = {(cosf,sinf) € S' CR*:0<0 <},
then E; is the upper half of closed unit disk centered at 0 in R2. Therefore,

1 Vi—a? 1
m2(E1)=/1E1dm=/ dsr:/ dyz/ V1 —22de.
—1 0 —1

Letting x = sin 6 we find,

/2
o (E) =2m?*(E) = 2/ /2COSH~COSH de

1 /2
:27/ [14 cos26)df = .
2 —7/2

Therefore o (') = 20 (E) = 2r — the circumference of a circle of radius 1 as

to be expected.

Lemma 1.5. Ifa > 0 and d € N, then

I (a) == /e-a\w\2dm(m) = (m/a)?2.

Rd

Proof. Using Tonelli’s theorem and induction,

Iq(a) = /]Rd R eialyﬁeiaﬁmd—l(dy) dt
Sy

=1 1(a) I (a) =I%(a). (1.6)

So it suffices to compute:
Iy (a) = /e‘“lw‘2dm(x) = / e_a(g”%"’””g)dxldxg.
R2 R2\{0}
Using polar coordinates, see Eq. ((1.4)), we find,

Ir (a) = / e~ drdo (w) =0 (S")- / re=" dr
0

(0,00)x St

M 2 e M- o
=27 lim re " dr =27 lim = — =n7/a.
M=o Jo M=o —2a [

This shows that I (a) = 7/a and the result now follows from Eq. (1.6).
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Corollary 1.6. The surface area o(S?™1) of the unit sphere S~ C R? is

27Td/2
§4=1) = 1.7
75" = Fgra) (17)
where I' is the gamma function is as in Example 77 and ?7.
Proof. Using Corollary [I.3] we find
(o) 5 oo 2
I; (1) :/ dr ré=te=" / do = O'(Sd_l)/ rd=le="" dr.
0 o 0
Making the making the change of variables u = 72 so that r = u/? and

dr = %u_l/Qdu we find

I4(1) _ > %—ul —1/2 _}/Oo §-lo—ug, — =
70(5@71)—/0 uTetou du—2 u du F(d/2). (1.8)

0

Solving this equation for o(S9~1) while making use of Lemma gives Eq.
7). .

Exercise 1.1 (Folland Problem 2.62 on p. 80. ). Rotation invariance of
surface measure on S™~1.

Exercise 1.2 (Folland Problem 2.64 on p. 80. ). On the integrability of
|z|* [log |z||” for = near 0 and z near co in R™.

Exercise 1.3. Show, using Problem [1.1] that

/ windO' (w) = 1(51-]-0 (Sdil) .
a1 d

Hint: show [¢, , wdo (w) is independent of i and therefore

2 2
/S“ do (w dz/sdl-d"

Proposition 1.7. Let d € N,
RY :={zeR':2;>0for1<i<d}, Z%=2'nNRY,

and f (r) > 0 is a continuous decreasing (i.e. non-increasing) function of r > 0.
With this notation we have

S 7 (k) <oo<=»/ £ Tdr < oo,

kezs
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Proof. Let us set f (r) = f(0) for r < 0 and let @ = (0,1]% and for k € Z<,
let Qr := k + Q be the translate of Q) by k. For any z = k + y € @ we have

Ikl < llz]| and [l < [kl + lly]l < (k]| + Vd,

i.e.

||| = Vd < ||k]| < [lz]| for = € Q.
Thus it follows that

£ (el = V) = £ (k) = £ (2]} for @ € Qi

Thus if let

= > fUIkD g, (2)

d
kezs

we have shown

£ (2 = V) = F (2) > £ (al]) for = € RY. (1.9)

[ etyan ) = [~ 1t

for some constant ¢q < 0o, we may integrate Eq. 1) over R‘_f_ to find,

cd/ooof(r—\/(j)dldr>Zf||k||>cd/ f(r)yritar

kezd

Recalling that

Since

o0 [ d-1
/0 f(r—\/g)rd dr—[ f(s) 5—|—\/&) ds
gf(o)[ (er\/g)d 1ds+/ f(s) (s+\/g>d_1ds

< f(0)-C +2‘“/ f(s)s?tds

3

S

and we have shown,

caf (0) - C(d) + 2% 1/ fs)s¥ s > > f(Ik]) >cd/ f(r)ritar

keZd

from which the result easilyt follows. [ ]
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Corollary 1.8. If d € N and f(r) > 0 is a continuous decreasing (i.e. non-
increasing) function of r > 0, then

S F () < 00 = /Ooof(r)rdldr<oo.

kezd

Proof. For ¢ € {£1}, let Z¢ = {k € Z? : ¢;k; > 0 for 1 < i < d}. Then

Yo FUkD =" f (K for all £ € {£1}

kezZg ezt

and since Z% C Z? C U.Z? it follows that

ST R <00 <= ST F (IR < 00 = /Ooof<r>r“dr<oo.

d d
kEZ keZs



2

Metric-Measure Space Regularity Results

This section is a self study guide to the “approximating” Borel sets in a
metric space by closed and open subsets of the metric space. We will see similar
results in more general topological spaces later in the book. [See Section ?? and
also subsection ?? for related results.] We begin with some basic properties of
metric spaces. Throughout this section we will assume that (X, p) is a metric
space and Bx denotes the Borel o-algebra on X.

2.1 Metric space results

Lemma 2.1. For any non empty subset A C X, let pa (z) := inf{p(z,a)|a €
A}, then

pa () = pa(y)l < pla,y) Yo,y e X (2.1)

which shows pa : X — [0,00) is continuous.
Proof. Let a € A and z,y € X, then
pa (@) < plx,a) < p(z,y) + p(y, a).
Take the infimum over a in the above equation shows that
pa(z) < p(x,y) +paly) Vo,ye X

Therefore, pa (z) — pa(y) < p(z,y) and by interchanging x and y we also have
that pa(y) — pa (x) < p(z,y) which implies Eq. (2.1)). ]

Corollary 2.2. The function p satisfies,
o (z,y) = p(,y")| < p(y, ) + p(x, 2).
In particular p: X x X — [0,00) is continuous.

Proof. By Lemma [2.7] for single point sets and the triangle inequality for
the absolute value of real numbers,
|p (I',y) - p(xlay/” g |p(:r,y) - p(ﬂs,y/)| + |p(xa y/) - p(:lf/,y/)|
< p(y,y) + p(z,2").

Corollary 2.3. Given any set A C X and e > 0, then
A ={pa<e}l:={r e X:ps(z)<e}

is an open set containing A and A, | A as ¢ | 0 where A is the closure of A.
Similarly,
Foi={pa>c}={o e X :pa(a) > e}

is a closed set and F. 1 (A°)° as € | 0 where (A€)? is the interior of A° := X\ A.

Proof. Because of the continuity of p4 and the facts that (—oo,¢) is open
in R and [e,00) is closed in R, it follows that A. = p;' ((—o0,¢€)) is open and
F. = pzl ([e,00)) is closed. We have & € N.sgA. iff pa (x) < € for all € > 0 iff
pa () =0 and hence

A C{pa=0}=Nc04..
Since {pa =0} is closed it follows that A C {pa = 0}. Conversely if z €
{pa =0} then there exists {z,} C A such that lim, . p(z,z,) = 0, ie.
x, — ¢ and therefore z € A.
To finish the proof observe that

[U6>0Fe]C = m€>0F5C =Me>0 {PA < 5} =A
and therefore B
U€>OFE = A° = (AC)O .
]

Lemma 2.4 (Urysohn’s Lemma for Metric Spaces). Let (X, d) be a met-
ric space and suppose that A and B are two disjoint closed subsets of X. Then

dB (.23)

F@) =3 (z) + dp (z)

forxe X (2.2)

defines a continuous function, f : X — [0,1], such that f (z) =1 forx € A and
f(x)=01ifzeB.

Proof. By Lemma da and dp are continuous functions on X. Since
A and B are closed, da(x) > 0if v ¢ A and dp(x) > 0 if z ¢ B. Since
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ANB=0,da (z)+dp (z) >0 for all z and (ds +dp) " is continuous as well.
The remaining assertions about f are all easy to verify. ]

Sometimes Urysohn’s lemma will be use in the following form. Suppose
F Cc V C X with F being closed and V being open, then there exists f €
C (X,[0,1])) such that f =1 on F while f = 0 on V¢. This of course follows
from Lemma [2.4 by taking A = F and B = V¢.

Corollary 2.5. If A and B are two disjoint closed subsets of a metric space,
(X,d), then there exists disjoint open subsets U and V of X such that A C U
and B CV.

Proof. Let f be as in Lemmal[2.4]so that f € C' (X — [0,1]) such that f =1
on Aand f=0on B. Thenset U= {f > 1} and V = {f <1/2}. L]
We end this subsection with the following simple variant of Proposition ?7.
This proposition shows how to associate a pseudo metric to any measure space.

Proposition 2.6 (The measure pseudo metric). Let (12,8, 1) be a measure
space and define

d,(A,B):=pu(AAB)€[0,00] ¥V A,B € B.

Then d = d,, satisfies;

1.d is a pseudo metric, i.e. d(A,B) = d(B,A) and d(A,C) < d(A,B) +
d(B,C) for all A,B,C € B.

2. d(A°,C°%) =d(A,QC) for all A,B € B.

3 If{A Y ABn}o—, C B, then

Mg

d (U2 A, Us2 By) < d(An,, B,) and (2.3)

3
Il
-

d( SLO:lAna mzolen) S d(AfuBn) . (24)

NE

3
Il
_

In summary,

max {d (Ny1 An, N1 By),d(Up2q Ay, U2 By)

o0
n=1 Z An,B
- (2.5)
Proof. We take each item in turn.

1. The fact that d is a pseudo metric easily follows from the fact that 1aanc =
|14 — 1¢| and therefore,

d(A,C) = [1a—1cll; -

Page: 6 job: Supplements

2. Item 2. follows from the fact that
ASANC=[ANCIU[C°NA]=[C\AJU[A\C]|=AALC
which is also seen via,
lacace =|1ae —lege| = |[1=1a] = [1 = 1¢]| = |1a — 1lc| = lanc.
3. It is a simple exercise to verify,
[Unz1An] A [URZ, By] € UGy [An A By

and hence

d(UpZy An, UnZy Br) = p (U An] A [URZ1 Bn]) < (Ut

gi (A, A By) Zd (An, By)
n=1

which proves Eq. (2.3). Equation (2.4)) may be proved similarly or by com-
bining item 2. with Eq. (2.3)) as follows;

[An A B,))

d(NpZyAn, Nz Br)
=d (N1 A4,]%, [N Bal)

= d (U AS, U2 BS) < i d (A%, BS) = i d (A, By)
n=1 n=1

2.2 Regularity Results for Borel measures on (X, Bx)

Exercise 2.1. If (X, p) is a metric space and p is a finite measure on (X, Bx),
then for all A € Bx and ¢ > 0 there exists a closed set F' and open set V' such
that FC ACVand p(V\F)=pu(F AV) <e. Here are some suggestions.

1. Let By denote those A C X such that for all € > 0 there exists a closed set
F and open set V such that F C ACV and d, (F,V)=p(V\F) <e.
2. Show By contains all closed (or open if you like) sets using using Corollary

23
3. Show By is a o-algebra. [You may find Proposition to be helpful in this
step.]

4. Explain why this proves the result.
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Exercise 2.2. Let (X, p) be a metric space and p be a measure on (X, Bx). If
there exists open sets, {V,,}; , of X such that V;, 1 X and p (V;,) < oo for all
n, then for all A € Bx and € > 0 there exists a closed set ' and open set V'
such that F C ACV and d, (F,V) =p(V \ F) < . Hints:

1. Show it suffices to prove; for all € > 0 and A € By, there exists an open set
V C X such that AC V and p(V\ 4) <e.

2. Now you must verify the assertion above holds. For this, you may find it
useful to apply Exercise to the measures, u,, : Bx — [0, 1 (V4,)], defined
by pin (A) := n(ANV,) for all A € Bx. The ¢ in Exercise should be
replaced by judiciously chosen small quantities depending on n.

Theorem 2.7. Suppose that (X, p) is a metric space and [ is a measure on
(X, Bx) such that u(K) < oo whenever K is a compact subset of X. If there
exists open sets, {V,, }n 1, of X such that V,, T X and V,, is compact for all
n €N, then C. (X,C) is dense in LP (i) for all 1 < p < 0.

Proof. Suppose that A € By is a set such that p(A) < oo and let € > 0 be
given. By Exercise [2.2] there exists a closed set F' and an open set V such that
FcAcVand u(V\F) <e. [Notethat u(F) < p(A) <u(V)<u(ld)+e<
00.] For each m € N, K,,, :== FNV,, are compact subsets of F' such that K,,, 1 F
as m T oo. By DCT if follows lim, yoo it (V \ Kp) = (V' \ F) < € and hence
three exists a m € N so that p (V' \ K;;,) < €. Thus if we let K := K,;,, then K
is compact, K C A C V, and pu (V' \ K) < e. Moreover, since K C X = U2V,
there exists (by compactness) an n € N such that K C V,, N V.

We now define § := p (K., [V, N V]) > 0 and then define

f(z) = [l—? (ac)}+ for all z € X.

Since
2 1 6
{f>0}cC l—ng>0 C pK<§§ Cepr < cV,ny,

it follows that

DO |

supp (f) = {f >0} CV,, C V,.
Thus f € C.(X,[0,1]), f =1 on K, and f =0 on V¢, and hence
If —1al < lypvak < Ik

from which it follows that
I =1al, < v, <7
As & > 0 was arbitrary, we have shown 14 € C. (X,C) (C) for all A € Bx with

i (A) < co. This completes the proof since simple functions which are in L? ()
are known to be dense in LP (y) . |
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Corollary 2.8. If X is an open subset of R™ and i is a measure on Bx such
that p(K) < oo for all compact subsets, K C U, then C.(X,C) is dense in
LP (u) for all 1 < p < oc.

Proof. Let p (z,y) := |y — x| be the usual Euclidean metric on X C R™ and
define

1
Vn = {ch > n} ﬁBp (077'1)7

where
B,(0,n):={z € R": p(z,0) = |z| <n}.

Then V,, is an open subset of X such that

1
Vnc{pxczn}ﬂB 0,n) C X.

As V,, is closed and bounded it is compact and since V,, T X as n — oo, the
result now follows by an application of Theorem [ ]

Corollary 2.9. Suppose that (X, p) is a metric space with open sets, {Voloo, C
X such that V,, T X and V., is compact for alln € N and v is a complex measure
on (X,Bx). If [ fdv =0 for all f € C.(X), then v =0.

Proof. If we let y := |v|, then there is a measurable function, g : X — S* C
C such that dv = gdpu. Since C, (X) is dense in L' (11), there exists f,, € C. (X)
such that f, — g in L' (u) as n — oo. Therefore,

0=/andl/=/angduﬁ/xggdu=/xdu=u(X)-

This shows p (X) = 0 and hence v = 0. |

Definition 2.10. If v is a complex measure on (R™, Bgn), let U : R™ — C be
the characteristic function of v defined by,

U(A) = / e~y () V X e R™.

Corollary 2.11. Let v be a complex measure on (R"™,Bgn). If # = 0, then
v =0, i.e. the linear map,

{complex measures on R"} 5 v — ¥ € {functions on R"},

18 1njective.
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8 2 Metric-Measure Space Regularity Results
Proof. Suppose that f € C. (R"). For N > 0 large let

fn (@)= f(z+Nk).

kezn

Then fy is a bounded continuous function such that fy (z + Ne;) = fn (x) for
all z € R™. Given € > 0, by the Stone-Weierstrass theorem we can then find a
function g. (z) of the form

ge (CL’) _ Z akeiﬁkw

keA

where A Cy Z™ and aj, € C such that maxzecrn [fn () — g ()| < €. Under the
assumption that 7 = 0, we will have

/ ge (x)dv (x) = app (27r1Nk> —0

and hence

fn () dv () <elv|(R").

R

<

[ v @) g @) v ()

As £ > 0 was arbitrary, it follows that
fy(@)dv(z)=0
R’V‘L

and then by letting N — oo it follows that [, f (z)dv (z) = 0. The proof is
then completed by an application of Corollary |

Definition 2.12. If g € L' (m) where m is Lebesgue measure on (R™, Bgn),
then we define the Fourier transform of g by

g(A) = /n e~ Mg (x)dm ().

Corollary 2.13. If g € L' (m) and § = 0, then g = 0 m-a.e.

Proof. The measure, dv = gdm, is a complex measure such that o (\) =
g (A). Soif § =0 implies ¥ = 0 which implies v = 0. Hence it follows that

0:|1/|(R”):/ lgldm = ¢ =0 a.e.
Rn,
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macro: svmonob.cls

2.3 Dual Considerations

As in Theorem let us suppose for simplicity that (X, p) is a metric space
such that there exists open sets, {V,,},—,, of X such that V,, + X and V, is
compact for all n € N. We now suppose that v is a complex measure on (X, Bx)

and for f € Cy (X), let
v(f) = [ gan

i.e. we identify v with an element of Cj (X)". Our goal is to show Il oy =
|v| (X). To do this we will use the following simple lemma.

Lemma 2.14 (Sliding points). Let ¢ : C =D :={z € C: |z| < 1} be defined

by
_ ) <1
@ = 2 ={ 2 TET.

|z

Then @ is continuous and satisfies
lo(2) —w| < |z—w| ¥2z€C and w e S*,

see Figure

Fig. 2.1. Sliding points to the unit circle.

Proof. It is easy to verify ¢ is continuous. If w,z € S then

d

£|w—t2\2:i[1+t2—2tRe(1Dz)] =2[t—Re(wz)] >0 ift > 1.

dt
This shows |w — ¢ (tz)| > |w — z]| for all t > 1. |

Theorem 2.15 (Dual of Gy (X)). Let (X, p) be a metric space such that there
exists open sets, {Vn}oo ., of X such that V,, + X and V,, is compact for all

n=1"
n € N. If v is a complex measure on (X, Bx), then

lleyxye = W1 (X)-
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Proof. Let ;1 = || and g : X — ST be chosen so that dv = gdu. Then for

f € Co(X),
v f)IZ‘/dev Z‘/ngdu‘

S/ [fldp < fll, - 1w (X) = [ (X)[[£]],
X

which shows that
V]l x)e < V[ (X))

To prove the reverse inequality us Corollary - 2.8 to find f,, € C.(X) C Cy(X)
such that f, — g in L'(u) as n — oo. Let g, = ©(f,) where ¢ : C — C is the
the continuous function in Lemma 2.14] Then

|gn —§| < |‘P(fn) —§| < ‘fn —§|

and hence g, — g in L' (1) where now |[|g,||,, <1 and hence

Wloyr- > [ (9n)] = \ /X gngdu‘ S \ /X §gdu‘ — u(X) = o] (X).

This shows that [|v[|¢, x)« = v (X) and the proof is complete. ]
For completeness, let me now state a form of the Riesz-Markov theorem in
the context being considered here.

Theorem 2.16 (Riesz-Markov Theorem). Let (X, p) be a metric space such
that there exists open sets, {Vy,}o—,, of X such that V,, + X and V,, is compact
for alln € N.

n=1"

1. If ¢ is a positive linear functional on C.(X), then there exists a unique
positive measure, i, on (X,Bx) such that p(K) < oo when K is compact

and
() =nh)= [ rau
forall f € C.(X).

2. If p € Cy (X)), then there exists a unique complex measure v on (X, Bx)
such that ¢ (f) = v (f) for all f € Cy(X). Moreover the map,

{complex measures on X} > v — (f —v(f)= / fdu) € Ch(X)"
X

is an isometric isomorphism of Banach space where ||v|| := |v| (X) where v
is a complex measure.
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The next theorem gives an important and interesting example of using the
Riesz-Markov theorem. For this theorem we will be using the following notation.

Notation 2.17 Given a sequence of metric spaces, {(Xn,pn)}tor, . for each
NeN, let XV) .= Xy x -+ x Xy,

BN = By, xxxy = Bx, ® Bx, ® -+ ® Bx,,

X =X =T X, B
map,

= By, and 7™ : X — XM be the projection

™ (2) = (21,...,2n5) V2 € X.

Remark 2.18. If the metrics, p,, are all bounded by 1 (can do this by replacing

pn by 1 - if necessary), then

= 1

Z 27 xna yn
defined a metric on X whose topology is consistent with the product topology
on X.
Remark 2.19. Let

D= U, [c (X(N),IR{) o ﬂm} c C(X,R).

An easy application of the Stone-Weirstrass Theorem shows that D is a (uni-
formally) dense subspace of C (X, R). We will use this result freely in the proof
to follow.

Theorem 2.20. Suppose that {(X,, pn)}.o, is a sequence of compact metric
spaces and for each N € N, u™) is a probability measure on (X(N),B(N)). If
for each N € N,

pNTY (A% X)) =N (4) v A e BWY), (2.6)
then there exists a unique probability measure, u, on (X, B) such that

My =M VN eN.

Proof. Uniqueness. If ;4 and v are two such measures, then for F' €
C (XM R), we will have

/FOWNdﬂZ/ qu(N):/ Fonndv.
X X (V) X

from which it follows that
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/ fdu:/ fdv v f eD.
X X
By Remark 2.19 and DCT it then follows that
/ fdu:/ fdvV f € C(X,R).
X X

Applying Theorem to A = pu — v shows that u = v.
Existence. For f = For() € D, let

A(f) = /qu Fdu™.

We must first show this definition is well defined. For example we could write
f=GorWN+D) where G (1,...,2Nn+1) = F (21,...,2n) . In this case we have

X(N+1) XM % X1 X(N)

which follows by approximating F' by simple functions and then making use
of Eq. (2.6). It then follows by induction, if M > N and G (z1,...,znm) =

F(x1,...,2N), that
/ Gdp™M) = / Fdu™).
X (M) X (N)

Thus we have shown that X is well defined. It is now clearly linear and positive
on D and moreover

A [ P < P = 1],

Hence and application of the BLT theorem allows us to extend A to a bounded
linear functional on C' (X,R). If f > 0 in C (X,R) and f,, € D converges to f
uniformly, then max (f,,0) € D and

If = max (fu, 0, < If = full, — 0.

Therefore,
A f) = li_>m A (max (fy,0)) >0

which shows the extended A is still positive. By the Riesz-Markov theorem,
there exists a unique measure p on (X, Bx) such that

A(S) :/ fdp for all f € C(X,R).
b'e
Taking f = F o) with F e C’(X(N),]R) now shows

/ qu(N)zA(f):/ FOTr(N)du:/ Fd [ﬁimu}
X N) X X (N)

and hence by Theorem again it follows that u(™) = 7T£N)u. [ ]



3

Fourier Series

Theorem 3.1. Suppose that A 18 a complex measure on

((—71’,7‘() ,B = B(_mﬂ,)) . If
/ e™dy (0) =0 for alln € Z
(_7‘—777)

then v = 0.

Proof. For f € C.((—m,7),C), let F (e’) = f(#) for —7 < § < m. Then
F is a continuous function on S* (which is 0 in neighborhood of —1 € S!) and
hence by the Stone—Weierstrass theorem, given € > 0 there exists N < oo and
{amm}z,nzo C C such that

N
mzn
Eé%)l( F(z)— Z 22" <e.
m,n=0
Evaluating this expression at z = €'’ then shows
N
|f 9) — Z UMM < e

m,n=0

Therefore

/ £(0)dv (6)
(=m,m)

N
/( )[f - > am,ne“m”)‘)] dv (0)

m,n=0

<e v ((=m,m)).

As e > 0 was arbitrary it follows that
/ f(0)dv(0) =0forall feC.((—n,m),C)
(_71—771—)

and we have seen this implies v = 0. ]

Corollary 3.2. Let D := spang {9 — eme}nez Af pis a finite positive measure
on ((—7r, ), B = B(_ﬂ,ﬂ)) , then D is dense in LP (u) for all 1 < p < oc.

Proof. First proof. According to the Hahn-Banach theorem, in order to
show D is dense it suffices to show if ¢ € LP (u)" satisfies p|p = 0, then ¢ = 0.
Since LP (u)" = LP" (u), there exists g € LP* (u) such that

e=[ SO0 orarserr ),

Letting dv = gdu (a complex measure) as g € LP* (u) C L' (u) , the assumption
that ¢|p = 0 implies

0=p(O—em) = / e dv (0) for all n € Z.
(77"77")

From Theorem this implies that ¥ = 0 and hence d|v| = |g|du is the zero
measure and hence |g| = 0 for p-a.e. Thus g = 0 in LP* (1) and so ¢ = 0.

Second proof. In the proof of Theorem we have shown every element,
f € Co((—m,m),C) may be uniformly approximated by an element of D and
hence in LP (u) for all 1 < p < oo because p is a finite measure. But we already
know that C. ((—m,7),C) is denseﬂ in L? (1) and hence the proof is complete.
|

Theorem 3.3. Let m be Lebesgue measure on (—m,m) and for f,g € L? (m),

let
1

{flg) = 5~ _ﬂ £(0)g(0)de.

Then ¢, (0) := €™ for n € Z forms an orthonormal basis for L? (m).

The above results easily generalize to the case where (—7, ) is replaced by
(=, 7r)d for any d € N. We now setup some more notation.

Notation 3.4 (Periodic functions) Let Cp., (R?) denote the 2w — periodic
functions in C (Rd) ,thatis f € Cper (Rd) iff fel (Rd) and f(042me;) = f(0)
for all @ € R? and i = 1,2,...,d. We further let C* (Rd) = Cher (Rd) N

per

C* (RY) for all k € N. Here {e,-}jl:1 is the standard basis for R?.

! As we have seen, the assertion that C. ((—, ), C) is dense in LP (1) holds even if
w1 is an infinite measure which is finite on compact sets.



12 3 Fourier Series
Definition 3.5. Let

o C G (RY) = i

D =spanc {Rd Sr—e }kezd per per (Rd) .

In more detail, f € D iff there exists a function, a : Z% — C with finite support
(i.e. #{k € Z* : a(k) # 0} < c0) such that

fx)=fo(x) = Z a (k) e*® for all x € 0.

kezd

Theorem 3.6 (Density of Trigonometric Polynomials). Any 27 — peri-
odic continuous function, f : R = C, may be uniformly approzimated by a
trigonometric polynomial of the form

p(x) — Z a}\eiXx

where A is a finite subset of Z and ay € C for all A € A.

Proof. For z € S!, define F (z) := f(f) where §# € R is chosen so that
z = €. Since f is 27 — periodic, F is well defined since if § solves ¢ = z then
all other solutions are of the form {f + 27n :n € Z}. Since the map 6 — e
is a local homeomorphism, i.e. for any J = (a,b) with b — a < 2w, the map
0ecJ5 J:=1{e?:0ecJ}CS"isahomeomorphism, it follows that F () =
fow ' (z) for z € J. This shows F is continuous when restricted to .J. Since
such sets cover S!, it follows that F is continuous.

By Example ??, the polynomials in 2z and z = z~! are dense in C(S%).
Hence for any € > 0 there exists

p(z,2) = Z A 22"

0<m,n<N
such that |F (2) — p(z, 2)| < ¢ for all z € S*. Taking z = €* then implies

sup £(6) = p (¢, e ™) < ¢
6

where ‘ ‘ _
p (67'9, 6720) _ Z ammez(mfn)e
0<m,n<N
is the desired trigonometry polynomial. ]

Exercise 3.1. Use Example ??7 to show that any 27 — periodic continuous
function, f : R? — C, may be uniformly approximated by a trigonometric
polynomial of the form
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p(x) _ Z a/\eikvw

where A is a finite subset of Z¢ and ay € C for all A € A.
Hint: start by showing there exists a unique continuous function, F' :

(Sl)d — C such that F (eixl,...,ei“) = f(z) for all @ = (z1,...,24) € R™.

Exercise 3.2. Let (2 = (—7r77r)d7 B = By, be the Borel o-algebra on 2, v be
any complex measure on ({2, 8). Show that v = 0 iff

/ e dy (x) = 0 for all k € Z%.
fe)

Hint: each f € C.(£2,C) may be extended to zero on R?\ (2 and in this
way may be viewed as an element of C. (Rd,(C). Using this extended f, let
F(0) := Y jeza f(0+2mk) so that F € Cper (R?). Given € > 0, use the
Stone—Weierstrass theorem to show there exists A Cy 7% and a : A — C such
that

sup
zERC

F(z)=> a(k)e*”| <e. (3.1)

keA

Exercise 3.3. Let 2 = (-, 7r)d, B = Bg, be the Borel g-algebra on (2, and D
be as in Definition ??. If y is a finite positive measure on ({2, B) , show D is dense
in LP (2,8, ) for all 1 < p < oo. Hint: using L? (2,8, )" = LP" (2, B, 1)
where p* = % and a corollary of the Hahn-Banach theorem, show it suffices
to show if g € LP" (12, B, 1) satisfies,

/ e* g (x)dp (z) =0 for all k € Z4, (3.2)
2

then g (z) = 0 for p-a.e. z.

3.1 Dirichlet Kernel

Although the sum in Eq. (?7?) is guaranteed to converge relative to the Hilber-
tian norm on H it certainly need not converge pointwise even if f € Cper (Rd)
as will be proved in Section ?? below. Nevertheless, if f is sufficiently regular,
then the sum in Eq. (??) will converge pointwise as we will now show. In the
process we will give a direct and constructive proof of the result in Exercise 77,
see Theorem [3.11] below.

Let us restrict our attention to d = 1 here. Consider
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IOEDINIGENOESY % [/[_ ]f(x) e‘“”dx] o1 (0)

k| <n k| <n
1 .
=5 (x) et (0=2) gy
Tlmal ki<
1 f(z) D, (0 — z)dx
N 2w [ "

—m,m]

where
n

D, (9) := Z et

k=—n

is called the Dirichlet kernel. Letting o = €*?/2, we have

D (9) _ i a2k‘ _ a2(n+1) _ a—Qn _ a2n+1 _ a—(2n+1)
" = o2 -1 oa—oa 1
~ 2isin(n + 1)6 _ sin(n + )6

27 sin %0 sin %9

and therefore .

D, (9) := Z et =

k=—n

sin(n + )6

a1 3
51n20

see Figure with the understanding that the right side of this equation is

Fig. 3.1. This is a plot D; and Dsg.

2n + 1 whenever 6 € 277Z.
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Theorem 3.7. Suppose f € L' ([—m,7],dm) and f is differentiable at some
0 € [—m, 7|, then lim,_, o fr (6) = f(0) where f, is as in Eq. .

Proof. Observe that

1 1 .
— D, (0 —z)dx = — e 0=y =1
27 [—7,m] 27 [—m,m]
(3.3) ’ T klsn
and therefore,
1
Fa(0) = f(0) = 5 o [f (x) = [ (0)] Dn(0 — z)dx
1
=5 [f (2) = £ (0 = 2)] Dy (2) dz
T [77‘—777]
1 {‘W sin(n + 1)a: dx. (3.5)
2 [—m,7] sin 5z 2
If f is differentiable at 6, then
z—0 sin QZL'
(3.4) and hence there exists € > 0 such that
M, := sup —f(0 7_x)17 1) < 00.
|z|<e S 5.1‘

Using this remark it is now easily seen that

f(e_x)_f(e) ELl ([—71' ﬂ'] dm)

a1
sin §$

1[77r,7r] (l‘)

and hence the last expression in Eq. (3.5) tends to 0 as n — oo by the Riemann
Lebesgue Lemma, see Corollary ?? or Lemma [4.20)). [

Proposition 3.8 (Lack of pointwise convergence). For each
a € [—m, |/ ~, there exists a residual (non-meager set) set Ry, C Cper (R)
such that sup,, | frn ()] = oo for all f € RaEl Recall that Cper (R) is a complete
metric space, hence Ry is a dense subset of Cper (R).

Proof. By symmetry considerations, it suffices to assume o = 0 € [—m, 7).
Let dvy, (0) := =Dy, (f) d which is a complex measure on (—m, ) which iden-
tify with an element of Cp., (R)" by

2 Recall this means that R, contains a countable union of dense open ssubsets of

Cper (R) and such a set is dense in a complete metric space!
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14 3 Fourier Series

Recall that

1 1 ™ _io 1 T
Il = 5 Wnll = 5 [ 1Pate)ao =5 [

Using
xr xr
|sinz| = ’/ cosydy’ < ‘/ |cosy|dy’ < ||
0 0

in Eq. (??) implies that

sin(n + 1)0

1
sin 59

.

1 [T |sin(n+3)0| 2 [T, 1. |do
||Vn||0p Z 5 » T do = ;/0 bln(n+§)9 vl
2 [T 1. |do (nt2)m oy
_;/0 sin(n + 2)9’0—/0 |smy|§—>ooasn—>oo (3.6)

and hence sup,, [|vn||,, = co. So by uniform boundedness principal it follows
that
Ro = {f € Cper (R) : sup |vn f| = o0}

is a residual set. [See Rudin [?, Chapter 5] for more details.] |

Lemma 3.9 (Fourier Series on L'). For f € L'((—m, 7)), let

f(n) = {flon) = f( ) e~ ™m0 dg

2r J_

Then f € ¢o := Co(Z) (i.e. lim, o0 f (n) = 0) andthemaprLl(T)ifEco
is a one to one bounded linear transformation into but not onto cg.

Proof. By the Riemann Lebesgue Lemma we know that lim|,|_, o f (n)=0

so that f € ¢y as claimed. Moreover if f = 0, then by Theorem . we know

that dv (f) := 3= f (0)d6 is the zero measure and hence f(#) = 0 for a.e. 6.

This shows that A is injective. If A were surjective, the open mapping theorem
would imply that A= : ¢ — L!(T) is bounded. In particular this implies there
exists C' < oo such that

£l <C HfH for all f € LY(T). (3.7)

Taking f = D,,, we find (because D,, (k) = Ljkj<n) that ‘ D,
Eq. 1) lim,, s o0 HD" L= contradicting Eq. l} Therefore Ran(A) # ¢o.
|
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3.2 Fejér Kernel

Despite the Dirichlet kernel not being positive, it still satisfies the approximate
0 — sequence property, %Dn — &y as n — o0, when acting on C! — periodic
functions in #. In order to improve the convergence properties it is reasonable
to try to replace {f, : n € Ny} by the sequence of averages (see Exercise ?7),

— ik-(0—x)
Fiv (6) N+1Zf" N—l—lZZﬁ/[ )k'z<e e

1

=5 [_mﬂKN(G—x)f(x)dx

where
N
K = D .
w N+1n2)kz<: N+1Z% n () (38)

is the Fejér kernel which we now compute more explicitly.
Lemma 3.10. The Fejér kernel Ky in Eq. @ is given by

1 sin? (%9)

K = .
~ () N+1 sin? (g) (3:9)
and we also have the identity,
N
Ky (0) = TR L 3.10
N (0) = Z N+1 e (3.10)
k=—N

Proof. Recall the trigonometric identities,
cos(A+ B)=cosA-cosBFsinA-sinB
which subtracted gives
cos(A+ B) —cos(A— B)=—2sin A -sin B.
Further taking A = B in the last equality also gives,
cos (24) — 1 = —2sin? A.

Using these identities and a telescoping sum argument proves Eq. (3.9) as
follows,
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N

(N+1)Kn (0):=>_ Dy (0)
n=0
a 1
= 2 9 + =)0
YR %92) sin =0 - sin(n 2)
N
= +1)6) — cos (nb
“oem 2%9,;) cos((n+1)6) — cos (nd)]
1
= ——+—[1—cos(N+1)6
2 sin? %0[ cos (N +1)]
1 et

Equation ([3.10) is a consequence of the identity,

Z doekl= N = N (N 41— [k])e*?

n=0 |k|<n |k|<n<N |[k|<N

(N+1)Ky (0

Theorem 3.11. The Fejér kernel Ky in Eq. (@ satisfies:

. Ky (6) >0.

= [T Ky(0)do=1

- SUpP.<|gj<x KN (0) = 0 as N — oo for all € > 0, see Figure .

. For any continuous 2w — periodic function f on R, Kn x f(0) — f(0)
uniformly in 6 as N — oo, where

wkto{\SN

I(]\]*f(e):i i

K
21 ~ (0

—Tr

-y 1| P,

n=—N

—a)f (o) da

(3.11)

Proof. Items 1. is obvious form Eq. (3.9) and item 2. follows from the fact
that K is an average of Dirichlet kernels which all integrate to 1, i.e.

1 /7 1 L1
%/_ﬂKN@de:NHZ%/_
1=1.

N+1Z

n=0
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Fig. 3.2. Plots of Ky () for N =2, 7 and 13.

We can also prove item 2. by integrating Eq. (3.10]). Item 3. is a consequence
of the elementary estimate;

sup Ky (0) < -
e<loj<n v (@) N+ 1sin® (5)

and is clearly indicated in Figure
Finally, item 4. now follows by the standard approximate § — function argu-
ments, namely,

|KN*f(0)—f(0)|:%/ Kn(0— ) [f (o) — f(6)] da
S*/ Ky (@) |f(0 —a)— f(0)]do
1
<= 77N+1sm (%) 17l + 57 | Ex(@)1f0 =)= £ ()| da
1 1
S NIl (e) (%) 1f1l oo +|21‘1p 1f(0—a)—f(0)].
Therefore,
lim;ip KN * f— fllo <sup\st|1£) |f(@—a)—f(0)]—0asel0.
|

3.3 The Dirichlet Problems on D and the Poisson Kernel

Let D := {2z € C : |z| < 1} be the open unit disk in C = R? write z € C as
z=uwx+iyor z=re?f and let A = 68—; + 53—:2 be the Laplacian acting on
C? (D).
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16 3 Fourier Series

Theorem 3.12 (Dirichlet problem for D). To every continuous function
g € C (bd(D)) there exists a unique function u € C(D) N C?(D) solving

Au(z) =0 for z € D and ulgp = g. (3.12)
Moreover for r < 1, u is given by,
u(re') = Py / Pr(6 — a)u(e®)da =: P, x u(e'?) (3.13)
™ —T
1 T 1+ retf-a) i

where P, is the Poisson kernel defined by

- 1—r2

1 —2rcosd 412’

(The problem posed in Eq. is called the Dirichlet problem for D.)

P.(9):

Proof. In this proof, we are going to be identifying Sl = bd(D) =
{z € D:|z| =1} with [-m, 7] / (7 ~ —7) by the map 0 € [-m, 7] — € € S
Also recall that the Laplacian A may be expressed in polar coordinates as,

Au=r"19, (r_la,,u) + %283%

where 5 9
i0 i0 i0 i0
(Oru) (re’) = ot (re’”) and (9pu) (re’’) = ik (re’).
Uniqueness. Suppose u is a solution to Eq. (3.12)) and let

g(k) : 1/ g(eike)efikng

zﬂ o

and L g
a(r, k) == 2—/ u(re'®)e=*0qg (3.15)
T™J)_n

be the Fourier coefficients of g () and § — u (rei‘g) respectively. Then for
re€(0,1),

1 4 . .
=10, (roya(r k) = — r=10, (rtou) (re)e " do

Page: 16 job: Supplements

macro: svmonob.cls

or equivalently
r0, (roya(r, k) = K*a(r, k). (3.16)

Recall the general solution to
10, (rdyy(r)) = k*y(r) (3.17)

may be found by trying solutions of the form y(r) = r® which then implies
a? = k% or a = £k. From this one sees that (r, k) solving Eq. may
be written as u(r, k) = Apr!*l + Bir—I*l for some constants A and Bj when
k # 0. If £ = 0, the solution to Eq. is gotten by simple integration and
the result is 4(r,0) = Ag + Bolnr. Since 4(r, k) is bounded near the origin for
each k it must be that By = 0 for all k € Z. Hence we have shown there exists
Ay € C such that, for all r € (0,1),

1 (" ; ;
Akl = i(r, k) = 27/ u<r619)e—1k0d9_ (3.18)
™

Since all terms of this equation are continuous for r € [0,1], Eq. (3.18) remains
valid for all r € [0,1] and in particular we have, at r = 1, that

1
A / w(@®) e~ = §(k).

:E .

Hence if u is a solution to Eq. (3.12) then w must be given by

u(re') = Zg(k)ﬂkle““@ for r < 1. (3.19)
kEZ

or equivalently,
u(z) =Y g(k)z" + Y g(—k)z".
keNg keN

Notice that the theory of the Fourier series implies Eq. is valid in the
L? (df) - sense. However more is true, since for r < 1, the series in Eq.
is absolutely convergent and in fact defines a C'°° — function (see Exercise 7?7
or Corollary ??) which must agree with the continuous function, 6 — u (rew) ,
for almost every € and hence for all . This completes the proof of uniqueness.

Existence. Given g € C (bd(D)), let u be defined as in Eq. (3.19). Then,
again by Exercise ?? or Corollary 7?7, u € C* (D). So to finish the proof it
suffices to show limg_,, u (z) = g (y) for all y € bd(D). Inserting the formula

for g(k) into Eq. (3.19) gives

. 1 ™ .
u(re') = 2—/ P. (0 — a)u(e®)da for all r < 1

™ J_x
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where

Zr|k|€m5 ZT ezk5+zrk —iké

kEZL
lJrre“S
—Rel2—— 1| = ,
Re[ 1 — reid } Re[l—rew}
~ Re (1+ re“;) (1- re’i‘s) _R 1 — 72+ 2irsind (3.20)
- 11— reid|? N 1—2rcosd +r? ’
1— 2

T 1_2rcosd 12

The Poisson kernel again solves the usual approximate § — function proper-
ties (see Figure [2), namely:

1. P.(6) >0 and

1 s
— |k\ zk(0 @)
% P (0 —a)da = L g da

T ke
1 T
=50 Zrlkl / eR0=Ngn =1
kezZ -
and
2.

P (0) < L-r S0asrt1
su —_ asr 1T 1.

5<‘9|p<,, 1—2rcose + r2

A plot of P,.(0) for r = 0.2, 0.5 and 0.7.

Therefore by the same argument used in the proof of Theorem [3.11

li AN 0 —1i P, AN i0)| —
limsup |u (re”) — g ()] = limsup [(Py  g) (¢7) —g ()| = 0

which certainly implies lim,_,, u (z) = g (y) for all y € bd(D). ]
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Remark 3.13 (Harmonic Conjugate). Writing z = re'®, Eq. (3.14) may be
rewritten as ” )
1 14 ze '@ .
U = —Re ——u(e")da
(2) 27 /,,r 1—ze e (e™)

which shows v = Re I’ where

F(z):= i/ iu(em)da.

2 J_p 1 —ze e

Moreover it follows from Eq. (3.20)) that

; 1 " rsin(f — «) ;
A 2o’
Im F(re )_WIm _ﬂ1—2rcos(9—a)+r2g(e )do
(@ u) (¢
where )
Q.(8) = rsin(d)

1 —2rcos(8) + 72’

From these remarks it follows that v =: (Q, * g) (€'?) is the harmonic conjugate
of u and P, = @,. For more on this point see Section 77 below.

3.4 Multi-Dimensional Fourier Series

In this subsection we will let df, dx, da, etc. denote standard Lebesgue measure
(m) on R%, and Q := (—m, 7]?, and H := L*([—n, 7]"), with inner product given

b
y (flg) (%) / 16 d9:<217r>d /Q £(0)3(0)dm (0)

We also let ¢ () := e for all k € Z? so that {¢k},cza is an orthonormal
basis for H. For f € L'(Q), we will write f(k) for the Fourier coefficient,

F(k) = (flox) = ( )/f e~ 0dp. (3.21)

Since any 27 — periodic functions on R? may be identified with function on
the d - dimensional torus, T¢ = R?/ (27Z)" = (Sl)d. I may also write C(T%)
for Cper (R?) and LP (T?) for LP (Q) where elements in f € LP (Q) are to be
thought of as there extensions to 27 — periodic functions on R?.
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18 3 Fourier Series

Theorem 3.14 (Fourier Series). The functions 3 := {¢y : k € Z4} form an
orthonormal basis for H, i.e. if f € H then

F=Y fleryer = > f(k)ex (3.22)

kezd kezd
where the convergence takes place in L2(|—m,m]%).

Proof. Simple computations show g := {(pk ke Zd} is an orthonor-
mal set. This fact coupled with Exercise 7?7 which states span 8 is dense in
L? ([—77, w]d) completes the proof.

]

3.5 Translation Invariant Operators

Proposition 3.15. Consider. For f € L? ([—m,w|) which we identify with 2m-
periodic functions. Let fo (0) = f(0 —a) = Uyf for a € R which is now
unitary operator on L?. Suppose that T € B (L ([-m 7r])) and TU, = U,T for
all « € R, then Ty, = Ay, for some N, € C for all n € Z. If we further
assume that Y, |An| < 00, then

(TF) () = /_7T k(0 —a)f(a)da for a.e. 0, (3.23)
where -
k‘( ) _ % Z )\nezne

Proof. Since U,p,, = e~ ™%y, we have
e Ty, = TUpn = UsTop
and then taking the inner product of this equation with ¢,,, shows

e (Tonlem) = (UaTonlpm) = (TonlU-apm)
= (Tn|e™ pm) = e " (Tpy|pm) for all a € R.

From this it follows that
<T(pn|90m> =0ifn#m
3 Note that m ([—7r,7r]d \ (—7r,7r)d) = 0 so that may identify L* ([—W,Tr}d) with

rr ((—7T7 W)d) .
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and hence

mEZ

where A, := (T'on|en) -
Now let us further suppose that »°, , [An| < 0o. Then for f € L? ([—m, 7))
we have

Tf=T (flon)on = (flon) Ton = An (flen) @

neZ nez neZ

Now (leaving the details to the reader) we have

Z)\n<f|90n><,0n Z)\/ dof (o) e~ ioein?

nez nEZ

:/ dOéf Z)\ e~ o ind

nEZ
T

= daf (o) k(0 — a)
where the sums are pointwise convergent uniformly in 6. The usual arguments
now shows that

s

(Tf) () = k(0 —a) f (a)da for a.e. 6.

—T

Exercise 3.4. Suppose that (X,B,u) is a o-finite measure space and B :
L? (u) — L?(p) is a bounded linear operator such that [B, M,] = 0 for all
@ : X — C which are bounded and measurable. Show there exists a bounded
measurable function, ¢ : X — C such that B = M.

Exercise 3.5. Let y be a o-finite measure on (Rd,B) and suppose that B :
L?(u) — L?(p) is a bounded linear operator such that [B, M,,] = 0 for all
A € R where @) () = €@ for all A € R%. Show B = M, for some 1) € L™ (p).

Corollary 3.16. If B : L? (m) — L? (m) is an operator such that BT, = T, B
for all a € RY where (T, f) (-) = f (- —a) for each a € R?, then "'BF = M,
for some ¢ € L™ (m). The converse holds as well.

Proof. This is just a matter of noting that the given assumptions on B
holds iff [f_lB]-', M%] =0 for all a € R%. We then apply the previous results.
]
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4

Convolution and smoothing operators

Throughout this chapter we will be solely concerned with d — dimensional
Lebesgue measure, m, and we will simply write LP for LP (Rd, m) . The main
object of study here is the convolution of two functions.

Definition 4.1 (Convolution). Let f,g : R? — C be measurable functions.
We define

Frgl@)= | flz—y)g(y)dy (4.1)

R
whenever the integral is defined, i.e. either f(x—-)g(-) € LY(R%m) or
f(x—-)g(-) > 0. Notice that the condition that f(x —-)g(-) € L'(R? m)

is equivalent to writing |f| * |g| (x) < co. By convention, if the integral in Eq.

is not defined, let f x g (z) := 0.
Notation 4.2 Given a multi-index o € Z4, let |a| = a1 + -+ + a,
d a d o
@ ] « 9 . 0 !
x ::ij,and 6I:<8x> :H<8x]) .
Jj=1 Jj=1

For z € R and f: R — C, let 7.f : R? — C be defined by 7. f ()

— fla—2).

Remark 4.3 (The Significance of Convolution).

1. Suppose that f,g € L' (m) are positive functions and let u be the measure
on (Rd)2 defined by

dp(x,y) == f(x) g (y) dm (x)dm (y).

Then if h: R — [0, 00] is a measurable function we have

[t ndiy = [ b))y ) dn @ dn)
(R9)

(R9)?

:/( h(@) f (z— y) g (y) dm (x) dm (y)

In other words, this shows the measure (f * g) m is the same as S,u where
S (x,y) := x+y. In probability lingo, the distribution of a sum of two “inde-
pendent” (i.e. product measure) measurable functions is the the convolution
of the individual distributions.

2. Suppose that L = ZI al<k a,,0% is a constant coefficient differential operator
and suppose that we can solve (uniquely) the equation Lu = ¢ in the form

u(@) = Kg(@):= [ kel
where k(z,y) is an “integral kernel.” (This is a natural sort of assumption
since, in view of the fundamental theorem of calculus, integration is the
inverse operation to differentiation.) Since 7,L = L, for all z € R?, (this is
another way to characterize constant coefficient differential operators) and
L' = K we should have 7, K = Kr,. Writing out this equation then says

[ K@ = =gty = () (0 = 2) = 7Kg (@) = (Kr.g) (0

= / k(x,y)g(y — 2)dy = / k(x,y + 2)g(y)dy.
Rd Rd

Since g is arbitrary we conclude that k(z —z,y) = k(x,y+ 2). Taking y = 0
then gives
k(z,z) =k(z — 2,0) =: p(xz — 2).

We thus find that Kg = p * g. Hence we expect the convolution operation
to appear naturally when solving constant coefficient partial differential
equations. More about this point later.

4.1 Basic Properties of Convolutions

Proposition 4.4. Suppose that p € [1,00), then 7, : LP — LP is an isometric
isomorphism and for f € LP, z € R? — 1, f € LP is uniformly continuous.

Proof. The assertion that 7, : LP — LP is an isometric isomorphism follows
from translation invariance of Lebesgue measure and the fact that 7_, o7, = id.
Since



20 4 Convolution and smoothing operators

HTerhf - Tzf”p = ||Thf - f||p7
to see that z — 7, f is uniformly continuous it suffices to show it is continuous
at 0. When g € C, (Rd) a relatively simple use of the dominated convergence
theorem"| shows limy, ¢ [|[7ag — g||, = 0 and hence z — 7. ¢ is continuous in this
case. As C, (Rd) is dense in LP (Rd) , for any f € LP there exists f,, € C, (Rd)
such that lim, . || f — anp = 0. It then follows that

sup HTzf - Tzanp = H,f — anp —0asn— oo
z€ER4

and hence R? 3 z — 7, f € L? (m) is the uniform limit of continuous functions,
z — T, fn, and therefore is itself continuous.
|

Proposition 4.5. Suppose that p,q € [1,00] and p and ¢ = p* = 1% are
conjugate exponents, f € LP and g € LY, then fxg € BC (Rd) with f * g
being uniformly continuous and satisfying, || f * gl < | fll, lgll, - If we further

assume that p,q € (1,00) then fxg € Cy (Rd) .

Proof. The existence of f * g () and the estimate [f * g| (z) < | fIl, llgll,

for all z € R? is a simple consequence of Holders inequality and the translation
invariance of Lebesgue measure. In particular this shows || f x g, < [|f], [l9]l, -
By relabeling p and ¢ if necessary we may assume that p € [1,00). Since

fraarn)=f=o@l=| [ [Flath=9)-F@=nlsl)dy

< lr—nf = fll, llgll,

it follows that

Sélﬂgdlf*g(ﬁh)*f*g(x)l <lr-nf—fll,llgll, > 0ash—0
proving the uniform continuity.

If1 <p<oo, welet fr(x) = f()1ljz<n and g, () = g(x) Ljzj<n SO
that f, — f in L? (m) and g, — ¢ in L?(m) as n — oco. By what we just
proved f, * g, is continuous and it is easily verified that f, * g, is supported
in Bay, (0), ie. fr *x gn € Ce (Rd) . The proof will be completed by showing

fn*gn (x) = fxg (x) uniformally in # € R and hence fxg € C.. (RY) = Cp (R?) .
The uniform convergence is a consequence of the simple estimates,

”f *g— fn *gnHoo < Hf *g— fn *g”oo + an *g— fn *gn”oo
< |f = fally llglly + L fnll, g = gnll,
<|f = fall, llgll, + 1N, llg = gnll, = 0 as n — occ.

! The reader should construct the appropriate dominating function.
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Alternative proof. First suppose that g is compactly supported and let
fn () = f (@) 1jg/<n- Then f, * g € Cc (R?) and

Ifnxg = F* gl < If — fall, lgll, = 0 as n — oo

and hence f x g € Cy (]Rd) . Now for general g, let g, () = g () 1j3/<,, so that
fxgn€Cy (Rd) and

1f*gn = fxgllee < fll, lg = gnll, = 0asn — oo
andsof*geCo(Rd). [

Theorem 4.6 (Approximate § — functions). Let p € [1,00], ¢ € L' (RY),
a:= [pa () dz, and for t >0 let o, (x) = t~%p(zx/t). Then

1. If f € LP with p < oo then s x f — af in LP ast | 0.

2. If f € BC (RY) and f is uniformly continuous then ||y * f — af| .. — 0 as
t40.

3. If f € L™ and f is continuous on U C, R? then ¢ x f — af uniformly on
compact subsets of U ast | 0.

(See Proposition below and for a statement about almost everywhere
convergence. )

Proof. Making the change of variables y = tz implies
et @= [ Fe-nety= [ fa-tpd
so that
porf @) —af (@) = [ ft2) = F @) 0 () ds
Rd

- / raf (@) = £ (@) o (2) dz. (4.2)

Hence by Minkowski’s inequality for integrals (Theorem ?7), Proposition
and the dominated convergence theorem,

loes s = afl, < [ lried = £l o (] ds 0 as 4.

Item 2. is proved similarly. Indeed, form Eq. (4.2)

o s =afl < [ lmef = Flllo ()] dz
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which again tends to zero by the dominated convergence theorem because
limy o ||7¢- f — fll., = 0 uniformly in z by the uniform continuity of f.
Item 3. Let Bg = B(0, R) be a large ball in R and K CC U, then

sup [py x f (z) — af (z)|
reK

<|[ We-t)-r@le@d+|[ a-t-@leE) i
<[ @l s (fe—t) = f@l 20l [ leG)ld:

R

<lpl sw |fa—t)-f@I 420l [ lollds

r€K,2€BR |z|>R

so that using the uniform continuity of f on compact subsets of U,

limsup sup | * f (z) — af (z)] < 2Hf||oo/ lp (2)|dz — 0 as R — oo.
tl0 zeK |z|>R

Exercise 4.1 (Similar to Exercise ??.). Let p € [1,00] and |[7 — || 1o (m))
be the operator norm 7, — I. Show |7, — I{[;(1s () = 2 for all z € R<\ {0}
and conclude from this that z € RY — 7, € L (L? (m)) is not continuous.

Hints: 1) Show 7. — Il zomy) = [|721er —IHL(Lp(m)). 2) Let z = te
with ¢ > 0 and look for f € L? (m) such that 7, f is approximately equal to — f.
(In fact, if p = oo, you can find f € L* (m) such that 7.f = —f.) (BRUCE:
add on a problem somewhere showing that spec(7.) = S* C C. This is very
simple to prove if p = 2 by using the Fourier transform.)

Proposition 4.7. Suppose p € [1,00], f € L' and g € LP, then f x g (x) exists
for almost every x, f*g € LP and

1+ gll, < 1711 Mlgll, -

Proof. This follows directly from Minkowski’s inequality for integrals, The-
orem 77, and was explained in Example 77. [

Definition 4.8. Suppose that (X, 7) is a topological space and p is a measure
on Bx = o(1). For a measurable function f : X — C we define the essential
support of f by

supp, (f) ={r € X : u({y € V': f(y) # 0}}) > 0 V neighborhoods V' of x}.
(4.3)
Equivalently, © ¢ supp,, (f) iff there exists an open neighborhood V' of x such
that 1y f =0 a.e.
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Tt is not hard to show that if supp(p) = X (see Definition ??) and f € C' (X)
then supp,, (f) = supp (f) := {f # 0}, see Exercise ??.

Lemma 4.9. Suppose (X, T) is second countable and f : X — C is a measurable
function and p is a measure on Bx. Then X := U \supp,, (f) may be described
as the largest open set W such that flw (z) = 0 for p-a.e. x. Equivalently put,
C :=supp,, (f) is the smallest closed subset of X such that f = flc a.e.

Proof. To verify that the two descriptions of supp, (f) are equivalent, sup-
pose supp,, (f) is defined as in Eq. (4.3) and W := X \ supp,, (f) . Then

W={zxeX:3735V >zsuchthat u({y € V: f(y) #0}}) =0}
=U{V Co X : p(fly #0) =0}
=U{V C, X : fly =0 for p-a.e.}.

So to finish the argument it suffices to show p (f1y # 0) = 0. To to this let U
be a countable base for 7 and set

Up:={Vel: fly =0ae}.

Then it is easily seen that W = Ul{y and since Uy is countable
p(flw #0) < > p(fly #0) =0.
Veuy

Lemma 4.10. Suppose f,g,h : R — C are measurable functions and assume
that x is a point in R? such that |f| * |g| (z) < oo and |f| * (|g| * |h|) (z) < oo,
then

1. fxg(x) =gxf(x)

2. x (g h) (x) = (f xg) * h(z)

3. If z€ R and 7.(|f| * |g|) (z) = |f| * |g| (x — 2) < o0, then
T(fx9) (2) == fx g(2) = [ x 729 (2)

4. If x ¢ supp,, (f) + supp,, (9) then f*g(x) =0 and in particular,

supp,, (f * g) C supp,, (f) + supp,, (9)

where in defining supp,,, (f*g) we will use the convention that “fxg (x) # 07
when || x]g| (z) = oo.
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22 4 Convolution and smoothing operators

Proof. For item 1.,

[f]* gl (z) = /Rd |f] (x —y) |9l (v)dy = /Rd |1 () lg] (y — z)dy = |g| * | f| ()

where in the second equality we made use of the fact that Lebesgue measure
invariant under the transformation y — x —y. Similar computations prove all of
the remaining assertions of the first three items of the lemma. Item 4. Since f *
g(z) = f*g(x)if f = f and g = § a.e. we may, by replacing f by flsupp,, (r) and
g by glsupp, (g) if necessary, assume that {f # 0} C supp,, (f) and {g # 0} C

Supp,, (9) . So if z ¢ (supp,, (f) + supp,, (9)) then = ¢ ({f # 0} + {g # 0})
and for all y € RY, either x —y ¢ {f # 0} or y ¢ {g # 0}. That is to say either

x—y € {f =0} ory € {g =0} and hence f(z—y)g(y) = 0 for all y and therefore
f*g(z) = 0. This shows that f x g = 0 on R?\ (suppm (f) + supp,, (g)) and
therefore

R%\ (Suppm (f) + supp,, (9)) C R%\ supp,,, (f * 9),
i.e. supp,, (f * g) C supp,, (f) + supp,, (9) - m

Remark 4.11. Let A, B be closed sets of R?, it is not necessarily true that A+ B
is still closed. For example, take

A={(z,y):x>0and y > 1/z} and B={(z,y):x <0and y > 1/|z|},

then every point of A + B has a positive y - component and hence is not zero.
On the other hand, for > 0 we have (z,1/x) + (—z,1/z) = (0,2/x2) € A+ B
for all z and hence 0 € A + B showing A+ B is not closed. Nevertheless if one of
the sets A or B is compact, then A 4 B is closed again. Indeed, if A is compact
and =, = a, +b, € A+ B and z,, — = € R?, then by passing to a subsequence
if necessary we may assume lim,,_, o, a, = a € A exists. In this case

lim b, = lim (z, —a,)=x—a€B
n—oo n—oo

exists as well, showing z =a+b€ A+ B.

4.2 Young’s Inequalities

Theorem 4.12 (Young’s Inequality). Let p,q,r € [1,00] satisfy

If f € LP and g € L? then |f| *|g| (x) < oo for m-a.e. x and
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1 gll, < 1171, llglly - (4.5)

In particular L' is closed under convolution. (The space (L', %) is an example
of a “Banach algebra” without unit.) [See Section ?? for an interpolation proof
of this theorem.]

Proof. By the usual sorts of arguments, we may assume f and g are positive
functions. Let «, 8 € [0,1] and py, pz € (0,00] satisfy p;* +p; -+~ = 1. Then
by Hélder’s inequality, Corollary 77,

frat@) = [ e =n0)0"] £ = )9 dy

1r 1/p1
< ( flz - y)(l"”g(y)(lﬁ)rdy> </ flx - y)‘”’ldy) x
]Rd Rd

1/p2
X(/ g(y)ﬁ’”dy)
R4
1/r
= ([ fa =gy} 11, ol

Taking the r*" power of this equation and integrating on x gives

If * glly < fla =)= g(y) Prdy ) da - ||F)12,, gl
ra \Jga P Bp
1—a)r 1-08)r r
= A1 gl I Nglign, (4.6)

Let us now suppose, (1 —«a)r = ap; and (1— 8)r = Bps, in which case Eq. (4.6))
becomes,
I * gl < 1 fllap, 1915,

which is Eq. (4.5) with
p:=(1—a)r=ap; and ¢ := (1 — B)r = Bps. (4.7)

So to finish the proof, it suffices to show p and ¢ are arbitrary indices in
[1,00] satisfying p~! + ¢! =1+ r~L. If o, B, p1, p2 satisfy the relations above,
then

= and 8 = 4
4+ p1 T+ p2
and
1 1 1 1 1r+ 1r+
S T S p1_~_7 b2
P q api apz p1 T p2 T
1 1 2 1
=— 4+ —4+-=14+-.
P1 b2 r r
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Conversely, if p, ¢, r satisfy Eq. (4.4)), then let o and § satisfy p = (1 — a)r and
g=(1-=0)r, ie.
r—p r—4q q

o= —1-Pcqanap=""0 1Ty
T T T T

Using Eq. (4.4) we may also express « and 3 as

1 1
a:p(l—g)zﬂandﬂzq(l—lf))zo

and in particular we have shown «, 8 € [0,1]. If we now define p; := p/a €
(0, 00] and py := ¢/ € (0, 0], then
1 1 1 1 1 1
—+—+=-=B>+a=+-
pr p2 T q p T
1 1 1
=(1-=)+(1==)+-
(- D+-7)+;
1 1
—2- (1+> +-=1
T T
as desired. =

Remark 4.13. Here is a scaling argument that explains why Eq. (4.4)) is the only
possible relationship for which Eq. (4.5) can hold. For A > 0, let f) (z) := f(Az),
then after a few simple change of variables we find

1all, = A=VP I £II and (f * g)x = Afr * g
Therefore if Eq. (4.5) holds for some p, ¢,r € [1, 0], we would also have
1 * gll, = A7 * 9Nl S AYA A, lgall, = AT == 71| lg]l,

for all A > 0. This is only possible if Eq. (4.4)) holds.

4.3 Convolution smoothing

We will often wish to take ¢ in Theorem to be a smooth function with
compact support. The existence of such functions is a simple consequence of
the result of the next exercise, see Lemma [£.14]

Exercise 4.2. Let

e Vtif t >0
f(t)_{ 0 ift<o0.

Show f € C*°(R, [0, 1]). Hints: you might start by first showing lim, o f(™ (¢) =
0 for all n € Ng.
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Lemma 4.14 (Smooth bump functions). There exists ¢ € C°(R?, [0, 00))
such that ¢ (0) > 0, supp(p) C B(0,1) and [y, ¢ (x)dr = 1.

Proof. Define h(t) = f(1—t)f(t+1) where f is as in Exercise[d.2] Then h €
C(R,[0,1]), supp(h) C [~1,1] and h (0) = e~2 > 0. Define ¢ = [5, h(|z)?)dz.
Then ¢ (z) = ¢~ h(|z|?) is the desired function. ]

The reader asked to prove the following proposition in Exercise 7?7 below.
Proposition 4.15. Suppose that f € L}, ,(R% m) and ¢ € C} (Rd), then f *
€ CY(RY) and 8;(f * ) = [ * Oyp. Moreover if ¢ € C® (RY) then fx* ¢ €
C> (RY) .

The existence of smooth bump functions along with Proposition [£.15] allows
us to construct smooth functions approximating most any function we like. Here
are some useful results along this vein.

Corollary 4.16. Let X C R? be an open set and p be a K-finite measure on
Bx.

1. Then C*(X) is dense in LP(u) for all 1 < p < oco.
2.If h € L}, () satisfies

loc
/ fhdu =0 for all f € CZ°(X) (4.8)
b's

then h () = 0 for p-a.e. x.

Proof. Let f € C.(X), ¢ be as in Lemma ¢ be as in Theorem [4.6|and
set Yy := p#(f1x) . Then by Proposition Py € C*°(X) and by Lemma|4.10
there exists a compact set K C X such that supp(y;) C K for all ¢ sufficiently
small. By Theorem 1y — f uniformly on X ast |0

1. The dominated convergence theorem (with dominating function being
| flloo 1x), shows ¥, — f in LP(p) as t | 0. This proves Item 1., since
Theorem ?7? guarantees that C.(X) is dense in LP(u).

2. Keeping the same notation as above, the dominated convergence theorem
(with dominating function being || f|| |2 1x) implies

0=l hdp = | limhdp = hdj.
tlfg/xwu /thﬁ)lwt,u /Xfu

The proof is now finished by an application of Lemma ?7.
Alternatively: Let {¢:},., be an approximate d-sequence as above and
for f € C.(X) and K = supp (f) we will have ¢, x f € C® (Rd) with

supp (¢ * f) C Ky = {x e R : dg (z) < t}
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24 4 Convolution and smoothing operators

where K; C X for ¢ small enough. By assumption and the dominated con-
vergence theorem we find,

/fhd,u:lim/ wr* f-hdp=0forall feC.(X).
X o Jx

Now choose open sets, V;, C X, such that V), is a compact subset of X and
Vo 1 X as n — oo and define dv,, = 1y, hdp — a complex measure. Then for
any f € C.(V,) we have

/deun:/xflvnhdu:/xfhduzo

and therefore v,, = 0 from which it follows that
0= Il () = [ 1y, Ibldp
X

Letting n — oo then shows 0 = [ |h|dp, i.e. h =0 p a.e.

Exercise 4.3. Show C° (Rd) is dense in LP (Rd, m) for any 1 < p < 0.

Lemma 4.17. Given a rectangle R in R, say R = [a1,b1) X -+ X [an, by), then

there exists fr, € C° (Rd) such that fr, — 1g boundedly.

Proof. It suffices to consider the one dimensional case. Let ¢ € C'°(R) such
that ¢ > 0, ¢ is supported in (—1,0) and [; ¢ (z) dz = 1. Set ¢ (z) = %(p(f)
Then

©e * 1igp) () = /Rsoe (¥) Ljap) (z —y)dy = /Rso (¥) Ljap) (x —cy) dy
0
- / 0 ) Lay (& — £9) dy — Lpapy (z) s € L0
—1
for all z € R. ]

Corollary 4.18 (C*® — Uryshon’s Lemma). Given K CC U C, RY, there
exists f € C(R?,[0,1]) such that supp (f) C U and f =1 on K.

Proof. Let d be the standard metric on R? and ¢ := d(K,U®) which is
positive since K is compact and d(z,U¢) > 0 for all © € K. Further let V :=
{z € R : d(z, K) < £/3} and then take f = ¢, /3% 1y where ¢; () = t~%p(z/t)
as in Theorem [4.6] and ¢ is as in Lemma [£.14] It then follows that

supp (f) C supp(pe/3) + Veyz C Vaeyz C UL
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Since Va3 is closed and bounded, f € C°(U) and for z € K,

f(x) = /Rd Lagy,k)<e/3 - 905/3(55 —y)dy = /Rd %/3(33 —y)dy = 1.

The proof will be finished after the reader (easily) verifies 0 < f < 1. |
Here is an application of this Corollary whose proof is left to the reader,
Exercise 77.

Lemma 4.19 (Integration by Parts). Suppose f and g are measurable

functions on R? such that t — f(x1,...,%i 1,6, Tip1,...,2q) and t —>
g(x1, . L1, b g1, - .., Tq) are continuously differentiable functions on R for
each fived x = (x1,...,74) € R%. Moreover assume f - g, 6% -g and f - é%gi are

in L' (R?, m). Then

With this result we may give another proof of the Riemann Lebesgue
Lemma.

Lemma 4.20 (Riemann Lebesgue Lemma). For f € L'(R% m) let

f(&) = @m)~ "2 | f(z)e " dm (x)

Rd

@2m) = 2| £l -

,in f is for later convenience.)

be the Fourier transform of f. Then f e Cy (Rd and Hf”

(The choice of the normalization factor, (2m)~%/?

Proof. The fact that f is continuous is a simple application of the dominated
convergence theorem. Moreover,

x) dm(x m)~4/2
< [ 1 @ldm (@) < (2042 1],

so it only remains to see that f(f) — 0 as |{] — oo. First suppose that

feCcx (]Rd) and let A = Zj 1 8 9a7 be the Laplacian on R?. Notice that

677 eTI8T = —jge7 T and Ae”HT = |§|2 e~ %% Using Lemma repeat-
edly,

Rd

AR f (z) e dm (x /f ) Ake= T dm (x 2’“/ f (@) e~ dm ()
=@ g f(©)
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for any k£ € N. Hence
(2m)¥2 | ()| < eI | Ak £, 0

as |¢] — oo and f € Cy (R?) . Suppose that f € L! (m) and f € C° (R?) is a
sequence such that limy_, o || f — fx|l; = 0, then limj_, f— ka = 0. Hence

f € Cy (Rd) by an application of Proposition 77. [

The next two results give a version of Theorem where the convergence
holds almost everywhere by making use of the Lebesgue differentiation Theorem
?7?. Recall for f € Lj,, (]Rd) that, by Theorem 7?7, the Lebesgue set of f,

1
L(f)i={zere: lgﬁ)le(/)lf(y)—f(w)ldy=0 ,

is a set of full Lebesgue measure, i.e. m (R?\ L (f)) = 0.

Proposition 4.21 (Theorem [4.6] continued). Let p € [1,00), p > 0 and
p e L™ (Rd) such that 0 < ¢ < Clp(q,p) for some C' < oo cmded (z) da: 1.
If feLl,.(m), andx € L(f), then

lim (90 + f) (2) = [ (),

where p; (v) :=t"%0 (x/t). In particular, ¢, * f — f a.e. ast | 0.

Proof. Notice that 0 < ¢; < Ct™%1p(g ) and therefore for x € L(f) we
have, using Theorem 7?7, that

- —|/ (- —f(z)]sot(y)dy]
<[ re=n-1@le

<cet [ fa-y - f@ldy
B(0,pt)

1

_C(pd)
DB 0] Lo

]
The following theorem is an extension of Proposition |4.21

Theorem 4.22 (* Theorem 8.15 of Folland). More general version, assume
that |¢ ()| < C (1 + |x\) (@) 4nd Jgpa @ (x) dz = a. Then for all z € L(f),
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|f(x—y)— f(z)|dy —0ast]O.
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lim (0 ) (2) = of (a)
and in fact,

L (o) i=timsup [ |f (@~ 3) = £ (@)l s ()| dy = 0.

tl0

Proof. Throughout this proof f € L! (Rd) and x € L(f) be fixed and for

b>0let )

0(b):=—
b ly|<b
From the definition if £ (f) we know that limy ¢ ¢ (b) = 0. The remainder of the
proof will be broken into a number of steps.

1. For any n > 0,

[f (z —y) = [ (z)]dy.

L(x)—limsup/|< @ —1) — F (@) loe ()] dy

tl0

which is seen as follows;

/> |f (@ —y) = f (@)l (y)] dy

lee (y)| dy

ly|>n

1 n+e
o YA R )
<o [ ie-al(rp) arr@if e

Ccte
< ——= Il +1f ()] lp (2)|dy — 0 as t ] 0.
(t+77) * ! |z|>n/t

</|yl>nf<x—y>||sat W)dy +1f ()

2. For any p > 0,

/|< \f(w—y)—f($)||%(y)\dy=t_d/ @) — F @) 1e (w/0)] dy

ly|<p

<or5(p) " = 05 (o) (£)".

In particular p < kt for some k, then
[ e = @l wldy < Ok ) 0 as Lo
yl<p

3. Given items 1. and 2., in order to finish the proof we must estimate the
integral over the annular region {y € R? : kt < |y| < n} . In order to control this
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26 4 Convolution and smoothing operators

integral we are going to have to divide this annular region up into a number
of concentric annular regions which we will do shortly. For the moment, let
0 < a < b < oo be given, then

/<| |<b|f(96—y) — (@) let (y)l dy

sort [ reew-s@ (1)
sot | reen-s@(eg)

—(d+e)
<cris ) (1+ %)

—(d
= Ot~ (49§ () p(d+o) (1 + %) “epe

— C5 (b) <Z)(t+i)d+

Taking a = b/2 in this expression shows,

/>< |<b|f(x7y) — [ (@) |t ()] dy

<3 (v) (Z)W
— C5 (b) (Z)W

Taking b = 2_’“7) and summing the result on 0 < k < K — 1 shows

K-1

/ @) — £ (@)l loe ()] dy
2= (kD n<ly| <27y

k=0

K-1 . ¢ € 1
<C 0(27
- kz_o () 2’“?7) (2t +1)***

__Cim) (t
2t + 1) \n
__Cim) (t
(2t + 1) \n

We now choose K so that QK% ~1 (i.e. 27Kn ~ t) and we have shown,
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/ ey @V T @l Wl dy
2= Kn<|y|<n

K—-1
- / (@ —y) — f @) |oe )| dy < C5 ().
2=+ Dn<ly|<27ky

k=0

4. Combining item 2. with p = 275y ~ ¢ with item 3. shows
[ i@ f@llew)ldy < s,
lyl<n

Combining this result with item 1. implies,

L(x)zhmsup/ @ — 1) — F (@)l loe ()] dy
tl0 lyl<n

<Cd(m)—0asnlo0.
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5

Fourier Transform

5.1 Motivation

Our first goal is to motivate the Fourier inversion formula from the inversion
formula for Fourier series (see Exercise 7?7 below for more details). To do this,
for L >0, let Hy, := L?([-nL,wL]) be the L2-Hilbert space equipped with the
inner product

1
flg
< | > 27TL [—mwL,wL)

The linear map, Uy, : Hy — Hp, defined by

(Upf)(z):= f (L7 'z) for f € Hy

f(x) g (z) de.

is unitary since

1 1
27TL/[—7rL,7rL] |f(L (E)| dv = 271'

IAT

If(0)do = || £]7.

[_71'777]

ULt} =

Letting ¢y (z) = "M, we know that {¢y},— . is an orthonormal basis for Hy

— 00
and therefore {(p],; =Upp = @Lflk}iiioo is an orthonormal basis for Hy,.

Suppose, for simplicity, that f € C! (R). For sufficiently large L we will
have for |z| < wL that

f @) =" (flei), ek (x)

k€EZ
Zf (\ﬁ o L]f(y)e““y“dy> ¢k ()

( ) etke/L (5.1)

where f is the Fourier transform of f defined by,

R 1 ey
() :ZE/Rf(y)e vy,

ZM

Moreover,

1F 132y = 20 L (f1), =27 > [(Flek), |
kEZ
2

1 / k)L
=— fy)e ™/ dy
2rL kez |/ [-mL,wL]
AR
= — —. 2
> (1) (5.2

Formally passing to the limit in Eqs. (5.1) and (5.2) suggests that

1= g | st 1 =

L2(m)

which leads one to suspect that the Fourier transform, f — f , is a unitary
operator on L? (R). We will eventually show this is the case after first showing
how to interpret f for f € L?(R).

Exercise 5.1 (Wirtinger’s inequality, Folland 8.18). Given a > 0 and
f € C'([0,a],C) such that f (0) = f (a) =0, showﬂ

/|f o < ( /|f ) do.

Hint: to use the notation above, let 7L = a and extend f to [—a, 0] by setting
f(=x) = —f () for 0 <z < a. Now compute [ |f (z) )|? dz and I If (= )|? da
in terms of their Fourier coefficients, <f|<p£>L and <f’|g0k> respectively.

We now generalize to the d — dimensionsal case. The underlying space in this
section is R? with Lebesgue measure. As suggested above, the Fourier inversion
formula is going to state that

r@=(m) [Laees| [ arwend]. (53

If we let € = 27, this may be written as

! This inequality is sharp as is seen by taking f (z) = sin (72 /a) .



28 5 Fourier Transform

f@) = [ dnee [ ayp e
R4 R4

and we have removed the multiplicative factor of (i)d in Eq. at the
expense of placing factors of 27 in the arguments of the exponentials. [This
is what Folland does.] Another way to avoid writing the 27’s altogether is to
redefine dr and d€ and this is what we will do here.

Notation 5.1 Let m be Lebesgue measure on R?, ¢ = ¢q = (27r)7d/2, and

define:
d\ (z) :==dz := cqdm (z) and d€ := cqdm (§) .

To be consistent with this new normalization of Lebesgue measure we will rede-

fine ||fl,, and (f,g), as

/p

||fp=</Rd|f($)pdx)1/p=<< ) i >> ,

/ f(x)g(x)dz when fg e L.

and

We also define
(flg) = / f(2) g (z)dx when fg € L
and a renormalized convolution by f¥g:=cq- f*g, i.e.

fXg(x / flz—y y)dy=/Rdf(x—y)g(y)cddm(y)-

The following notation will also be convenient; given a multi-index « € Z‘i,
let |o] = a1 + - + ag,

d A a d a;
= oe = (5) =1 (5;) e

j=1
INEARNEANNEWAY
-\ ox)  \iox
When z € R% we let |2| = Zj 175 2 (which is inconsistent with |a| for a € Z%)

and further let

(z) == (1+|z|*)"/? and v, (z) = (1 + |z|)* for s € R.
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5.2 Fourier Transform formal development

Definition 5.2 (Fourier Transform). For f € L' (R%, m), let

FO=FN©= [ eor@dr=a [ @@ 64

d

and let f¥ (&) = (F71f) (§) :== f (=€), that is
e =F1HE© :/ erEf(6)de = Cd/ eEf (&) dm(€),  (5.5)

where as above,
1\
ca=|—=—
‘ < v 27?)
Remark 5.3. For f € L' (m), then both fand f¥ arein C, (Rd) . The vanishing

at infinity is exactly the Riemann Lebesgue lemma and the continuity easily
follows from the dominated convergence theorem.

Ezxample 5.4. If —oo < a < b < oo, then

—ikx —ika —ikb
_in e " 1 e —e
ey = — — b =

1
gy (k) = — -
: ’b]( ) \/27r/a Vor —ik V2T ik
If b > 0 and a = —b, this reduces to
. 2 sin (kb)
b (k) = Vor k-

Notice in this case that 1j, 5 € L2 (m)\ L* (m).

Lemma 5.5 (Transforms of Gaussians). For a > 0 and A € R,

21 2
e 2a:v zAwd '767ﬁ)\ )
R a

Proof. Letting

we have
) :i/ze zaa’ gire g — L ie’%a""?ze”‘””dyc
R R dx
1 i2d 1
= 7/ e 2% ey — —ZAf(N).
a Jp dx a
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Solving this equation for f () shows,

where (upon letting y = v/ax)

_laz? _1,2dy 2m
fOz/eé‘”d:r:/e%‘/—: —
© R R Va a

and the proof is complete. [

Corollary 5.6. If a > 0 and A € R%, then

/2

—Lalz|? ixx 2 — 2 AP

e 2 e tdr = — e 2altl
R a

Corollary 5.7. Fort >0 and x € R? we let
pi (z) = tid/267i‘z|2, (5.6)

then -
pe (&) =2 and (31)” (2) = pi (2). (5.7)
Theorem 5.8 (Fourier Inversion Theorem 1). Suppose that f € L' and
fe L1 then
1. there exists fo € Co (Rd) such that f = fo a.e.,

2. fo=F 'F f and fo=FF ',
3. f and f are in L' N L™ and

411l = || ], -

In particular, F : & — S is a linear isomorphism of vector spaces. [This
comment is now out of place./

Proof. First notice that f e Cy (Rd) C L™ and f € L' by assumption, so
that f € L' N L. Define f, := f¥ € C (Rd) , then

fo (@)= (f)" (x) = <217r>d/2 /R dkf (k) e

d/2 R ) .
= lim () / dkf (k) e e~ 5%* by DCT.
al0 s R4

2 We will see shortly that f will be in L! (m) provided f has sufficiently many
derivatives on L' (m).
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d/2 . ) 2
R4 Rd

d/2 , N
) dyf () [ deite =5
R

“ .
d/2 7o /2 ) ,
() (3) Lemrrow

Thus we have shown, fy (z) =lim, o (d, * f) (x) where

o= (2w () (5)

By Theorem Sax f — fin L' (m) as a | 0 and hence we conclude that
fo(z) = f(x) for a.e. z.Along the way we have shown F~LF f = fo = f a.e..
A similar computation shows fi; := FF ' f = f a.e. and as both f; and f, are
continuous it follows that f; = fj.

For the last item we note,

For fixed a > 0 we have

/ dkf (k) et e 5k = (
R4

9~ ¥I= 5l

Hfo/Rdf(s)f(s)dg: [ e /Rddzﬁemg

~

_ / de F () / de £(€) €€ (by Fubini)
Rd Rd

_ / de T (@) f (x) = |||
R4

because
/ déf (&) e = F1f (x) = f (x) for ae. .
Rd

[
The next theorem summarizes some more basic properties of the Fourier
transform.

Theorem 5.9. Suppose that f,g € L'. Then

1. feC (R) and HfH < fllpreny or equivalently,

17 = callflliagmy -

2. Fory € RY, (1,f) " (&) = e"WEf (€) where, as usual, 7, f (z) :== f(z —y).
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30 5 Fourier Transform

3. The Fourier transform takes convolution to products, i.e. (f*g)A = AQ, i.e
1\ -
() U9 =F@a@.

v

4. The operations of “” and are interchanged under complex conjugation.

For example, (f) = (fV).
5. For f,g € L,

(f.9) = (£.3) and (flg) = (f1g")

6. If T : R* = R? is an invertible linear transformation, then

(foT) (&) =|detT|™  f((T™1)"€) and
(foT)" (&) =|detT|™ fY((T7)"¢)

7. If (14 |z))F f (z) € LY, then f € C* and 9 f € Cy for all || < k. Moreover,

92 f (€) = F [(—iz)* f ()] (€) (5.8)

for all |a| < k.
8. If f € CF and 0°f € L' for all |a| < k, then (14 [£))*f (&) € Cy and

0°f) (&) = (i6)*f (€) (5.9)

for all |o| < E.
9. Suppose g € L*(R*) and h € LY(R4™*) and f = g®h, i.e.

f(x) :g(xlw"?l‘k)h(xk-i-l)'"axd)a
then f = § @ h.

Proof. Item 1. is the Riemann Lebesgue Lemma Items 2. — 6. are
proved by the following straight forward computations:
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() ©= [

Rd

e~ f(z — y)da = / emilety) €y (x)dx = e_iy'gf(f) )

g
(f)m:/ 0] >dx—/ eivt f (z)da = (17 (9)),

£)de = / deg (¢ / dre ()

dedée =59 (©) (o) = [ deg(e) £ () = (1.9)
dyRd R xR

3)=(£.@ )= (15" = (flo).

e prgaar= [ e ([ oot dy) as

(f,9) =

%\%\g

f'»

H
\/\

<f|g>

(fkg)

Rd

dy /Rd dze " f(x —y)g (y)

_ xe—i(x y)-€ T

—/Rddy/wd TEF(2) g (y)

= / dye g (y) / dae S f (z) = f(£) §(€)
Rd Rd

|
T

and letting y = Tz so that dz = |det T| " dy

(ro1) © = [

Rd

=|detT|”" F((T71)" €).

Ttem 7. is simply a matter of differentiating under the integral sign which is
easily justified because (1 + |z|)*f (z) € L!. Ttem 8. follows by using Lemma
repeatedly (i.e. integration by parts) to find

e " f(Tx)dx = / emiTTlvEf (y) |det |~ " dy

Rd

f) — / oo f (z) e~ Edy — (_1)|a| . f (m) 8§€_iz'£dx
e / f (@) (=ig)*e™ " dw = (i€)° [ (£) -

Since 8% f € L* for all |a| < k, it follows that (i&)*f (&) = (8°f) (&) € Cp for
all |a| < k. Since

k
(1+ &))" <1+Z@> = el

lo| <k

where 0 < ¢, < 00,
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A+ F O < Y ea

la|<k

faf(f)’—>0as£—>oo.

Item 9. is a simple application of the Tonelli/Fubini theorems.
Note: Let ¢ := (27r)_d/2 , then

Ueo) @=c [ e prg@dr=c e-”f( f(x—y)g(y)dy) da
Rd Rd Rd
o[y [ dre @ - g )
—e / dy [ dee i@ (1) g (y)

=c 1. c/ dye g (y)c/ dre @ f (z) = Cilf(g)g(f)
Rd
n

Remark 5.10. The key point of items 7. and 8. of Theorem [5.9) above is that the
Fourier transform interchanges multiplication with differentiation. The funda-
mental results are;

1L.IffeL! (Rd) is such that © — z; f (x) is also integrable, then (by Corollary
?7)
(@2, f (@) () =i f ()
J 8£j .
2.If f € L* (R?) is such that (9;f) (z) exists,is continuous in z (this may be
weakened), 9; f € L* (R?), then (by Exercise ?7)

5.3 Schwartz Test Functions

Definition 5.11. A function f € C(R? C) is said to have rapid decay or
rapid decrease if

sup (1 + |2)N |f (2)] < 0o for N =1,2,....
z€R4

Equivalently, for each N € N there exists constants Cn < oo such that |f (z)| <
Cn(1+|z|)~N for allz € RE. A function f € C(R%,C) is said to have (at most)
polynomzial growth if there exists N < co such

sup (1 + [z) ™" | f ()] < oc,

i.e. there exists N € N and C < oo such that |f (z)| < C(1 + |z|)N for all
r € RL
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Definition 5.12 (Schwartz Test Functions). Let S denote the space of func-
tions f € C™ (Rd) such that f and all of its partial derivatives have rapid decay
and let

£l y 0 = sup [(1+ |z))YO f (z)]
zERC

so that
S = {fECOO (]Rd) Nl o < oo for all N anda}.

Also let P denote those functions g € C* (Rd) such that g and all of its deriva-
tives have at most polynomial growth, i.e. g € C'* (Rd) is in P iff for all multi-
indices «, there exists N, < 0o such

_Na (0%
sup (1 + [z])” 7 [0%g ()] < oo.
(Notice that any polynomial function on R? is in P.)

Remark 5.13. Since C° (RY) ¢ & ¢ L? (R?), it follows that S is dense in
L2 (RY) .
Exercise 5.2. Let
L= as(x)0" (5.10)
o] <k

with a, € P. Show L(S) C § and in particular 0% f and x® f are back in S for
all multi-indices a.

Notation 5.14 Suppose that p(x,§) = X4 <naq ()Y where each function
aqo (z) is a smooth function. We then set

p(z, Dy) := Xjaj<naa () Dy
and if each aq, (x) is also a polynomial in x we will let
p(=D¢,§) := Zjaj<naa(—Dg) Mea
where M¢a is the operation of multiplication by £*.

Proposition 5.15. Let p(x, &) be as above and assume each aq, (x) is a polyno-
mial in x. Then for f € S,

(p(x, D;) f)" (€) = p(=De. €) f (€) (5.11)

and

p(&, De)f (€) = [p(Da, —2) f (2)]" (€).- (5.12)
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32 5 Fourier Transform

Proof. The identities (—Dg)® e%¢ = 2% =€ and D2t = %€ jm-
ply, for any polynomial function ¢ on R?,

g(=Dg)e™ ¢ = q(x) e and ¢(Dy)e’™* = ¢ (€) ™. (5.13)
Therefore using Eq. (5.13) repeatedly,

i /z% P

la|<N

= [ 3 Der@)-an(-Doe e
la|<N
f () Z (_Dw)a [aa(_Df)e_imf] d¢
R la|<N
= [ 1@ X anl=Dg) [e7em ] de = p(=De.£)F ()
lal<N

wherein the third inequality we have used Lemma to do repeated integra-
tion by parts, the fact that mixed partial derivatives commute in the fourth,
and in the last we have repeatedly used Corollary 7?7 to differentiate under the

integral. The proof of Eq. is similar:
p(E De)F (€) = plé, Do) / flayewtda = [ f(@)ple. ) dr

- % [ r@ cora e

lo| <N

= > [ J@ () au(~Dy)e " da
|a<N/Rd

=S [ e (D) [(~2)° f (2)] de
|a<N/R

]
Corollary 5.16. The Fourier transform preserves the space S, i.e. F(S) C S.

Proof. Let p(7,§) = Y|4 j<naa (v ( ){“ with each a, (z) being a polynomial
function in z. If f € S then p(D,,—z)f € S C L' and so by Eq. -,
p(€, De)f (€) is bounded in ¢, i.e.

o, p(&, De) f (€)] < Cp, ) < 0.
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Taking p(x,&) = (1 + |«[*)Ne¢® with N € Z, in this estimate shows f (¢) and
all of its derivatives have rapid decay, i.e. f isin S. ]

In the next few exercises you are asked to compute the Fourier transform of
a number of functions.

Exercise 5.3. In this problem let d = 1 so that z,& € R = R!. For any m > 0,
show

2m 1
—m|z| —
Flem©= e
and
1 V2o
- — Y27 —mlz|
.7:<m2+£2>(x) o € .
More precisely these equations mean;
2m 1
—m|z| - sr 2
.F[x—)e }(f) NGRS and
1 s
- - Y27 —mlz]
f(£—>m2+£2)(x) oy ¢

or equivalently,

Flemt] = 2m 1 ! ) VR

Varm? + () a“df<m2+<~>2 2m

Exercise 5.4. Using the identity

1 o0
241 / s
0

along with Exercise [5.3]and the known Fourier transform of Gaussians to show

eIzl = /0 ds\/ﬁe_se_E for all z € R. (5.14)

Thus we have written e /% as an average of Gaussians.

Exercise 5.5. Now let z € R? and || := Z?Zl 22 be the standard Euclidean
norm. Show for all m > 0 that

242 (d+1
J-‘[e*m\rl} (&) = fr( ; ) LA (5.15)
- dil
(m2+16%)
where I' () in the gamma function defined as
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I'(z):= twe*tﬁ
0 t

Hint: By Exercise with « replaced by m |z| we know that

el = / ds e~*e 51" for all z € RY.
0 TS
Remark 5.17. This result can be used to show,

e*mmf (x) = y Qm(r —y)f (y)dy

where
Qun () = 202 LA D/2) m _I((d+1)/2) m
m (27r)d/2\/7*_‘_ (m2+‘x|2)(d+1)/2 7Td/2ﬁ (m2+\x|2)(d+1)/2
_ r(d+1)/2) m

ﬂ.(d+1)/2 (m2 + |I’|2)(d+1)/2'

The extra factors of /27 come from the normalized convolution.

Corollary 5.18 (Fourier Transform on L?). By the B.L.T. Theorem (8.1
the maps F|s and F~|s extend to bounded linear maps F and F~' from
L2 — L%, These maps satisfy the following properties:

1. F and F~' are unitary and are inverses to one another as the notation
suggests.
2. If f € L?, then Ff is uniquely characterized as the function, G € L? such
that .
(G,y) = (f,4) for all € CF (RY).

3,Iff€LlﬂL2,then}if:fcl.e. )
4. For f € L? we may compute F and F~' by

Ff(&) =L lim

f(z)e " ¢dx and (5.16)

F7Lf(€) = L% lim

Ain f(z) e da. (5.17)
o Jlz|<R

5. We may further extend F to a map from L' + L? — Cy + L? (still denote
by F) defined by Ff = h+Fg where f = h+g € L'+ L2 For f € L' + L2,
Ff may be characterized as the unique function F € L} (Rd) such that

loc
(F, @) = (f,p) for all p € CF (Rd) . (5.18)

Moreover if Eq. holds then F € Cy + L? C L}, (Rd) and Eq.
is valid for all ¢ € S.
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Proof. 1. and 2. If f € L? and ¢, € S such that ¢, — f in L? (see
Exercise , then Ff := lim,_o0 @rn. Since ¢, € S C L', we may concluded
that [|[@nlly = [l¢nll, for all n. Thus

|74l = Jim_[gally = Tim floull, = 171,

which shows that F is an isometry from L? to L? and similarly F~! is an
isometry. Since F ' F = F~LF = id on the dense set S, it follows by continuity
that F~1F = id on all of L2. Hence FF ' = id, and thus F~! is the inverse
of F. This proves item 1. Moreover, if 1) € C° (Rd) , then

(Fo) = Tim (@n, ) = Tim (g, 6) = (/,0) (5.19)

and this equation uniquely characterizes F f by Corollary Notice that Eq.
also holds for all ¥ € S.

3. If f € L' N L2, we have already seen that f e Cy (Rd) C L}, and
that (f, ) = (f,®) for all ¢» € C2° (R?). Combining this with item 2. shows
(f— Ff,) =0orally € C® (Rd) and so again by Corollarywe conclude
that f — Ff =0 a.e.

Alternatively by Exercise if f € L'NL?, there exists f,, € C° (R) sucAh

that lim, o || f — anp = 0 for both p = 1 and p = 2. Therefore f = lim,_,, fn
in L°° while lim,,_y00 fn = lim,_y00 Ffy = Ff in L2 which is enough to conclude
that f: Ff ae.

4. Let f € L? and R < oo and set fgr(z) = f(x) ljzj<r- Then fr €
L'N L2 and therefore F fr = fr. Since F is an isometry and (by the dominated
convergence theorem) fr — f in L?, it follows that

Ff=1L> lim Ffg=L> lim fr.
R—o0 R—o0

5.1f f=h+ge€ L'+ L? and ¢ € S, then by Eq. (5.19) and item 4. of
Theorem [5.9] o
(h+Fg,0) = (h,¢) +(9,9) = (h+9,9)- (5.20)

In particular if A + g = 0 a.e., then (fl + Fg,p) = 0 for all ¢ € S and since
h + Fg e L}, . it follows from Corollary that h + Fg = 0 a.e. This shows
that Ff is well defined independent of how f € L' 4+ L? is decomposed into
the sum of an L' and an L? function. Moreover Eq. shows Eq.
holds with F = h + Fg € Cy+ L? and ¢ € S. Now suppose G € L} . and
(G, ) = (f,¢) for all p € C° (R?). Then by what we just proved, (G, ¢) =
(F, ) for all p € C2° (R?) and so another application of Corollary shows
G=FeCy+ L2, |
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34 5 Fourier Transform

Notation 5.19 Given the results of Corollary there is little danger in
writing f or Ff for Ff when f € L' + L2

Corollary 5.20. If f and g are L' functions such that f,g € L', then
F(fg) = [y and F~}(fg) = [ Kg".

Since S is closed under pointwise products and F : S — S is an isomorphism
it follows that S is closed under convolution as well.

_ Proof. By Theorem 19, f,g € L' NL*> and hence f-g € L' N L™ and
fHG € L' N L>. Since

F(fxg) =F () F @ =fger!
we may conclude from Theorem [5.8] that
fHig=FF" (f%ia) = F(f-9).
Similarly one shows F~1(fg) = fV%g". n

Corollary 5.21. Let p(z, &) and p(x, D) be as in Notation with each func-
tion aq, (z) being a smooth function of x € R%. Then for f € S,

P Do)f (@) = [ ple.€F (€)', (5.21)

Proof. For f € S, we have

P, Do) (@) = plo, Do) (F7'F) (@) = pla, D) | F(€) e

= [ F@ptaDeag = [ F€) ple e s
R4 R

[ ]
Lemma 5.22 (Petree’s inequalities). If z,y € R", then
I+ e —y) (1 +z)~ < 1+yl (5.22)
and . .
Itlz—yl) <@+lz)) " Q+][y). (5.23)

Proof. For x,y € R™ we have the following simple estimate,
Lo —yl <1z + |yl < (L+]z]) 1+ yl)
which is equivalent to Eq. (5.22)). Moreover, Eq. (5.22) is equivalent to
A+ lz)™ <+l —y) ™ (1+1y)).
Replacing x — x + y and then y — —y in this last inequality gives Eq. (5.23).
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Lemma 5.23. If f,g € S:=S (R"), then fxg € S where
frg(x):= A f@—y)g(y)dy.

[The proof shows fxg € S if f €S and g is a measurable function such that
Jon (L 1yD"™ |9 ()| dy < oo for alln € N]

Proof. For any k € Nj and m € N, we have |f*) (2)| < Cppp (14 |2|)™™"
for some Cy, j, < oo where

Using
(Frg)™ () = / £ (& — ) g (v) dy

Rn
and Petree’s inequality in Eq. (5.23]), we conclude,

(r+9" @) < [

<o [ lr =3 " g )] dy

9 (@ =y)|lg )l dy

n

< O / 1+ J2) ™™ (L + [y)™ g ()] dy
< Crp (14 |z))™™

where

Con 1= o - / 1+ Jy)™ g ()] dy < .

Lemma 5.24 (Convolution and products in S). If f,g € S then
1 n/2 /\ ) . 1 n/2 )
° frg=f-gand f-g=1|5= fxg.
2 2w

Proof. The first equality is proved using Fubini’s theorem and the transla-
tion invariance of Lebesgue measure;
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P = n) ™" [ (frg)(@)e o
= (2m)™"/? /n dx /n dyf (x—y)g(y)e ™
=0 [ o [ dyf@)g)e e

=) [ o [ dyf @t et

Rn

= (2m) "2 f (k) g (k) -

Similarly one shows, (f xg)" = V27f" - g¥. Replacing f by f and g by § in
this equation then shows,

(F9) =@n "1

and then taking the Fourier transform of this result gives the second stated
equation. [ |

If p(z,€) is a more general function of (x,€) then that given in Notation
the right member of Eq. may still make sense, in which case we
may use it as a definition of p(z, D,). A linear operator defined this way is
called a pseudo differential operator and they turn out to be a useful class
of operators to study when working with partial differential equations.

Definition 5.25 (Weak Differentiability). Let v € R? and u € L? (RY),
then Oyu is said to exist weakly in LP (Rd) if there exists a function g €
Lp (Rd) such that

(u,0p0) = —(g, ) for all p € C° (R?) (5.24)

where

(u,v) := /Rdu(:c)v(z) dz.

More generally if p (§) = Z\&ISN an & is a polynomial in &€ € RY and p (0) :=
ZIQISN aa0%, then we say p(0)u exists weakly in LP (R?) if there exists a
function g € L? (Rd) such that

(u,p(—0) @) = (g, ) for all p € C (R?). (5.25)

[This definition also makes sense if LP (Rd) is replaced by LY (Rd) every-
where.]
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Proposition 5.26. Suppose that f € L} . (R) such that 9™ f =0 in L} (R).

loc loc
Then there exists ¢ € C such that f = ¢ a.e. More generally, suppose F :
C® (R) — C is a linear functional such that F(¢') = 0 for all ¢ € C* (R),

where ¢’ (z) = %g@ (x), then there exists ¢ € C such that

F(p) ={c,p) = /Rap (x)dx for all p € C° (R). (5.26)

Proof. Before giving a proof of the second assertion, let us show it includes
the first. Indeed, if F(p) := [; ¢ fdm and oW f =0, then F(¢') = 0 for all
v € C (R) and therefore there exists ¢ € C such that

[ otdm=F(o) = clp.1) = ¢ [ fim.

But this implies f = ¢ a.e. So it only remains to prove the second assertion.
Let n € C2° (R) such that [, ndm = 1. Given ¢ € C° (R) C C° (R), let

v = [ u-1w e
Then ¢’ (z) = ¢ (x) —n(z) (v, 1) and ¥ € C° (R) as the reader should check.
Therefore,

0=F(¢) = Flp = (p,mn) = Fy) = (p, HF(n)

which shows Eq. holds with ¢ = F(n).

Alternative proof of first assertion. Suppose f € L}, . (R) and oW f =0
and f,, := f * Ny, as is in the proof of Lemma ??. Then f/, = 0 f %, =0,
S0 fm = ¢ for some constant ¢, € C. By Theorem fm — fin L} (R)

loc
and therefore if J = [a, ] is a compact subinterval of R,
1
lem — ck| = 7/ |fm — fxldm — 0 as m, k — co.
b—a J

So {cm}f:;:l is a Cauchy sequence and therefore ¢ := lim,, o ¢, exists and
f=lmy oo frn = ca.e. [ |

Proposition 5.27. Let f,g € L, .(R), then f' = g weakly iff f has a continuous
version f which is absolutely continuous on R and satisfies f' (x) = g (z) for

a.e. x.

Proof. If f is locally absolutely continuous and f’ = g a.e., then by inte-
gration by parts for absolutely continuous functions,

/ gpdm = / fodm = — / fldm
R R R
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36 5 Fourier Transform

which shows that f’ = g weakly. Conversely if f' = g weakly, let

which is absolutely continuous and satisfied F’ () = g (z) for a.e. x. From what
we just proved this implies F’ = g weakly and therefore (F — f) = 0 weakly
and hence by Proposition ﬂ f=F+c=: f ae. for some constant c. ]

Exercise 5.6. Suppose p (§) = ZIaISN ao & is a polynomial in ¢ € R, and
u € L? such that p (9)u = g € L? in the weak sense, i.e.

(u,p (—0) ) = (g,¢) for all p € C° (RY). (5.27)

Show that Eq. lb also holds for all ¢ € S(Rd). Hints: Let ¢ €
C2 (R%,[0,1]) be chosen so that 1 (z) = 1 for |z| < 1 and for n € N, let
Y, (z) == (z/n) . Then for ¢ € S, consider ¥, - ¢

Exercise 5.7 (F.T. and Weak derivatives). Suppose p (£) = >, <y @al”
is a polynomial in ¢ € R? and f,g € L% (m). Show p(d) f = g weakly iff
p (ik) f (k) = g (k) for a.e. k.

Exercise 5.8. Show for f € S (R) that;
1. For all z € R,

and

1/2
1+k2) dk} .

IR AC]

2. Use the last displayed inequality and the basic properties of the Fourier
transform to prove the “Sobolev inequality,”

1
F @I <5 [IF15+1£13] for all 2 e R,

1712 = / \f (@) d.

where
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5.4 Summary of Basic Properties of F and F !

The following table summarizes some of the basic properties of the Fourier
transform and its inverse.

f +«——  forfv

Smoothness <—  Decay at infinity

0* <—  Multiplication by (&i&)”
S — S

I (RY) s I2(RY)

Convolution  +—  Products.
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6

Constant Coefficient partial differential equations

Suppose that p (§) = Z|a\§k ao &Y with a, € C and

1 a

Then for f € S . )
Lf(€)=p(&)f(&),

that is to say the Fourier transform takes a constant coefficient partial differ-
ential operator to multiplication by a polynomial. This fact can often be used
to solve constant coefficient partial differential equation. For example suppose
g : R™ — C is a given function and we want to find a solution to the equation
Lf = g. Taking the Fourier transform of both sides of the equation Lf = g

would imply p (€) f (€) = §(£) and therefore f (&) = § (&) /p (€) provided p (€)
is never zero. (We will discuss what happens when p (£) has zeros a bit more

later on.) So we should expect

) =5 (5g0(©) (0 =7 (7 ) oo

Definition 6.1. Let L = p(D,) as in Eq. (6.1). Then we let o(L) :=Ran(p) C
C and call o(L) the spectrum of L. Given a measurable function G : (L) — C,
we define (a possibly unbounded operator) G(L) : L*>(R™,m) — L?*(R™,m) by

G(L)f == F ' MgopF
where Mgop denotes the operation on L2(R™,m) of multiplication by G op, i.e.
Mgopf = (Gop) f
with domain given by those f € L? such that (G op) f € L?.
At a formal level we expect

G(L)f = F 1 (Gop) kg

6.1 Elliptic examples

As a specific example consider the equation
(—A+m?) f=g (6.2)

where f,g: R" — C and A = Y7 | §?/dz? is the usual Laplacian on R". By
Corollary 77 (i.e. taking the Fourier transform of this equation), solving Eq.
(6.2) with f, g € L? is equivalent to solving

(1€ +m2) F &) =3(0). (6.3)

The unique solution to this latter equation is

F©= (I +m?) " 30
and therefore,

1

fa) =77 (16 +m2) " 3(0) ) = (-A+ ) g(o)

We expect
7 ({16 m2) 59 @) = Guok(o) = [ Gl = s an

where

Gp(z) :=F! (|£\2 + m2>_1 (z) = / ¥ei§'xd§.

re m? o+ €[
-1
At the moment F~! <|£|2 + m2> only makes sense when n =1 or 2 because

-1
only then is (|§\2 + m2) € L3(R").
For now we will restrict our attention to the one dimensional case, n = 1,
in which case

G (z T de. (6.4)

1 1
):\/%/Rmmi)(sfmi)



38 6 Constant Coefficient partial differential equations

The function G,, may be computed using standard complex variable contour
integration methods to find, for z > 0,
1 eizmm 1 \/7
G = ——2mi = —\2me™ ™
m () o i) i 5 Te

and since G, is an even function,

V2T —mlal
—Ee .

-1
_ -1 2 2 _
G(a) = F 7L (167 +m?)  (2) = (6.5)
This result is easily verified to be correct, since
— e idy

F [\/gemr] (&) = v2r e—mlzl

2m
1 oo , 0 .
= (/ e~ MTTIE Iy —|—/ emxe_“”'&dsc>
2m 0 —00

RV S S
S 2m \m4+i&  m—if) m24¢€2

Hence in conclusion we find that (fA + mz) f = g has solution given by

f(x) = Gukg(z) = géem'myg(y) dy = %/Re*m‘“y'g(y) dy.

Question. Why do we get a unique answer here given that f(z) =
Asinh(z) + B cosh(z) solves

(-A+m?) f=0?

The answer is that such an f is not in L? unless f = 0! More generally it is
worth noting that Asinh(x) + B cosh(x) is not in P unless A = B = 0.

What about when m = 0 in which case m? + £ becomes ¢2 which has a
zero at 0. Noting that constants are solutions to Af = 0, we might look at

V2r

lim (G (z) — 1) = lim =5

||
ml0 ml0 2m

as a solution, i.e. we might conjecture that

f(x) = —%/le— ylg (y) dy

solves the equation — f” = g. To verify this we have
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so that

6.2 Heat Equation on R"

The heat equation for a function v : Ry x R — C is the partial differential
equation

<at _ ;A> w = 0 with u(0,2) = f(x), (6.6)

where f is a given function on R™. By Fourier transforming Eq. in the x
— variables only, one finds that implies that

(94 5 61°) a(t.9) =0 with a(0.6) = &) (6.7)

and hence that 4(¢,€) = e*t‘w/?f(f). Inverting the Fourier transform then
shows that

u(tr) = F7H (7P 2 (©) (@) = (F71 (e71°/2) ke ) () = "2/ (@),
From Corollary [5.7]
P () ) 2o =
and therefore,
u(teo) = [ o= )1y
This suggests the following theorem.
Theorem 6.2. Let
p(t,z,y) = (2mt) /2 e~ leul?/2 (6.8)

be the heat kernel on R"™. Then

1
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where 0, is the & — function at x in R™. More precisely, if f is a continuous
bounded (can be relazed considerably) function on R™, then

u(t,x) = /n p(t71‘7y)f(y)dy

is a solution to Eq. where u(0, z) := limy o u(t, x).

Proof. Direct computations show that (8,5 — fA )p(t,x,y) = 0 and an
application of Theorem [4.6| shows lim; g p(¢, z,y) = d,(y) or equivalently that
limy o fR" (t,z,y)f(y)dy = f(x) uniformly on compact subsets of R™. This
shows that lim o u(t, ) = f(z) uniformly on compact subsets of R™. ]

This notation suggests that we should be able to compute the solution to g
o (A —m?)g = f using

o) = (= 2) " fta) = [ (O @ar

= /000 (e_mztpgt*f) (x)dt

a fact which is easily verified using the Fourier transform. This gives us a method
to compute G, (z) from the previous section, namely

Gm(x) :/ e—mQtPQt(x)dt :/ (2t)_n/2e_m2t_7‘$| dt.
0 0

We make the change of variables, A = |z|? /4t (t = |z|? /4X, dt = —%d)\) to
find

< |z]? e |z|?
G (x) = / 2t _n/ze_mzt_ ‘mlzdt / = e—m2|f\2/4>\—)\ d\
(=) 0 (21) 0 2 (2/\)2

2(n/2—2) 0
= |£L.|T A )\n/2_2€_>\6_m2|w|2/4>\d>\. (610)
In case n = 3, Eq. (6.10) becomes

1 2,12 N
Gop(x) = 76_/\6_771 |z| /4/\d)\ — e—m|a:|
) V2ia| Jo VA V2 |z|

where the last equality follows from Exercise Hence when n = 3 we have
found

NG

-1

Tn2 — xT) = x) = (2m) /2 7e—m|x—y|
(m* = 4)7 f(2) = Cukf(x) = (22 | 7 f(y)dy
— 1 e~ mlz—yl
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The function ﬁe‘mm is called the Yukawa potential.

Let us work out G,,(z) for n odd. By differentiating Eq. (??) of Exercise
E.4 we find

° B C 122 _am? & 1 a0 d\" “a
/0 dAANF~1/2emax " o= :/0 d/\ﬁe ax <da> € g2

() et

where p,, ,(x) is a polynomial in z with degp,, = k with

RVTPRNY-TES. S it SN
‘ 22 2

k
Pm.k (O) = \/E <CZI) a
m2* L /m27F 2k — 1)L

Letting k —1/2=n/2—2 and m = 1 we find k = 25+ —2 € N for n = 3, 5,.

and we find
/ An/z_Qe_ﬁm2e_>‘d)\ = ka(l‘)B_z for all z > 0.
0

Therefore,

n/2 2) 2
Gm(l‘) _ / /\n/2 2 —A e~ m |z)? /4Ad)\

2|

o(n/2-2)
| |n T n—2 Pin/2— 2( |J}|)€

Now for even m, I think we get Bessel functions in the answer. (BRUCE:
look this up.) Let us at least work out the asymptotics of G, (x) for z — cc.
To this end let

—m|z|

U(y) = /00 AM22= RN ) gy — g2 /oo A/2=20= O AT g\
0 0

The function f,(\) := (y?X + A71) satisfies,
Fi) = (" =A%) and f/(A) =2\ and f]'(\) = —6A~"
so by Taylor’s theorem with remainder we learn

fu(N) =2y + 33 (A —y™1)? for all A > 0,

see Figure [6.1] below. So by the usual asymptotics arguments,
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40 6 Constant Coefficient partial differential equations

Lh

B

= yn*%*?y/ A2 2 exp (—yf (A —y)?) dA (let X — Ay~ 1)
R
_ 672yyn72y7n/2+1 / )\n/272 exp (7y(>\ - 1)2) d\
R
= e~ Wy 2y /241 /()\ + 1)"/272 exp (—y)\2) d.
R

The point is we are still going to get exponential decay at oc.
When m = 0, Eq. (6.10) becomes

2(n/272) 00 N (n/272)
Go(fﬂ):ﬁ/ AN SE = = T(n/2 - 1)
| 0 A el

where I'(x) in the gamma function defined in Eq. (??). Hence for “reasonable”

functions f (and n # 2) we expect that (see Proposition below)
(~2)"1 (&) = Gok () = 2/ (o2 — 1)(2m) /2 /

— Wy
R™ Ix—yl
1
:7471_”/21“(71/2*1)/]1@ |I7y‘n e f(y)dy

The function
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1 1
is a “Green’s function” for —A. Recall from Exercise 7?7 that, for n = 2k,
I —1)=Ik-1)=(k—-2), and for n = 2k + 1,

F(gfl):F(k71/2):F(k71+1/2):ﬁ1.3.5.é].€._.1(2k—3)
_\f(%% ?) where (—1)!l =: 1.
Hence

()_1 1 [ H(k—2)if n=2k
x_4|\ L i =2k 41

T

and in particular when n = 3,

11
G(z)=——
@) = &7l
which is consistent with Eq. (6.11]) with m = 0.

Proposition 6.3. Let n > 3 and for x € R", let pi(x) = p(t,z,0) :=
(ﬁ)n/2 e~ %7’ (see Eq. )and G (x) be as in Eq. (6.12) so that

G(z) := |m|CT’L”_2 = %/0 pt (z) dt for x #£ 0.

Then
—A(Gxu)=—-G+xAu=u

for all u € C? (R™).

Proof. For f € C, (R"),

G*f(x):Cn f(l'i) ngy

R" |yl

is well defined, since
1 1
1 (2= 9)| ——ydy < M L gyes
" lyl lyl<R+al |y["
where M is a bound on f and supp (f) C B (0, R). Similarly, || < r, we have

1 1
sup |f (z = y)| —=5 < M1y i<riny =z € L' (dy),
jol<r vl lyl
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from which it follows that G * f is a continuous function. Similar arguments
show if f € C? (R"), then G x f € C? (R") and A (G * f) = G* Af. So to finish
the proof it suffices to show G x Au = u.

For this we now write, making use of Fubini-Tonelli, integration by parts,
the fact that d,p; (y) = 2 Apy (y) and the dominated convergence theorem,

Gx* Au(z) = i/R Au( y)(/ ()dt)dy
;/Ooodt/RnAu y) pt (y) dy
;/Ooodt/RnAyu y) pe (y) dy
% OOdt/Rnu Aype (y) dy

Il
ﬁ

&t [ u@-y) jtpt (4) dy

. > d
= lim dt/ u(x—y) Tk (y) dy

E,l,o e n t
= lim u(r — -
) Y dt Pty Y
=—lim [ wu(z—y)p:(y)dy =u(zx),
E,LO R

where in the last equality we have used the fact that p, is an approximate d —
sequence. ]

Remark 6.4 (Computing the Green’s function by the Fourier Transform).
Green’s function via the Fourier transform. We wish to solve Au = § and
so taking the Fourier transform of this equation suggests we solve

—lefa(e) =

Therefore, u = limp;_, o ups Where

e (o) = 2m) 2 [

|gl<M

@n) " = a() =—2n) .

N i&x _ 1 ¢ 1 1§:t
0.(€) e vde = (%) /§|<M|§| de.

We now let £ = |x|71 k in this last integral to find,
d
1 1 1
up (z) = — <> 7_/ et de.
20 ) 12" Jiw<ariol [
If we let
Page: 41 job: Supplements

6.2 Heat Equation on R" 41

CWM)=~ <2l7r>d/k|<M |k:1|

then we have shown )

C(Mlz]) —5= W

up (z) =

Working in polar coordinates it then follows that

C (M) = ¢(d)

0

Letting y = cos 8 this becomes,

C (M) =c(d) /OM dr Td_3/_ dye'™ ( y2)T

zk eq d§

2°

M T )
dr 43 / dpe'" €5 ¥ sin¢~2 Q.
0

d—3

The case d = 3 is well known how to handle and we find

sinr

Cg(M):k/OM

Let us consider the case where d = 5 so that

dr — k as M — oo.

M 1 ]
5)/ dr T2/ dye'™ (1 —y?).
0 —1
1 1 2 1 )
[y = (1) [ @ o)
—1 r -1

Now in this cae

() /.

and so

C(M):k/OMdr [cosr—

The only new term to consider is

—2 ir 1
= — | Y —
7‘2 |: y‘—l

/.

sinr

r

M
/ dr cosr = —sin M
0

and hence

macro: svmonob.cls

(3y e“"y) 2ydy

eirydy:|

|

date/time:

16-May-2018/14:12



42 6 Constant Coefficient partial differential equations
sinr
T

1 M|z|
up (z) = km sin (M |z|) :I:/O dr

_ 1

We now need to argue that for any f € L' (R5, m)

lim f( )sin (M |z|) dz =

M —oc0

by the Riemann Lebesgue Lemma again. This in fact follows from the one
dimensional version after going to polar coordinates and integrating out all of
the angular variables. Putting this all together we eventually learn that

. 1
u(z) = A}lgloouM (x) = cw for d = 5.

6.3 Poisson Semi-Group

Let us now consider the problems of finding a function (zg,z) € [0,00) X R" —
u(zg,z) € C such that

(;22 + A) u = 0 with u(0,-) = f € L*(R"). (6.13)

Let @(zg,&) = fRn u(zo, x ’w'fdx denote the Fourier transform of v in the
zeR” Varlable Then Eq becomes

( |§|) (20, ) = 0 with (0,€) = f (€) (6.14)

and the general solution to this differential equation ignoring the initial condi-
tion is of the form

i(wo, &) = A(€) e ™1l + B (¢) e™l (6.15)

for some function A (£) and B (§) . Let us now impose the extra condition that
u(zwg,-) € L*(R™) or equivalently that d(zo,-) € L*(R") for all 9 > 0. The
solution in Eq. will not have this property unless B (£) decays very rapidly
at oco. The simplest way to achieve this is to assume B = 0 in which case we
now get a unique solution to Eq. (6.14), namely

(o, &) = f(€) e ™ML,

Applying the inverse Fourier transform gives
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uwo,x) = F~ [ £ (§) e Il (2) = (e7V7AF) (@)

and moreover

(e720V727) (@) = Pay * /(@)
where P, (x) = (27r)7n/2 (F~te=20lél) (z). From Exercise ,

T
Cn
(23 + o|*)(n+1)/2

Pyy(w) = (2m) "7 (F el ) (@) =

where
en = (2m) 2 I'((n+1)/2) I'((n+1)/2)
n an/Z ongp(n+l)/2

Hence we have proved the following proposition.

Proposition 6.5. For f € L*(R"),

eTTVTAL — x f for all xg > 0

Zo

and the function u(xg, ) 1= e~*V=Af(z) is O for (zo,x) € (0,00) x R™ and

solves Fjq. .

6.4 Addendum: convolutions and Fourier Transforms
involving measures

Notation 6.6 If u is a finite (could be complex) measure on (Rd,BRd) and
f:R? = C is a measurable function, let

0 =c etk T
A (k) = d/Rd i (x),
and
e /fx— ) dye (1)
f*u(x):=0d-f*u(x)=cd/ £ (& — ) du (3)
R{i

when these integrals are defined. As usual we let ¢g := (2m)~ U2 i all of these
formula.
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Remark 6.7. If pe § =85 (Rd) , then
[awewdn=co [ d [ du@epm
R4 Rd Rd

[ dn@) [ dke o)
=/Rd¢9(:ﬁ)du(ﬂf)

which shows that fi is the Fourier transform of y in the sense of tempered
distributions, i.e. T, = T,.

Lemma 6.8. If f € L' (R, m), then f¥p € L' (R?) with
I/ eplly < callflly lul (RY)
and g =ji- f.

Proof. Let du = gd |p| where g : R — S is a measurable function and |u|
is the total variation measure of u. Then

fh@)i=ca [ F =)0l 0

and by Holder’s inequality for integrals (or by direct calculation) we find
fHp(z) is well defined for m-a.e. x and

[/ Heplly < ca /Rd 1F C =9l lg @I dlpl (y) = cal flly el (RT) -

For the last assertion, we compute using Fubini-Tonelli and the translation
invariance of Lebesgue measure that

G /Rd dae 7 /Rd dp (y) f (z —y)

& /Rd dp (y) /Rd dze™ """ f (x —y)

ci | dp(y) | dee ™ f(2)
Rd Rd

(k) f ().

Foen (k)
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Corollary 6.9. Suppose i is a complex measure on (Rd, BRd) and f € L' (m)
is such that f € L! (m). If fo € Cy (Rd) is the continuous version of f, then
fokup e Cy (Rd) and

(fodep) (z) = cq / fi (k) f (k) e *dk for all 2 € R%. (6.16)
Rd

Proof. Since f is assumed to be in L! (Rd) and [ is bounded it follows that
- f eL! (Rd) and hence by our basic Fourier inversion formula,

(fhp) (z) = (ﬂ : f)v (z) = cq /R (k) f (k) e*®dk for m-a.e. x

and in particular (f¥u) () has a continuous version. Since fo¥p is continuous
and fodp = f¥u a.e. (can you prove these statements?) we conclude that Eq.

(6.16) holds. -

6.5 Wave Equation on R"

Let us now consider the wave equation on R",

0= (87 — A) u(t,z) with
w(0,2) = f(z) and u(0,z) = g(x). (6.17)

Taking the Fourier transform in the x variables gives the following equation

0= ﬂtt(tvg) + |£‘2 ﬁ(t,f) with
@(0,€) = f (€) and @(0,&) = g (). (6.18)

The solution to these equations is

a(t,€) = f (€) cos (£1€]) +3 (&) S“Ef'
and hence we should have
ult,z) = F (f () cos (t|€]) + 3 (&) S“E"g') (@) (6.19)
= Fcos (t]¢]) % (x) + flS“El'f' *g ()
I [Sintfq —1 [Sinﬂfq
dt}— €] *f(z)+F ] *g(x). (6.20)
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44 6 Constant Coefficient partial differential equations

Theorem 6.10 (One d wave equation). If f,g € L' (R) such that f,j €
L' (R), then u (t,z) defined by Eq. (6.19) is given by

x4+t
(fa—t)+ ) +5 [ oy

—t

DN | =

u (tv .’IJ) =
Here we assume that f and g are already chosen to be the continuous version
of f and g.
Proof. For t € R,

and hence

(0t +0_¢) (k) =2cy coskt.
Thus we may conclude that
A A 1 N
FH(FOoste () =77 (50 5 (4500 )
1
= Q—le* (6 +6-1) (z)

= U@+ +f-1)].
Similarly for ¢ > 0 if we let du; (z) = 1[—y,¢ (z) dm (x), then

t —ikx 3
N ik e sin tk
ut(k):cl/_te Rrdr = c; i L, =2c o

Hence we may conclude that

7 (k=000 ™) (@) = 57 i )

C1

sl @ =5 [ a@-nin).

By making the change of variable, z = x — y we find

1/tg(xy)dm(y)1/j+t9(z)dz~

2/, 2

Combining all of these results gives the desired conclusion. [
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Remark 6.11. We can arrive at this same solution by more elementary means
as follows. We first note in the one dimensional case that wave operator factors,
namely

0= (07 — 02) u(t,z) = (9 — 0y) (0 + 0x) ult, x).

Let U(t,x) := (0 + Oy) u(t, x), then the wave equation states (0 — 9,)U =0
and hence by the chain rule 2U(t,z —t) = 0. So

Ut,r —t) =U(0,2) = g(z) + f'(x)
and replacing x by = + ¢ in this equation shows
(O + 0p) u(t,x) =U(t,z) = gl +t) + f'(x+t).
Working similarly, we learn that
%u(t, z+t)=g(x+2t)+ f'(x+2t)
which upon integration implies

u(t,z +t) = u(0, ) +/O {9(x +27) + f'(x + 27)} dr

:f(x)+/0 g(m+27)dr+%f(x—l—27)|6

DN —

=—(f(z)+ f(z +2t)) +/O g(z + 27)dr.

Replacing x — x — ¢ in this equation gives

(f(l’*f)‘l’f(x‘i’t))‘i’/o g(x —t+ 27)dr

|~

u(t,x) =

and then letting y = x — t 4+ 27 in the last integral shows again that

N —

x+t
uta) =5 Ge=0+fas0)+g [ o

Our next goal is to solve the wave equation in dimension 3. As we will see
shortly it will be very useful to first compute that Fourier transform of the
surface measure on three spheres in R3.

Lemma 6.12. If o, is the surface measure on the sphere Sy C R? of radius t
centered at zero in R3, then

sint |¢]
€]

a1 (&) = 03/ e" 8oy (x) = ¢3 - Ant
St
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Proof. To show this we work in spherical coordinates where

2m ™
f(x)doy (z) = / de / dot*sing f (tsinpcos@, tsinsinb, tcos ).
St 0 0

By rotation invariance or oy (-) we know that

1 . 27 T ‘
— 0y (f) = /S eil‘f‘eg-ﬂ?dgt (LU) = t2/ da/ d(,OSlIl(p 671|§|tcos<p
t 0 0

C3
s
= 2mt? . / dpsin g e~ HEltcos e,
0

Let u = cos ¢ so that du = —sin pdy, to find,

1 1 L -
7(5} (6) = 27Tt2/ eﬂtumdu — 27Tt2.7€71tu\§‘|5;1_1 _ 47Tt2 S1n |§| .
© -1 —it[¢] tlé]

Theorem 6.13 (Three-d wave equation). If f = 0 and g € L! (Rd) such
that § € L* (Rg) , then u (t,x) defined by Eq. (6.19) is given by

u(t,z) :ﬁ/s g(z —y)do (y)

:t/Stg(x—y)dUt(y)

= t/sl g(z + tw)da (w)

where o = ﬁat is the normalized surface measure on S;. Here we assume

that g has already been chosen to be its continuous version. More generally if
f #£ 0 and f is sufficiently nice, then

u(t,z) = % {t 5 f(z + tw)da, (w)] +t/s1 g(x + tw)doy (w) . (6.21)

If we further assume f

Proof. Since
sin (¢ |k|) 1,

k| s 4t

we may conclude that

Fo1 (k o) “(”“')) (@)= — F ' [g6] (a)

|]€| Cg-47‘rt
- (g~ )(w)—fl/ (z —y)do (y)
—47Tt9 Ot = ant Stg y)aoe(y) .-
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6.5 Wave Equation on R" 45

Proposition 6.14. Suppose f € C3(R?) and g € C*(R3), then u(t,z) defined
by Eq. (6.21) is in C? (R X R?’) and is a classical solution of the wave equation
in Fq. (6.1

Proof. The fact that v € C? (R X R?’) follows by the usual differentiation
under the integral arguments. Suppose we can prove the proposition in the
special case that f = 0. Then for f € C3(R3), the function v(t,z) = +t fSl g(z+
tw)da (w) solves the wave equation 0 = (07 — A) v(t, ) with v(0,2) = 0 and
v¢(0,2) = g(x). Differentiating the wave equation in ¢ shows u = v; also solves
the wave equation with u(0,z) = g(z) and u(0,2) = v (0,2) = —Aw(0,x) =
0. These remarks reduced the problems to showing w in Eq. with f =0
solves the wave equation. So let

u(t,x) := t/s g(x + tw)da (w) . (6.22)

We now give two proofs the u solves the wave equation.
Proof 1. Since solving the wave equation is a local statement and u(¢, x)
only depends on the values of ¢ in B(z,t) we it suffices to consider the case

where g € C? (]R3) . Taking the Fourier transform of Eq. 1] in the x variable
shows

uft, §) Zf/s do (w) /ng(fﬂ-i-tw)e_if'wdx

= t/s1 do (w) /}R3 g(x)e ST Edy = § (€) t/sl "oy (w)
sin (¢ [€])
€l

wherein we have made use of Example ??. This completes the proof since (¢, £)

solves Eq. (6.18]) as desired.
Proof 2. Differentiating

sin |tk|

=9(8)

S(t, ) = /S g(@ + tw)dor ()

in t gives
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46 6 Constant Coefficient partial differential equations

Se(t,x) = L Vg(z + tw) - wdo (w)
S

4
1
= — V- Vg(z + tw)dm (w)
4T Jp0,1)
t
= — Ag(z + tw)dm (w)
am B(0,1)
1
= — Ag(x + y)dm(y
17 g, A9+ pim)
Lot
s /O S 9(x +y)do(y)

where we have used the divergence theorem, made the change of variables y = tw
and used the disintegration formula in Eq. (?77?),

R[f(l‘)dm(x) = / fr w) do (w)r"~dr = /OOO dr/lyl_rf(y)da(y).

[0,00) xS —1

Since u(t, ) = tS(t, ) if follows that

0
’U,tt(t,$) = 5 [S(t,l') + tSt(t,J?)]

=Siltr) + 5 47rt/ dr v /_rAg =+ y)doly )]
=5i(t,2) = 5 / dr i Ag(z +y)do(y)

+ It it Ag(x +y)do(y)
:St(taz) _St(t7x)+7 Ag(m+tw)da (w)

47Tt2 ly|=1
= tAu(t, x)
as required. ]

The solution in Eq. exhibits a basic property of wave equations,
namely finite propagation speed. To exhibit the finite propagation speed, sup-
pose that f = 0 (for simplicity) and g has compact support near the origin, for
example think of g = dp(x). Then x + tw = 0 for some w iff |z| = ¢. Hence the
“wave front” propagates at unit speed and the wave front is sharp. See Figure
62 below.

The solution of the two dimensional wave equation may be found using
“Hadamard’s method of decent” which we now describe. Suppose now that f
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Observer

Flash at t=0
and =0

Fig. 6.2. The geometry of the solution to the wave equation in three dimensions.
The observer sees a flash at t = 0 and = 0 only at time ¢ = |z|. The wave progates
sharply with speed 1.

and ¢ are functions on R? which we may view as functions on R? which happen
not to depend on the third coordinate. We now go ahead and solve the three
dimensional wave equation using Eq. and f and g as initial conditions. It
is easily seen that the solution u(t, z,y, z) is again independent of z and hence
is a solution to the two dimensional wave equation. See figure [6.3] below.
Notice that we still have finite speed of propagation but no longer sharp
propagation. The explicit formula for u is given in the next proposition.

Proposition 6.15. Suppose f € C3(R?) and g € C%(R?), then
(x + tw)
BT l% I, (w)]
(z + tw)
o [ S )
Dy 1- |w|

is in C? (R X Rz) and solves the wave equation in FEq. .

Proof. As usual it suffices to consider the case where f = 0. By symmetry
u may be written as

uta) =2 [ oo —p)do(s) =2 [ o+ 9)an()

where S:r is the portion of S; with z > 0. The surface Sj may be parametrized
by R(u,v) = (u,v,Vt? —u? —v?) with (u,v) € Dy := {(u,v) : u* +v* < ¢?}.

In these coordinates we have
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A Effective line of

disturbance

\J

Fig. 6.3. The geometry of the solution to the wave equation in two dimensions. A
flash at 0 € R? looks like a line of flashes to the fictitious 3 — d observer and hence she
sees the effect of the flash for ¢ > |x|. The wave still propagates with speed 1. However
there is no longer sharp propagation of the wave front, similar to water waves.

At da, = ‘ (—8u\/ 12 —u?2 —v2, =0, Vt2 — u? — 02, 1) ‘ dudv

u v
= , ,1 || dudv
‘<\/t2_u2_02 Ny — )
u? + v? |¢]
= \/t2 Ew + ldudv = N/ dudv
and therefore,
u(t,z) = 2t g(x + (u,v,V/t? — u? — v?2)) id dudv
’ 47Tt2 D: » t2 _ U2 _ U2

_ 1 9(x + (u,v))
= 27ngn(t) . mdudv.

This may be written as
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a:+w

Vi le2

t
ot ff, e,
\tl D lf\wl2

d

ez dm (w)

(w) .
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7

Radon Measures and the Dual of Cy(X)

In this chapter let X be a locally compact Hausdorff space and B = By is the
Borel o-algebra on X. Open subsets of R? and locally compact separable metric
spaces are examples of such spaces. In this chapter will only state and discuss
the Riesz-Markov theorem which associates measures to linear functionals on
C.(X) and Cp (X). We will give a number of examples of using this theorem.

7.1 The Riesz-Markov Theorem

Definition 7.1. A linear functional I on C.(X) is positive if I (f) > 0 for all
f e C.(X,]0,00)).

If I is a positive linear functional on C. (X) and f € C. (X,R), then
I(f)=1I(fy)-I1(f-)eR

where f = fi—f_ and f+ = max (0,4 f) > 0. That is positive linear functionals
are real on real functions.

Proposition 7.2. If I is a positive linear functional on C.(X) and K is a
compact subset of X, then there exists Cx < 0o such that |I(f)] < Ck ||fl|l
for all f € C.(X) with supp (f) C K.

Proof. By Urysohn’s Lemma ?7?, there exists ¢ € C.(X,[0,1]) such that
¢ =1 on K. Then for all f € C.(X,R) such that supp (f) C K, |f| < ||f]l ¢
or equivalently || f||., ¢ & f > 0. Hence || f||, I(¢) £ I(f) > 0 or equivalently
which is to say [ (f)| < || fll I(¢). Letting Cx := I(p), we have shown that
I (f)] < Ck | fll forall f e C.(X,R) with supp (f) C K. For general f €
C. (X,C) with supp (f) C K, choose |a| =1 such that oI (f) > 0. Then

[L(N) =al (f) =1I(a f) = I(Re(af)) < Ck[|Re (f) oo < Ok [Ifll -
u

Ezample 7.3. Let p be a K-finite measure on (X, Bx), i.e. u(K) < oo for all
compact subsets of X. Then

Iu(f):/dequGC’c(X)

defines a positive linear functional on C.(X). In the future, we will often simply
write p (f) for I, (f).

The Riesz-Markov Theorem below asserts that every positive linear
functional on C,.(X) comes from a K-finite measure pu.

Example 7.4. Let X = R and 7 = 74 = 2% be the discrete topology on X.
Now let p(A) = 0 if A is countable and u(A) = oo otherwise. Since K C X is
compact iff # (K) < oo, p is a K-finite measure on X and

Iu(f):/deu:Ofor all f e Co(X).

This shows that the correspondence p — I, from K-finite measures to positive
linear functionals on C, (X) is not injective without further restriction.

Definition 7.5. Suppose that 1 is a Borel measure on X and B € Bx. We say
1 is inner regular on B if

w(B) =sup{u(K): K CC B} (7.1)
and p is outer regular on B if
w(B) =inf{u(U): BCU C, X}. (7.2)

The measure u is said to be a regular Borel measure on X, if it is both inner
and outer reqular on all Borel measurable subsets of X.

Definition 7.6. A measure p : Bx — [0,00] is a Radon measure on X ifu
is a K-finite measure which is inner regular on all open subsets of X and outer
regular on all Borel subsets of X. In full detail;

1. p(K) < oo for all compact subsets K C X, i.e. u is K-finite.

2. u(V)=sup{u(K): KCC V} forallV € 7, i.e. u is inner reqular on open
sets.

3. u(B) =inf{u(V):BCV et} for all B € Bx, i.e. pu is outer regular.
[Clearly in verifying this property it suffices to assume p(B) < 00.]

The measure in Example [7.4] is an example of a K-finite measure on X
which is not a Radon measure on X.
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Example 7.7. If the topology on a set, X, is the discrete topology, then a measure
1 on By is a Radon measure iff p is of the form

reX
where 1, € [0,00) for all z € X. To verify this first notice that Bx = 7x = 2%
and hence every measure on By is necessarily outer regular on all subsets of X.
The measure p is K-finite iff p, := p({z}) < oo for all z € X. If p is a Radon
measure, then for A C X we have, by inner regularity,

p(A) =sup{u(d): A Cy A} —sup{zlux A Cy A} = Z,ux.

€A €A

On the other hand if p is given by Eq. (7.3)) and A C X, then

W(A) = g = sup {u(/l) =Y pa:ACy A}

T€A TEA
showing p is inner regular on all (open) subsets of X.

Example 7.8. Let X be an uncountable set and 7 = 2% be the discrete topology
on X. If we let u be counting measure on X, and v be the measure defined by
v(A) =01if A is a finite or countable set and v (4) = oo if A is un-countable,
then p is a Radon measure and v < pu, yet v is not a Radon measure. Thus
being dominated by a radon measure is not sufficient to imply a measure is
Radon.

Exercise 7.1. Suppose that (X,7) is a LCH and p and v are two positive
measures on (X, Bx).

1. If v < p and p is a finite Radon measure, then v is a finite Radon measure.

2. If both p and v are Radon measures then p 4 v is also a Radon measure.
[This does not hold for countable sums of Radon measures as such a sum
may not even be K - finite.]

3. If there exists constants A, B € (0, 00) such that y < Av and v < By, then
1 is a Radon measure iff v is a Radon measure.

Exercise 7.2.
Ezxample 7.9. Exercise 7.3.

Recall from Definition 7?7 that if U is an open subset of X, we write f < U
to mean that f € C.(X,0,1]) with supp (f) :={f #0} C U.
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Notation 7.10 Given a positive linear functional, I, on C.(X) define p = uy
on Bx by

p(U) =suptl (f): f < U} (7.4)
for allU C, X and then define

w(B) =inf{u(U) : BCU and U is open}. (7.5)

Theorem 7.11 (Riesz-Markov Theorem). The map p — I, taking Radon
measures on X to positive linear functionals on C.(X) is bijective. Moreover
if I is a positive linear functional on C.(X), the function p := py defined in
Notation [7.10 has the following properties.

1. i is a Radon measure on X and the map I — uy is the inverse to the map
w1,
2. For all compact subsets K C X,

u(K) = if{I (f): 1 < f < X}. (7.6)

3. If |I,|| denotes the dual norm of I =1, on C.(X,R)", then ||I|| = p(X).
In particular, the linear functional, I, is bounded iff p(X) < oo.

Proof. (Also see Theorem ?7 and related material about the Daniel inte-
gral.) The proof of the surjectivity of the map p — I,, and the assertion in item
1. is the content of Theorem 77?7 below.

Injectivity of © — I,. Suppose that i is a is a Radon measure on X. To
each open subset U C X let

1o(U) = sup{L,, (f) : f < U}. (7.7)

It is evident that uo(U) < wu(U) because f < U implies f < 1y. Given a
compact subset K C U, Urysohn’s Lemma 7?7 implies there exists f < U such
that f =1 on K. Therefore,

n(K) < /X fdp < po(U) < u(U) (7.8)

By assumption p is inner regular on open sets, and therefore taking the supre-
mum of Eq. (7.8) over compact subsets, K, of U shows

u(U) = po(U) = sup{I, (f) : f < U}. (7.9)

If © and v are two Radon measures such that I, = I,,. Then by Eq. it
follows that u = v on all open sets. Then by outer regularity, u = v on Bx and
this shows the map p — I, is injective.

Item 2. Let K C X be a compact set, then by monotonicity of the integral,

date/time: 16-May-2018/14:12



u(K) < inf{I, (f): f € Co(X) with f > 1} (7.10)

To prove the reverse inequality, choose, by outer regularity, U C, X such that
K Cc U and p(U \ K) < e. By Urysohn’s Lemma ?7 there exists f < U such
that f =1 on K and hence,

() = [ fau=pr)+ [ fdu<p(i)+u(U\K) < k) +e.
X U\K
Consequently,
inf{l, (f): f € Ce(X) with f > 1xg} < pu(K)+e¢

and because £ > 0 was arbitrary, the reverse inequality in Eq. (7.10) holds and

Eq. (7.6]) is verified.
Item 3. If f € C.(X), then

1L () S/X\fldu=/ (f)lfldué [flloe #(supp () < (| fll oo 1(X)

(7.11)
and thus ||, < p(X). For the reverse inequality let K be a compact subset
of X and use Urysohn’s Lemma ?7 again to find a function f < X such that

f=1on K. By Eq. (7.8) we have
H(K) < /deu =L, (f) <Ml fllee = Mull
which by the inner regularity of 1 on open sets implies
u(X) = sup{p(K) : K CC X} < |1 .

Ezample 7.12 (Discrete Version of Theorem . Suppose X is a set, T = 2%
is the discrete topology on X and for z € X, let e, € C.(X) be defined by
ex (y) = 1gz) (y) . Let I be positive linear functional on C, (X) and define a
Radon measure, u, on X by

w(A) = Z I(ey,) for all A C X.
T€A

Then for f € C.(X) (so f is a complex valued function on X supported on a
finite set),

s Zf(l‘)f(ex)1<z f(@%) —1(f),

reX reX

so that I = I,. It is easy to see in this example that p defined above is the
unique regular radon measure on X such that I = I, while example Example
[7-4] shows the uniqueness is lost if the regularity assumption is dropped.
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7.2 Classifying Radon Measures on R 51
7.2 Classifying Radon Measures on R

Throughout this section, let X = R, £ be the elementary class
E={(a,b]NR: -0 <a<b< oo}, (7.12)

and A = A (€) be the algebra formed by taking finite disjoint unions of elements
from &, see Proposition ??7. The aim of this section is to prove again the following
theorem.

Theorem 7.13. The collection of K -finite measure on (R, Br) are in one to one
correspondence with a right continuous non-decreasing functions, F' : R — R,
with F (0) = 0. The correspondence is as follows. If F is a right continuous
non-decreasing function F' : R — R, then there exists a unique measure, pp, on
Br such that

pr((a,b) =F () —F(a) V —c0<a<b< o

and this measure may be defined by

pr(A) = inf {Z(F(bi) — F(a;)): A C U2, (a;, bi]}

=1

— inf {Z(F(bi) —Fla): AC (s, bi}} (7.13)

i=1 =1

for allA € Bg. Conversely if p is K-finite measure on (R, Bg), then

(@0 if 2 <0
F=) "{ p((0,2)) if x>0 (7.14)

is a right continuous non-decreasing function and this map is the inverse to the
map, F' — up.

There are three aspects to this theorem; namely the existence of the map
F — pp, the surjectivity of the map and the injectivity of this map. Assuming
the map F' — up exists, the surjectivity follows from Eq. and the injec-
tivity is an easy consequence of Theorem 77. The rest of this section is devoted
to giving two proofs for the existence of the map F' — up.

Exercise 7.4. Show by direct means any measure y = pp satisfying Eq. ((7.13)
is outer regular on all Borel sets. Hint: it suffices to show if B := "2 (a;, bi],
then there exists V' C, R such that (V' \ B) is as small as you please.
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7.3 Classifying Radon Measures on R using Theorem (7.11

Notation 7.14 Given an increasing function F' : R — R, let F(z—) =
limyq F' (y), Faz+) = limy . F (y) and F(£oo) = lim,,+0 F (z) € R. Since
F is increasing all of theses limits exists.

Let A be the algebra of subsets of R generated by the elementary class,
E={(a,l]|NR: —c0<a<b<oo}.

Given any increasing (i.e. non-decreasing) function, F' : R — R, there exists a
unique finitely additive measure, vp : A — [0, 0] such that

vr ((a, b)) NR) = F (b) — F (a)
where F' (00) := limgqo F' (z) and F (—00) :=lim,| o F (z) . Let S denote the
A -simple functions with compact support which we express as
n
f= Zcil(ai7bi] €S
i=1

where {(a;,b;]};_, are pairwise disjoint sets and ¢; € C. For such an f we have

[ fave =3 e ((aibd) = 3D [P () = F (0]
i=1 =1

and if a = min{a; : 1 <i¢<n}and b=max{a; : 1 <i<n}, then

Lo

Let Ir denote the extension of S 5f — fR fdvp to the closure S of S in the
uniform norm sense with all functions in a sequence being supported in a fixed
compact integral.

< D lal1F (0) = F(a)| < 1N, -vr (a,0]) < £, [F (0) = F (@)
i=1

Remark 7.15. A few remarks are now in order.

1.If f € S and f > 0, there exists f, € S such that |f = full, = 0. Since
faV0EeSand

\f = fuVOl, <|If = full, = 0asn — oo,

we may assume that f, > 0 for all n. Therefore,
IF (f) = lim fndI/F Z 07

n—oo R

i.e. Ir is still positive.
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2. C.(R,R) C S. Indeed, if f € C.(R,R) and choose a < bsuch that supp (f) C
(a,b) and suppose that

T ={a=ag <ay <---<ay, =b},

forn =1,2,3,...,is a sequence of refining partitions such that mesh(w,) —
0 as n — oo. Then define f, € S by

No—1
ful(z) = Z min{f(ac) cal <a < aﬁl} 1(a7’a?+1](x)'

=0

Since f is continuous and compactly supported it is uniformly continuous
on R and hence || f — fy||,, = 0 as n — oo. Thus by the BLT theorem

Ip (f) = lim [ fodvp

Np—1
= nll)ngo ZZ; min {f(x) ca <x < afﬁrl} [F (aﬁl) — F(a?’)] :

w

. Consequently, Ap := Ir|c, k) is a positive linear functional on C.(R,R).
4. By the Riesz-Markov Theorem there exists a unique Radon measure,
i, on (R, Bg) such that

/\F(f):/"(f) for all f € C. (R,R).

Theorem 7.16. The measure p constructed above is the unique measure on
(R, Br) such that

w((a,b]) = F (b+) — F (a+) for all —oo <a <b< 0.
[In general p and vy need not agree on A unless F is right continuous!]

Proof. Let —oco < a < b < 00, € > 0 be small and x. (z) be the function
defined in Figure

Xe

N

a a+e a+2e b b+e b+ 2e

Fig. 7.1. Approximating the characteristic function, 1(4 ).

Since xe — 1(4,5 boundedly and having supports ins a fixed compact set, it
follows by the dominated convergence theorem that
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p((a,b]) = lglﬁ)l/RXEdu = l;g}/ﬂgxgdup. (7.15)
On the other hand we have

1(a+25,b+s] S Xe S 1(a+s,b+25]7

and therefore applying Iy to this equation gives the inequalities;

F(b + 5) - F(a + 25) = IF <l(a+267b+5])

< / Xedvp
R

< Ir (Lateproc)) = F(b+2¢) = Fla+e).
Letting € | 0 in this equation and using Eq. (7.15]) shows
F(b+) - Flat) < pl(a,b]) < F(b+) — Flat).

7.4 Kolmogorov’s Existence of Measure on Products
Spaces

Throughout this section, let {(X4, 7o) }aca be second countable locally compact

Hausdorff spaces and let X := [ X, be equipped with the product topology,
a€cA
T := ®qecATa- More generally for A C A, let X, := HaeA Xy and T4 := ®aecATa

and A C I' C A, let ma,r : Xp — X be the projection map; w4, (z) = x| for
x € Xp. We will simply write 74 for m4 4 : X — X 4. (Notice that if A is a finite
subset of A then (X4, 7,) is still second countable as the reader should verify.)
Let M = ®,ecaB, be the product o-algebra on X = X4 and By = o0 (74) be
the Borel o-algebra on X 4.

Theorem 7.17 (Kolmogorov’s Existence Theorem). Suppose
{pa : A Cy A} are probability measures on (Xa,Ba) satisfying the following
compatibility condition:

o (mar), pr = pra whenever A C I' Cy A.

Then there exists a unique probability measure, u, on (X, M) such that
(ma), 1t = pa whenever A Cy A. Recall, see Exercise 7?7, that the condition
(Ta), it = pra is equivalent to the statement;

/ﬂm@WM@:/F@@Mw (7.16)
X

XA

forall ACy A and F : X4 — R bounded a measurable.
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7.4 Kolmogorov’s Existence of Measure on Products Spaces 53

We will first prove the theorem in the following special case. The full proof
will be given after Exercise [7.5] below.

Theorem 7.18. Theorem[7.17 holds under the additional assumption that each
of the spaces, {(Xu,Ta)taca, are compact second countable and Hausdorff and
A is countable.

Proof. Recall from Theorem ?? that the Borel o-algebra, B4 = o (74), and
the product o-algebra, ®,ec 4By, are the same for any A C A. By Tychonoff’s
Theorem ?? and Proposition 7?7, X and X4 for any A C A are still compact
Hausdorff spaces which are second countable if A is finite. By the Stone Weier-
strass Theorem 77,

D:={feC(X): f=Fomny with F € C(X,) and A Cy A}

is a dense subspace of C' (X). For f = Fonmy €D, let

I(f)= /X Fomp(x)dpa (). (7.17)

Let us verify that I is well defined. Suppose that f may also be expressed as
f=Fompy with A Cy Aand F' € C(Xu). Let I' := AU A" and define
G € C(Xr) by G := F omy, r. Hence, using Exercise 77,

Gd/ip:/ FOWA?F d/},p:/ Fd[(’]TA’p)*[L['} = Fd‘LLA
Xr Xr Xa Xa

wherein we have used the compatibility condition in the last equality. Similarly,
using G = F’ omp p (as the reader should verify), one shows

Gd,[t]“:/ F/ d,U'A/-
Xr X

A

Therefore

/ F duy = Gdur :/ F dug,
X a1 Xr Xa

which shows I in Eq. is well defined.

Since |I(f)] < ||fll , the B.L.T. Theorem ?? allows us to extend I from
the dense subspace, I, to a continuous linear functional, I, on C (X) . Because
I was positive on I, it is easy to check that I is still positive on C (X). So by
the Riesz-Markov Theorem [7.11] there exists a Radon measure on B = M such
that I (f) = [ fdu for all f € C (X). By the definition of I in now follows that

X

/Fd(wA)*u: /FowAdu:f(FowA):/quA
XA XA XA
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54 7 Radon Measures and the Dual of Cy(X)

for all F € C(X*) and A Cy A. Since X, is a second countable locally compact
Hausdorff space, this identity implies, see Theorem ??EI, that (m4), = pa. The
uniqueness assertion of the theorem follows from the fact that the measure p is
determined uniquely by its values on the algebra A := Uxc, ATI'/_ll(B x,) which
generates B = M, see Theorem 77. [

Exercise 7.5. Let (Y, 7) be a locally compact Hausdorff space and (Y* =Y U
{00}, 7*) be the one point compactification of Y. Then

By« :=0c(t")={ACY*": ANY € By =0(7)}
or equivalently put
By« :ByU{AU{OO}:AEBy}.

Also shows that (Y* =Y U{oco},7*) is second countable if (Y, 7) was second
countable.

Proof. Proof of Theorem
Case 1; A is a countable. Let (X% = X, U {0c0,},7) be the one point

compactification of (X, 7,). For A C A, let X7 := [[ X equipped with the
acA
product topology and Borel o-algebra, B7. Since A is at most countable, the

set,

Xj = ﬂ {7704 :Ooa}7

a€cA

is a measurable subset of X7j. Therefore for each A C; A, we may extend p,
to a measure, fig, on (X}, B%) using the formula,

fia (B) =ps(BNX,) forall B e X7.

An application of Theorem [7.18|shows there exists a unique probability measure,
@, on X* := X such that (74), i = fia for all A Cy A. Since

X"\ X = U {To = 00}
a€cA
and fi ({mq = 00}) = figay ({o0a}) = 0, it follows that i (X*\ X) = 0. Hence
W= fi|g, is a probability measure on (X, Bx). Finally if B € Bx C Bx~,
pa (B) = jia (B) = (na), a(B) = i (73" (B))
=i (3" (B) N X) = p(malx" (B))

1 Alternatively, use Theorems ?? and the uniquness assertion in Markov-Riesz The-
orem to conclude (m4), pp = pa.
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which shows p is the required probability measure on Bx.

Case 2; A is uncountable. By case 1. for each countable or finite subset
I' C A there is a measure pup on (Xp,Br) such that (74,r), pr = pa for all
A Cy I'. By Exercise 77,

M= U {m7" (Br) : I is a countable subset of A},

i.e. every B € M may be written in the form B = 7" (C) for some countable
subset, I' C A, and C € Bp. For such a B we define p (B) := pur (C). It is left
to the reader to check that p is well defined and that p is a measure on M.
(Keep in mind the countable union of countable sets is countable.) If A C; A
and C € By, then

(), 1] (C) = (71" () = 1a (C),
ie. (ma), = pa as desired. ]

Corollary 7.19. Suppose that {jia},c 4 are probability measure on (Xa,Ba)
for all o € A and if A Cy A let pa = ®acalta be the product measure on
(XA, BA = ®aecaBs). Then there exists a unique probability measure, p, on
(X, M) such that (ma), u = pa for all A Cy A. (It is possible remove the
topology from this corollary, see Theorem 7?7 below.)

Exercise 7.6. Prove Corollary by showing the measures p, = Quecalla
satisfy the compatibility condition in Theorem

7.5 The dual of Cy(X)

Definition 7.20. Let (X, 7) be a locally compact Hausdorff space and B = o (7)
be the Borel o-algebra. A signed Radon measure is a signed measure |, on 3
such that the measures, u+, in the Jordan decomposition of u are both Radon
measures. A complex Radon measure is a compler measure i on B such
that Re p and Im p are signed radon measures.

Exercise 7.7. If (X, 7) is a LCH and p is a finite signed measure on (X, Bx)
then py are Radon measures iff |p] is a Radon measure.

Exercise 7.8. If (X, 7) is a LCH and p is a complex measure on (X, Bx) then
the following are equivalent;

1. |u| is a Radon measure,
2. |[Rep| and |[Im p| are Radon measures, and
3. (Rep), and (Imp), are Radon measures.
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Thus any one of the above conditions may be used as the definition of a
complex measure, i, being a Radon measure.

Ezxample 7.21. Every complex measure p on Bga is a Radon measure. BRUCE:
add some more examples and perhaps some exercises here.

*

Proposition 7.22. Suppose (X, 7) is a topological space and I € Cy(X,R)
Then we may write I = I, — I_ where I+ € Cy(X,R)" are positive linear
functionals.

Proof. For f € Cy(X,[0,00)), let
I (f) ==sup{l(g) : g € Co(X,[0,00)) and g < f}

and notice that |1y (f)] < [[I]||If]l- If ¢ > 0, then I (cf) = cI; (f). Suppose
that fi1, fo € Co(X,[0,00)) and g; € Co(X,[0,00)) such that g; < f;, then
91+ 92 < fi + fa so that

I(g1) + I(g2) = I(g1 + g92) < I+ (f1 + f2)

and therefore
Li(fi) + 11 (f2) < L (f1 + fo). (7.18)
Moreover, if g € Cy(X,[0,00)) and g < f1 + fo, let gy = min(f1, g), so that
0<gei=9g-—qn <fi—gi+f2< /o
Hence I (g) = I(g1) + I(g2) < I+(f1) + L+ (f2) for all such g and therefore,
Li(fr+ f2) < Li(f1) + L (f2). (7.19)

Combining Egs. and shows that I, (f1+ f2) = I+ (f1)+ I+ (f2). For
general f € Cop (X,R), let I (f) = I (f+)— I+ (f-) where fi = max(f,0) and
f— = —min(f,0). (Notice that f = fy — f_)If f = h—g with h,g € Cy (X,R),
then g + f1 = h+ f_ and therefore,

I (9) + L (f+) = Lo (h) + Lo (f-)
and hence I, (f) = I+ (h) — I+ (g9) . In particular,
L= f) = Le(f- = £4) = 11 (F) = Te(F4) = L4 ()
so that Iy (ef) = cl; (f) for all ¢ € R. Also,

Li(f+9)=L(f+ +9+ — (f-+9-) = Li(f+ +9+) — L (f- +9-)
=1 (f+) + 1+ (9+) — I+(f-) — I+(g9-)
— 1L () + 14 ().
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Therefore I, is linear. Moreover,

(L4 ()] < max (|14 (f4)], 15 (f)]) < [ [fmax (Lf4 ] (LA~ 11) = 1A
which shows that ||[I|| < [[I|. Let I_ = I, — I € Co (X,R)", then for f >0,

by definition of I, so I_ > 0 as well. ]

Remark 7.23. The above proof works for functionals on linear spaces of bounded
functions which are closed under taking f A g and fV g. As an example, let
A(f) = fol f () dz for all bounded measurable functions f : [0,1] — R. By the
Hahn Banach Theorem ?? (or Corollary ??) below, we may extend A to a linear
functional A on all bounded functions on [0, 1] in such a way that || A|| = 1. Let
Ay be as above, then A, = X on bounded measurable functions and [|A4|| = 1.
Define pu(A) := A(14) for all A C [0, 1] and notice that if A is measurable, the
u(A) = m(A). So p is a finitely additive extension of m to all subsets of [0, 1].

Exercise 7.9. Suppose that y is a signed Radon measure and I = I,. Let p
and p— be the Radon measures associated to I+ with I+ being constructed
as in the proof of Proposition Show that p = p4 — p— is the Jordan
decomposition of p.

Theorem 7.24 (Dual of Cy (X)). Let X be a locally compact Hausdorff space,
M(X) be the space of complex Radon measures on X and for p € M (X) let
||l = |u|(X). Then the map

peMX)—=1I,eCy(X)"
is an isometric isomorphism. Here again I, (f) == [y f dp.

Proof. To show that the map M (X) — Co(X)" is surjective, let I € Co(X)*
and then write I = I"® + ¢I*™ be the decomposition into real and imaginary
parts. Then further decompose these into there plus and minus parts so

I=1I7°—I"°+i (" — 1)

and let p¢ and pi™ be the corresponding positive Radon measures associated
to I5¢ and Ii™. Then I = 1,, where
m

po=phe = pl 4 (" — )

To finish the proof it suffices to show |1, ]|, - = [lull = [p](X). We have
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Bl =5 {| [ san): 1 e o3 11 <1}
< Sup{‘/ fdu’ : f measurable and | f||, < 1} = ||u]|.
X

To prove the opposite inequality, write du = gd |u| with g a complex measurable
function such that |g| = 1. By Proposition ??, there exist f,, € C.(X) such that
fn — g in L'(|u|) as n — oo. Let g, = ¢@(fn) where ¢ : C — C is the
continuous function defined by ¢ (2) = z if |2] < 1 and ¢ (2) = z/ || if |2| > 1.
Then |g,| < 1 and making use of the Lemma E gn — g in L'(p) Thus

Il =11 () = [l = [ adn= i [ e < ey -
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Homework #6 (Spring 2018)

For this last homework assignment:

Hand in Exercises B2 and R3]

Look at Exercise Bl

The next elementary theorem (referred to as the bounded linear transfor-
mation theorem, or B.L.T. theorem for short) is often useful when constructing
bounded linear transformations.

Theorem 8.1 (B. L. T. Theorem). Suppose that Z is a normed space, X is
a Banach space, and S C Z is a dense linear subspace of Z. If T : S — X is a
bounded linear transformation (i.e. there exists C' < oo such that ||Tz|| < C ||z||
for all z € S), then T has a unique extension to an element T € L(Z,X) and
this extension still satisfies

|Tz|| < C|z|| forallz € S.
Exercise 8.1. Prove the B.L.T. Theorem [B.11

Exercise 8.2 (Dini’s Theorem). Let X be a compact topological space and
fn + X — [0,00) be a sequence of continuous functions such that f, (z) | 0
as n — oo for each x € X. Show that in fact f, | O uniformly in z, i.e.

Supyex fn(x) L 0asn— ooE|
Hint: Given ¢ > 0, consider the open sets V,, :={z € X : f, (z) < €}

Theorem 8.2 (Riesz Markov Theorem for an Interval). Let X = [0, 1]
and A € C'(X)™ be a positive linear functional. Then there exists a unique Borel
measure, w, on Bx such that A (f) = p(f) for all f € C (X,R) where

w(f) = /X fdp. (8.1)

The following notations will be used in Exercise [8:3] below where you are
asked prove the existence part of the Riesz Markov Theorem on [0,1].

! More generally, if gn,g : X — R are continuous functions such that g, (z) | g ()
as n — oo for each z € X, then g, () — g () uniformly in z. Indeed, apply what
you have proved to frn :=gn —g.

Notation 8.3 For0<a<b<1, let
v ([a,b]) := inf{/\(f) Ay < fe C(X,R)} (8.2)

and
F () :=v([0,b]) :=inf {A(f) : 1jop) < f € C(X,R)}. (8.3)

Notation 8.4 For 0 < a < a < b < f <1, let Xaabs € C([0,1],[0,1]) be
the piecewise linear function on [0, 1] which is 0 on [0, «], linearly interpolates
from 0 to 1 on [aya], is 1 on [a,b], linearly interpolates from 1 to 0 on [b, A],
and is 0 again on [B,1]. Also for 0 < b < g <1, let 6,5 € C([0,1],[0,1]) be
the piecewise linear function on [0,1] which is 1 on [0,b], linearly interpolates
from 1 to 0 on [b, 0], and is 0 again on [3,1], see Figure .

AY
1 L :
: > x
‘ :
0 b B 1

Fig. 8.1. The graphs of smooth approximations to 1jq5 and 1l as continuous
functions on [0, 1].

Exercise 8.3 (Riesz Markov Theorem for an Interval). Show there ex-
ists a finite Borel measure, u, on (X = [0,1],B = Bx) satisfying Eq. (8.1) of
Theorem One way to prove this result is to prove the results listed below.

1.IFO < a < b < 1, show v([a,b]) = lim,00 A(pn) for any sequence,
{entozy € C(X,[0,1]), such that @, (z) | lja (@) for all z € [0,1].
Suggestions: given 1, < f € C (X, [0, 1]) notice that
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a) v ([a,b]) < A(pn) < A(pn V f) where @, V f := max (¢n, ), and A(f) < / Frdp = 1 (fr).
b) ¢, V f | f uniformly on [0, 1] by Dini’s theorem. X
2. Sh(')w F(b) = V.([O,b]) is right continuous in b. Hint: if {b,} C (0,1] is a Since fr — f boundedly (in fact uniformly) as mesh(r) =
strictly decreasing sequence such that b, | b, then max {|t; — t;_1] : 1 < i < n} — 0, conclude that A (f) < 1 (f).
F(b) < F(b+) < F(by) <A, 0..). (8.4) 6. Using )\.(1) = (1), show A (f) < pu(f) for all f € C(X,R) then apply this
result with f replaced by —f to complete the proof.
Let p be the unique Borel measure on [0, 1] such that x ([0,b]) = F' (b) for
all b € [0,1]. The goal is to show that this measure u satisfies Eq. (8.1)).
3. Show v ([a,b]) < p([a,b]) for all 0 < a < b < 1. Hints:
a) if a = 0 there is nothing to prove so assume that 0 < a <b < 1.
b) Choose {a, },—; C (0,a) so that a, strictly increases to a as n — co and
let ¢, :=0,, . and ¥, = Xa, .ab (b+1)n1 and observe that ¢, + ¥, =
%

b, (b+2)A1 and hence

Fan) + A (@) SA @) 2@ = A (8,001 ) - (85)

¢) Pass to the limit as n — oo in the previous inequality.
4. Suppose that f € C (X, [0,00))andm ={0 =ty < t; <+ < tp_1 <t, =1}
is a partition of [0,1]. Let

cir=max{f(t):t€ti—1,t]} for1<i<n
and set

Jr =1l + 2l ] T+l ot
Show

n

ZQV i— 13 Z z 17 . (86)

i—1

IA

<

Hint: If f; € C' (X, [0,1]) satisfy 1, , ;) < fi for 1 <4 <n, then

i=1
5. Recall that

Y e <p(0,1]) = F(1) = A(1) < oo

z€[0,1]

and hence if E:={z € X : p({x}) > 0}, then E is at most countable. We
now suppose that all partitions, m, we use have now been chosen so that
t; ¢ E for 0 < j < n. Under this assumption, show Eq. implies
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9

Spectral Theorem (Compact Operator Case)

Before giving the general spectral theorem for bounded self-adjoint opera-
tors in the next chapter, we pause to consider the special case of “compact”
operators. The theory in this setting looks very much like the finite dimensional
matrix case.

9.1 Basics of Compact Operators

Definition 9.1 (Compact Operator). Let A: X — Y be a bounded operator
between two Banach spaces. Then A is compact if A[Bx(0,1)] is precompact
in'Y or equivalently for any {z,}52, C X such that ||x,|| < 1 for all n the
sequence y, ‘= Ax, €Y has a convergent subsequence.

Remark 9.2. Tt is sometimes useful to note that A is compact iff A takes bounded
sets to precompact sets. Indeed if B C X is a bounded set, then there exists R <
oo such that H%H <1 for all z € B and hence if {z,},-, C B we know there
exists {zn, } < {x,} such that limy_, AI"TJ“ = y and hence limy_, o, Az, = Ry
also exists.

Definition 9.3. A bounded operator A : X — Y 1is said to have finite rank
if Ran (A) C Y is finite dimensional.

The following result is a simple consequence of the fact that closed bounded
sets are compact in finite dimensional normed spaces.

Corollary 9.4. If A: X — Y s a finite rank operator, then A is compact. In
particular if either dim(X) < oo or dim(Y) < oo then any bounded operator
A: X =Y is finite rank and hence compact.

Lemma 9.5. If X Ay v By 7 are bounded operators between Banach spaces
such the either A or B is compact then the composition BA : X — Z is also
compact. In particular if dim X = co and A € L(X,Y) is an invertible operator
such thaﬂ A7Y e L(Y,X), then A is not compact.

! Later we will see that A being one to one and onto automatically implies that A~*
is bounded by the open mapping Theorem ?7.

Proof. Let Bx(0,1) be the open unit ball in X. If A is compact and B
is bounded, then BA(Bx(0,1)) C B(ABx(0,1)) which is compact since the
image of compact sets under continuous maps are compact. Hence we con-
clude that BA(Bx(0,1)) is compact, being the closed subset of the compact
set B(ABx(0,1)). If A is continuous and B is compact, then A(Bx(0,1)) is a
bounded set and so by the compactness of B, BA(Bx(0,1)) is a precompact
subset of Z, i.e. BA is compact.

Alternatively: Suppose that {z,} -, C X is a bounded sequence. If A is
compact, then y, := Ax, has a convergent subsequence, {ynk}zoz1 . Since B is
continuous it follows that z,, := By,, = BAx,, is a convergent subsequence of
{BAz,}.- , . Similarly if A is bounded and B is compact then y,, = Ax,, defines
a bounded sequence inside of Y. By compactness of B, there is a subsequence
{Yny } oy for which {BAz,, = By,, };., is convergent in Z.

For the second statement, if A were compact then Ix := A~'A would be
compact as well. As Ix takes the unit ball to the unit ball, the identity is
compact iff dim X < co. [ |

Corollary 9.6. Let X be a Banach space and K (X) := K (X, X). Then K (X)
is a norm-closed ideal of L (X) which contains Ix iff dim X < co.

In order to give some more interesting examples of compact operators, let
us recall that Ascoli-Arzela theorem for which we recall the following definition.

Definition 9.7. Let X be a topological space and F be either R or C and suppose
that F C C(X,Y).

1. F is equicontinuous at x € X iff limg . sup;cx |f (§) — f (z)] = OE|
2. F is equicontinuous if F is equicontinuous at all points z € X.
3. F is pointwise bounded if sup{|f (z)| : f € F} < 0o for all z € X.

Theorem 9.8 (Ascoli-Arzela Theorem). Let (X, 7) be a compact topolog-
ical space and F C C (X, Fd). Then F is precompact in C (X, IFd) iff F is
equicontinuous and point-wise bounded.

2 This should be compared with f : X— Y being continuous at =z iff

limg— [ f (§) — f ()] = 0.
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Proposition 9.9. Let X be a compact topological space (metric space is fine),
Z be a Banach space (normed space), and X > © — k, € Z* be a continuous
map. Then K : Z — C (X)) defined by

(Kf) (x) = (f k) = f (ko)

is a compact operator where (f ky) = ky (f) =: f (ks). [Note that 1K1, <
maxy ||kz|| 4« < 0o since X 3 & — ||ky|| ;. € R is a continuous function on a
compact set.]

Proof. The map Z > f — f € Z** is continuous and therefore K f : X — C

ke
is continuous being the composition of two continuous maps, X g Sy
Let
F:=KBz(0,1)={Kf: feZwith | f||, <1}.

As

sup |[Kf ()| = sup [ks (f)] = [|kz]
If1<1 If1<1

zx <00

it follows that F is pointwise bounded. Also if Z,x € X,

sup |Kf(Z) = Kf (z)] = sup [(f ke —ka)| = |[kz — kal
NS 1711

g+ > 0asT —x

since * — k; is continuous. This shows that F is equicontinuous and hence
F = KBz (0,1) is precompact in C (X, C). |

Corollary 9.10 (Integral operators). Suppose that X be a compact metric
space, (£2,F,u) is a measure space, 1 < p < o0, 0 < g € LP (u), and k :
X x 2 — C is a jointly measurable function such that X > x — k (z,w) € C is
continuous, and |k (z,w)| < g (w) for all (or p -a.e.)w € Q. For f € Z := LP (u)
and x € X, let

() (@)= [ K@) ] @)du(e),
then K : LP (u) — C (X) is a compact operator.

Proof. To prove this let k, := k (z,-) € LP" () = L? ()™ and observe that
(Kf) (z) = (f, ka) and

Po= lim [ |k (Fw) -k (z,0)]P du(w)

p* T
r—x 0

:/ lim [k (%,w) — k (z,w)[” du (@) =0,
[0}

lim [|kz — ks
r—x

T—x

wherein we have used the dominated convergence theorem with dominating
function being 27" g? € L' (i) . Technically, we take the limits along arbitrary
sequences, T = x, — & as n — oo in order to apply DCT. ]
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Ezample 9.11 (Integral operators). Suppose that X is a compact metric space,
B, is the Borel o-algebra on X, u is a finite measure on (X, B),and k : X x X —
C is a jointly continuous function. Then for any 1 < p < oo and f € LP (i), let

Kﬂm:Akmmﬂwww.

Then K : L? (X, ) — C (X) is a compact operator and since C (X) > f — f €
LP (X, ) is a continuos injection we may further conclude that K : C' (X) —
C (X) is a compact operator.

Theorem 9.12. Let X and Y be Banach spaces and K := K(X,Y) denote
the compact operators from X to Y. Then K(X,Y) is a norm-closed subspace
of B(X,Y). In particular, operator norm limits of finite rank operators are
compact.

Proof. Using the sequential definition of compactness it is easily seen that
KC is a vector subspace of B (X,Y). To finish the proof, we must show that
K € B(X,Y) is compact if there exists K,, € K(X,Y) such that lim, o || K, —
K HOP =0.

First Proof. Let U := By (1) be the unit ball in X. Given € > 0, choose
N = N(e) such that ||Ky — K| < e. Using the fact that KyU is precompact,
choose a finite subset A C U such that KnU C UyeaBkyo (€). Then given
y = Kz € KU we have Kz € Bg . (¢) for some o € A and for this o;

ly — Knol|l = |[Kz — Kno|
< ||[Kx — Knz|| + |[Knz — Kno|| < ellz|| + ¢ < 2e.
This shows KU C UyeaBk o (2¢) and therefore is KU is 2¢ — bounded for all
€ >0, i.e. KU is totally bounded and hence precompact.
Second Proof. Suppose {z,},-, is a bounded sequence in X. By com-

pactness, there is a subsequence {quz}zo:l of {x,}~, such that {le}l};’o:l is
convergent in Y. Working inductively, we may construct subsequences

{zn}py D {x}z}:oﬂ 2 {35721}20:1 D {ap il D
such that {K,,z"'} >~ is convergent in Y for each m. By the usual Cantor’s di-
agonalization procedure, let &, := 2, then {&,} -, is a subsequence of {z,, }, ;
such that {K,,,&,},— is convergent for all m. Since
<2 ||K - Km” + ||Km(§n - fl)” )

lim sup ||K¢&, — K&l <2||K — K| — 0 as m — oo,

n,l—o0

which shows {K¢,} -, is Cauchy and hence convergent. ]
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Example 9.13. Let X = ¢?> =Y and A, € C such that lim, o A, = 0, then
A: X — Y defined by (Az)(n) = A\ z(n) is compact. To verify this claim, for
each m € Nlet (4,,z)(n) = Az (n)l,<m. In matrix language,

A3 - | and Ay = 0N, O -
0 0~

Then A,, is finite rank and ||A — AmHop = maXpsm |An| = 0 as m — oo. The
claim now follows from Theorem [9.12)

Ezample 9.14. Let (X, B, 1) be a o - finite measure spaces whose o — algebra is
countably generated by sets of finite measure. If k € L? (X x X, u® u), then
K : L?(u) — L? (n) defined by

Kﬂm:Akmwﬂmww

is a compact operator.

Proof. First observe that
|Kfuwsva[Qkumwdu@>

and hence
anH2§|vn?/’ e (2, 9)? ds () dp (3)
XxX

from which it follows that |K||,, < [kl 2,y -
Now let {t,,} ~, be an orthonormal basis for L? (X, u) and let

N

kn (Jf,y) = Z <k7wm®wn>wm®wn

m,n=1

where f ® g (z,y) := f (z) g (y). Then

N

Knf () :=/ kn (2,9) f W) dp(y) = Y (kb @ ) (1 80) P

X m,n=1

is a finite rank and hence compact operator. Since
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||K_KNH0p S ||k_ kNHLZ(,U,@,U,) — O as N — 0

it follows that K is compact as well. [
We will see more examples of compact operators below in Section [0.4] and
Exercise 77 below.

9.2 Compact Operators on Hilbert spaces

(This section is not absolutely necessary as the results may be deduced from
results from the following Spectral Theorem Section [9.3])

Lemma 9.15. Suppose that T, T, € L(X,Y) forn € N where X and Y are
normed spaces. If T,, > T, M = sup,, | T|| < oo and z, — = in X asn — oo,
then Thxn, — Tx in'Y as n — 0o. Moreover if K C X is a compact set then

lim sup | Tz — Tyx| = 0. (9.1)

n—oo rzeK

Proof. 1. We have,

Tz — Tnan| < || Tx — Thx|| + || Tz — Tny|]
<|Tz — Thz||+ M ||z — z,]] — 0 as n — oo.

2. For sake of contradiction, suppose that

limsup sup ||Tz — T,z|| =€ > 0.

n—oo zeK

In this case we can find {ng};.;, C N and z,, € K such that
T2, — Thnyn,ll > /2. Since K is compact, by passing to a subse-
quence if necessary, we may assume limy_,~ %, = « exists in K. On the other
hand by part 1. we know that

lim | Tz, — Thy%n,l = ’ lim Tz, — lim T, x,, | = [Tz —Tz|| =0.
k—oc0 ) k—oco k—o0
2 alternate proof. Given ¢ > 0, there exists {x1,...,2x} C K such that

K c UN B, (¢). If x € K, choose I such that z € By, (¢) in which case,
ITe — Toal| < T — Tall + T — Tl + | Ty — To|

< (Il + M) & + || T2 = T

3If X and Y are Banach spaces, the uniform boundedness principle shows that
T, > T automatically implies sup,, | Tn|| < co.
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and therefore it follows that

smwwx—nmng(mmw+ngg+ImmHT@_Tmﬂ
2€K 1<IKN

and therefore,

limsup sup ||Tx — Tpz| < (HTHop + M) €.
n—oo zeK
As e > 0 was arbitrary we conclude that Eq. (9.1]) holds. ]
For the rest of this section, let H and B be Hilbert spaces and U := {z €
H : ||z|| < 1} be the open unit ball in H.

Proposition 9.16. A bounded operator K : H — B is compact iff there exists
finite rank operators, K, : H — B, such that |K — K,|| — 0 as n — oo.

Proof. Suppose that K : H — B. Since K(U) is compact it contains a
countable dense subset and from this it follows that K (H) is a separable sub-
space of B. Let {¢,} be an orthonormal basis for K (H) C B and

n

Pny = Z<y7 @é)@@
(=1

be the orthogonal projection of y onto span{y,}}_,. Then lim, o ||Py—y| =0
for all y € K (H). Define K,, := P,K — a finite rank operator on H. It then
follows that

limsup | K — K,,|| = limsup sup | Kz — K,z||
n— 00 n—oo zelU
= limsupsup || (I — P,) Kz||
n—oo xeU

<limsup sup ||(I—P,)yl|=0
n—oo yEK(U)

by Lemma along with the facts that K (U) is compact and P, - I. The
converse direction follows from Corollary [0.4] and Theorem [9.12]
[

Corollary 9.17. If K is compact then so is K*.

Proof. First Proof. Let K,, = P, K be as in the proof of Proposition[9.16
then K} = K* P, is still finite rank. Furthermore, using Proposition 77,

IK* — K| = | K — Ku| — 0 as n— oo

showing K* is a limit of finite rank operators and hence compact.
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Second Proof. Let {z,,} -, be a bounded sequence in B, then

|K*2y — K*2p || = (2 — @, KK* (2 — &)} < 2C | KK* (20 — 2y
(9.2)
where C' is a bound on the norms of the z,,. Since { K*z,,} —, is also a bounded
sequence, by the compactness of K there is a subsequence {x,} of the {z,} such
that K K*x/, is convergent and hence by Eq. (9.2)), so is the sequence {K*z/,}.
|

9.3 The Spectral Theorem for Self Adjoint Compact
Operators

For the rest of this section, K € K(H) := K(H, H) will be a self-adjoint compact
operator or S.A.C.O. for short. Because of Proposition [9.16) we might expect
compact operators to behave very much like finite dimensional matrices. This
is typically the case as we will see below.

Ezample 9.18 (Model S.A.C.0.). Let H = {3 and K be the diagonal matrix

A O O -
0 Xy O ---
K= 0 0 Ny |

where lim,, o, |A\,| = 0 and \,, € R. Then K is a self-adjoint compact operator.
This assertion was proved in Example[9.13

The main theorem (Theorem [9.24]) of this subsection states that up to uni-
tary equivalence, Example [0.18] is essentially the most general example of an
S.A.C.O. Before stating and proving this theorem we will require the following
results.

Lemma 9.19. Let QQ : H x H — C be a symmetric sesquilinear form on H
where Q is symmetric means Q (h,k) = Q (k,h) for all h,k € H. Letting
Q (h) :=Q (h,h), then for all h,k € H,

QMh+k)=Q(h)+Q(k)+2ReQ (h, k), (9.3)
Q(h+k)+Q(h—Fk)=2Q(h)+2Q(k), and (9.4)
Q(h+k)—Q(h—k)=4ReQ (h, k). (9.5)

Proof. The simple proof is left as an exercise to the reader.
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Theorem 9.20 (Rayleigh quotient). Suppose T € B (H) is a bounded self-
adjoint operator, then

(75,5 71
M = —— = ||T = _— .
W e ( P f||>

Moreover, if there exists a non-zero element f € H \ {0} such that

T O IFIP = IITN, then f is an eigenvector of T with Tf = Af and
A e {£IT3-

Proof. First proof. Applying Eq. (9.5) with Q (f,9) = (T'f,g) and Eq.
(19.4) with @ (f,9) = (f, g) along with the Cauchy-Schwarz inequality implies,

ARe(Tf.g) =(T(f+9).(f+9) —(T(f—9),(f—9))
< M[If +gl* + 1 = gll*] =20 117 + llgl?]

Replacing f by e f where @ is chosen so that € (T'f, g) = |(T'f, g)| then shows

AKTF,9) < 2M [IFIP + gl

and therefore,

[T} = sup  [(f,Tg)| <M
I£1=lgll=1

and since it is clear M < ||T'|| we have shown M = ||T|| .
If fe H\{0} and |T|| = (Tf, )|/ || f]|* then, using Schwarz’s inequality,

_KTLENL _ T

This implies [(T'f, f)| = |ITf]l || f|| and forces equality in Schwarz’s inequality.
So by Theorem ??, T'f and f are linearly dependent, i.e. Tf = Af for some
A € C. Substituting this into shows that |A| = ||T||. Since T is self-adjoint,

MIFIP = L F) = (TF ) = (L TF) = (FA) = M) = AP,
which implies that A € R and therefore, A € {£||T||}.

<7 (9.6)

Exercise 9.1 (This may be skipped). Suppose that A : H — H is a
bounded self-adjoint operator on H. Show;

1. f(z) = (Az,z) e R for all z € H.
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2. If there exists xg € H with ||zo|| = 1 such that

Ao = sup (Az,z) = (Azo, z9)
llzll=1

then Az = Aoxo. Hint: Given y € H let c(t) := ﬁ for ¢ near 0.
Yl
Then apply the first derivative test to the function g (t) = (Ac(¢),c(¢)) .

3. If we further assume that A is compact, then A has at least one eigenvector.

Proposition 9.21. Let K be a S.A.C.0., then either A = |K| or A = — || K||
is an eigenvalue of K.

Proof. (For those who have done Exercise that exercise along with
Theorem constitutes a proof.) Without loss of generality we may assume
that K is non-zero since otherwise the result is trivial. By Theorem there
exists u,, € H such that ||u,|| =1 and

= |(un, Ku,)| — || K| as n — oo. (9.7

By passing to a subsequence if necessary, we may assume that A :=
limy, s 00 (U, Kuy,) exists and A € {£|K]|}. By passing to a further subse-
quence if necessary, we may assume, using the compactness of K, that Ku,
is convergent as well. We now compute:
0 < | Kup — Muinl|® = | Kun||? = 2M Ky, uy) + A2
<A = 2XM(Kup, up) + N2
S A —2X2 4+ X2 =0asn — 0.

Hence
Ku, — Au, > 0asn — oo (9.8)
and therefore )
u:= lim u, = — lim Ku,
n—o0 n—oo

exists. By the continuity of the inner product, ||u|| = 1 # 0. By passing to the
limit in Eq. we find that Ku = \u. [

Lemma 9.22. If H and K be Hilbert spaces and A € L (H, K), then;
1. Nul(A*) = Ran (A)", and

2. Ran (A) = Nul(A*)*,
3. If we further assume that K = H, and V C H is an A — invariant subspace
(i.e. A(V) C V), then V1 is A* — invariant.
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64 9 Spectral Theorem (Compact Operator Case)

Proof. 1. We have y € Nul(4*) <— A*y=0 < (y,Ah) =(0,h) =
forall h € H <= y € Ran(A)*

2. By Exercise ??, Ran (A) = Ran (A)"", and so Ran (A) = Ran (4)"" =
Nul(A4*)+

3. Now suppose that K = H and AV C V.If y € V+ and z € V, then

(A*y,z) = (y,Az) =0 forallz € V — A*yec V%,
[

Definition 9.23 (Spectrum of an operator). If X is a Banach space and
A: X — X is a bounded operator we define A € o (A) iff (A—XI) is not
invertible. The subset, 0 (A) C F, is referred to as the spectrum of A.

Theorem 9.24 (Compact Operator Spectral Theorem). Suppose that
K :H — H is a non-zero S.A.C.0O., then

1. there exists at least one eigenvalue A € {x| K| }.

2. There are at most countably many non-zero eigenvalues, {\, }\_,, where
N = 0 is allowed. (Unless K is finite rank (i.e. dim Ran (K) < 00), N will
be infinite. )

3. The A\, ’s (including multiplicities) may be arranged so that |An| > |An+1]
for all n. If N = oo then lim, o |An| = 0. (In particular any eigenspace
for K with non-zero eigenvalue is finite dimensional.)

4. The eigenvectors {@, }_, can be chosen to be an O.N. set such that H =

- 1
span{ @, } ®© Nul(K).
5. Using the {@, })_, above,

N

Kf = Mulf @n)pn forall f € H. (9.9)

n=1

6. The spectrum of K is o(K) = {0} U{\,:n < N+1} if dimH =
otherwise o(K) = {\, : n < N} with N < dim H.

Proof. We will find A,,’s and ¢,,’s recursively. Let A\ € {£|| K|} and o1 € H
such that K¢, = A\j¢; as in Proposition [9.21

Take M, = span((pl) so K(My) C M. By Lemmam KM ¢ Mji-.
Define Ky : Mj- — Mji- via K = K|Mi Then K is again a compact operator.
If K; = 0, we are done. If K; # 0, by Proposition [0.21] there exists Ay €
{£||K1||} and @2 € Mji- such that ||g02|| =1 and Kips = Kps = Aaps. Let
My = span(e1, p2).

Again K (Ms) C M> and hence Ky := K|MJ_ Mj- — Mj- is compact and
if Ko =0 we are done. When K5 # 0, we apply Proposition [9.21] again to find
A3 € {£||K|]2} and ¢3 € M5 such that ||p3| = 1 and Kapz = chg = A3p3.
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Continuing this way indefinitely or until we reach a point where K, = 0,
we construct a sequence {\, })_; of eigenvalues and orthonormal eigenvectors
{pn}N_; such that |\,| > |\,41| with the further property that

K
An| = sup M (9.10)

pLl{p1,p2, . on-1} el

When N < oo, the remaining results in the theorem are easily verified. So from
now on let us assume that N = oo.

If € := lim, o0 |[An| > 0, then {)\;Hpn}:}:l is a bounded sequence in H.
Hence, by the compactness of K, there exists a subsequence {ny : k € N} of
N such that {¢,, = A;}:Kapnk}:il is a convergent. However, since {¢y, }r;
is an orthonormal set, this is impossible and hence we must conclude that
g:=lim, 00 |An| = 0.

Let M := span{p,}>° ;. Then K(M) C M and hence, by Lemma
K(M*+) C M*. Using Eq.

b
IK [yl < || Klars || = [Anl — 0 as n — oo

showing K|M+* = 0. Define P, to be orthogonal projection onto M~. Then for
feH,

F=Pof+(1=P)f =Pof + Y (fron)e

n=1

and
oo

Kf:KPOf+KZ<f?SDn Pn Z fv(pn

n=1 n=1

which proves Eq. .

Since {A\p}52; C o(K) and o(K) is closed, it follows that 0 € o(K) and
hence {A,}22, U {0} C o(K). Suppose that z ¢ {\,}>2, U {0} and let d
be the distance between z and {A,}52; U {0}. Notice that d > 0 because
lim,, o0 A, = 0.

A few simple computations show that:

(K - ZI)f = Z<fa§0n>()‘n - Z)‘Pn -z f,
n=1

(K — 2)7! exists,

(K—2D)7 = (f.0n)(An — 2) o — 27 o f,

n=1

and
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1
(K — =z~ f|? = Zl fron)] + WIIPofHQ

‘2

1 2 2 2 1 2

< (d) (Zl(f,sonﬂ + [P fll ) = S If17.
n=1

We have thus shown that (K — 2I)~! exists, ||[(K — 2I)7!|| < d7! < oo and
hence z ¢ o(K). |

Theorem 9.25 (Structure of Compact Operators). Let K : H — B
be a compact operator. Then there exists N € NU{oo}, orthonormal subsets

{g&n}n 1 C H and {wn} _1 C B and a sequence {an} —1 C Ry such that

a1 > ag > ... (with lim, e ap =0 if N = 00), ||| <1 for all n and
N
Kf =Y on(f,on)tn forall f € H. (9.11)
n=1

Proof. Since K*K is a self-adjoint compact operator, Theoremlmlmphes
there exists an orthonormal set {®,}_; C H and positive numbers {\,, }
such that

N
KK = M\, n)pn for all i € H.

n=1

Let A be the positive square root of K*K defined by

N
A =" /A (Y, n)ipn for all ¢ € H.

n=1
A simple computation shows, A2 = K*K, and therefore,

A9 | = (Ap, Ap) = (v, A%p)
= (b, K*Kv) = (K¢, K¢) = | Ky

for all ¥ € H. Hence we may define a unitary operator, u : Ran(A) — Ran(K)
by the formula
uwAy = K1 for all ¢ € H.

We then have

N
Ktp = udp =Y /A (1, on)upn (9.12)
n=1
which proves the result with v, := e, and a,, = v/A,.
It is instructive to find 4, explicitly and to verify Eq. (9.12)) by brute force.
Since ¢, = /\771/2A<pn,
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Yo =N, Pudpn = AP Ko,
and
<K§0na K¢m> = <S0n7 K*KSQm> = MOmn-

This verifies that {wn} _, is an orthonormal set. Moreover,

Z\/inOnd)n—Z\/id)@n 1/2K90

N
wan on = K¢

since 22;1(1/” ©n)n = Pt where P is orthogonal projection onto Nul(K)*.

Second Proof. Let K = u|K| be the polar decomposition of K. Then | K|
is self-adjoint and compact, by Corollary ?? below, and hence by Theorem [0.24]
there exists an orthonormal basis {gpn} , for Nul(|K|)* = Nul(K)* such that
K| on = An@n, A1 > A2 > ... and hmn%oo)\n =0if N =o00. For f € H,

N N N
Kf=u |K| Z<f’ ¢n>90n = Z<f7 <Pn>u |K| Pn = Z /\n<fa ¢n>u§0n
n=1 n=1 n=1
which is Eq. (9.11) with ¢y, := up,. ]

Exercise 9.2 (Continuation of Example ??). Let H := L?([0,1],m),
k(x,y) := min (z,y) for z,y € [0,1] and define K : H — H by

Kf(z) = / k(z.y) f () dy.

From Example we know that K is a compact operatoil] on H. Since k is
real and symmetric, it is easily seen that K is self-adjoint. Show:

L.If g € C%([0,1]) with g(0) = 0 = ¢’ (1), then K¢g” = —g. Use this to
conclude (K flg"”) = —(f|g) for all g € C°((0,1)) and consequently that
Nul(K) = {0} .

2. Now suppose that f € H is an eigenvector of K with eigenvalue A # 0.
Show that there is a Versiorﬂ of f which is in C ([0,1])NC? ((0,1)) and this
version, still denoted by f, solves

A" = —f with f(0) = f'(1)=0. (9.13)
where [/ (1) := limg4 f/ ().

4 See Exercise from which it will follow that K is a Hilbert Schmidt operator and
hence compact.
5 A measurable function g is called a version of f iff g = f a.e..
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66 9 Spectral Theorem (Compact Operator Case)

3. Use Eq. (9.13)) to find all the eigenvalues and eigenfunctions of K.
4. Use the results above along with the spectral Theorem to show

{ﬁsm((wi) m) :neNO}

is an orthonormal basis for L? ([0,1],m) with A, = [(n + 1) 7]
5. Repeat this problem in the case that k (x,y) = min (z,y) — xy. In this case
you should find that Eq. (9.13)) is replaced by

A" =—f with f(0) = f(1) =0

from which one finds;

-2

{fn := V/2sin (n7x) 1 n € N}

is an orthonormal basis of eigenvectors of K with corresponding eigenvalues;
An = (nm) 72
6. Use the result of the last part to show,

< q 2
>E= g

Hint: First show

Z/\”f” fn (y) for ae. (z,y).

Then argue the above equation holds for every (z,) € [0,1]?. Finally take
y = x in the above equation and integrate to arrive at the desired result.

Note: for a wide reaching generalization of this exercise the reader should
consult Conway [?, Section I1.6 (p.49-54)].

9.4 Hilbert Schmidt Operators

In this section H and B will be Hilbert spaces.

Proposition 9.26. Let H and B be a separable Hilbert spaces, K : H — B be
a bounded linear operator, {e,}22, and {um},._, be orthonormal basis for H
and B respectively. Then:
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1

[

S K el = 200 K um||? allowing for the possibility that the sums

are infinite. In particular the Hilbert Schmidt norm of K,

2 2
1K 7s = Z [ Kenl”,

n=1

is well defined independent of the choice of orthonormal basis {e,}22 . We
say K : H — B is a Hilbert Schmidt operator if | K| ;4 < oo and let
HS(H, B) denote the space of Hilbert Schmidt operators from H to B.

. For all K € L(H,B), | K| gg = |K*| gg and

1K |75 > I K1l,, == sup {|Kh|| : h € H such that |h]| = 1}.

. The set HS(H, B) is a subspace of L (H,B) (the bounded operators from

H — B), ||I'llgg is a norm on HS(H, B) for which (HS(H,B),||-||y5) is a
Hilbert space, and the corresponding inner product is given by

(K1 |K2) Z (Kien|Kaey) . (9.14)
.If K : H— B is a bounded finite rank operator, then K is Hilbert Schmidt.
. Let Pyzx = 25:1 (x|len)en be orthogonal projection  onto

span{e, :n < N} C H and for K € HS(H,B), let Ky = KPy.
Then
1K = Knll, < 1K — KnllZs =0 as N — oo,

which shows that finite rank operators are dense in (HS(H,B), ||| y¢) - In
particular of HS(H,B) C K(H, B) - the space of compact operators from
H — B.

. If'Y is another Hilbert space and A:Y — H and C : B — 'Y are bounded

operators, then

KAl rs < [Kllgs 1Al and [CKlgs < 1Kz [1Cllp »
in particular HS(H, H) is an ideal in L (H).

Proof. Items 1. and 2. By Parseval’s equality and Fubini’s theorem for

sums,

macro:

oo o oo
Do lEe* =Y > [{Kenlum)?
n=1 n=1m=1
(oo} (oo} o0
= el B um)? = > 1K |-
m=1n=1 m=1
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This proves ||K|; ¢ is well defined independent of basis and that | K| ¢ =
|K*||yg - For x € H\ {0}, 2/ ||z|| may be taken to be the first element in an
orthonormal basis for H and hence

x

|«

<Kl g -
|zl ‘ s

Multiplying this inequality by ||z| shows ||Kz| < | K| yg|lz]| and hence
1K op < K| s -
Item 3. For Ky, K> € L(H, B),

e
||K1+K2||HS: Z||Klen+K2€n”2

n=1

o0

Y lKenl + 1 Kzen|]?

n=1

= [{lIKreall + | K2enll} o2 ll,,

< MK e}z lly, + KK 2enl} 2 1,
= Killgs + K2l s -

IN

From this triangle inequality and the homogeneity properties of ||-|| ;5 , we now
easily see that HS(H, B) is a subspace of L(H,B) and ||-||;¢ is a norm on
HS(H, B). Since

(e Kaen)| <) [ Kien]| [ Kae

NE

n=1 n=1
oo o0
2 2
<A DKl | D IKoenll® = 1K g 1 Koll s
n=1 n=1

the sum in Eq. (9.14)) is well defined and is easily checked to define an inner
product on HS(H, B) such that | K|%¢ = (K|K) g -

The proof that (HS(H, B), ””?‘15) is complete is very similar to the proof

of Theorem ??. Indeed, suppose {K,,} -_, is a ||| g — Cauchy sequence in
HS(H, B). Because L(H, B) is complete, there exists K € L(H, B) such that
[K — Km|,, — 0 as m — co. Thus, making use of Fatou’s Lemma ?7?,
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1K — Kl = D IK — Ko en”

n=1

= lim inf [[(K; — Km)en|”
ot l—o0

l—o0

o0
<lim inf Y [[(K — Kp) e
=1
= lim inf | ~ Kmll3g — 0 as m — oo.
—00

Hence K € HS(H, B) and lim,, o0 [|K — K36 = 0.

Item 4. Since Nul(K*)* = Ran (K) = Ran (K),

N
2 2 2
1K s = 1K s = > 1K vallyy < o0

n=1
where N := dim Ran (K) and {v,}._, is an orthonormal basis for Ran (K) =
Item 5. Simply observe,

IK — Knl2, < |K — Exlys = 3 [ Keal® = 0as N = co.
n>N

Item 6. For C € L(B,Y) and K € L(H, B) then

ICK|Hs =Y IICKen|” < [IC)2, " 1 Kenl® = |ICII2, 11K 13
n=1 n=1

and for Ae L(Y,H),
KAl gs = A K | gg < 1A lop 1K M g = [1Allop 1K s -
[

Remark 9.27. The separability assumptions made in Proposition [9.26] are un-
necessary. In general, we define

2 2
1K s =D I1Kell

ecp

where S C H is an orthonormal basis. The same proof of Item 1. of Proposition
shows || K| ;¢ is well defined and |K||,¢ = [K*||yq. If | K]%s < oo,
then there exists a countable subset Sy C 8 such that Ke =0if e € 8\ By. Let
Hy := span(fp) and By := K(Hp). Then K (H) C Bo, K|y = 0 and hence by
applying the results of Proposition to K|, : Hy — By one easily sees that
the separability of H and B are unnecessary in Proposition [9.26]
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Ezample 9.28. Let (X, 1) be a measure space, H = L?(X, 1) and

n

k(z,y) =Y fi (@) gi (v)

=1

where
firgi € LA(X,p) fori=1,...,n.

Define
(Kf) (z) = /X k(o) f (v) dp (y)

then K : L?(X,u) — L?*(X,pu) is a finite rank operator and hence Hilbert
Schmidt.

Exercise 9.3. Suppose that (X, u) is a o—finite measure space such that H =
L?(X, i) is separable and k : X x X — R is a measurable function, such that

bl o = [ )P (@) s o) < o
Define, for f € H,
KF @) = [ K ) dn (o),

when the integral makes sense. Show:

1. K f (z) is defined for y—a.e.  in X.
2. The resulting function K f isin H and K : H — H is linear.
3K N s = Ikl 22 (x x x pepy < o0- (This implies K € HS(H, H).)

Exercise 9.4 (Converse to Exercise [9.3)). Suppose that (X, z1) is a o—finite
measure space such that H = L?(X, u) is separable and K : H — H is a Hilbert
Schmidt operator. Show there exists k € L? (X x X, ® p) such that K is the
integral operator associated to k, i.e.

Kf(z) = /X K, 9)f () dy (3). (9.15)

In fact you should show
k() =3 (Kpm) () @n (2) (L* (0 ® p) — convergent sum)  (9.16)
n=1

where {¢,} -, is any orthonormal basis for H.
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